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Newtonian potentials and subharmonic functions

associated to root systems

Léonard GALLARDO∗ and Chaabane REJEB†

Abstract

The purpose of this paper is to present a new theory of subharmonic functions for
the Dunkl-Laplace operator ∆k in Rd associated to a root system and a multiplicity
function k ≥ 0. In particular, we introduce and study a Dunkl-Newton kernel and
the corresponding potential of Radon measures. As applications we give a strong
maximum principle, a solution of the Poisson equation and a Riesz decomposition
theorem for ∆k-subharmonic functions.
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Applications LR11ES11, 2092 El Manar I, Tunis, TUNISIA and Laboratoire de Mathématiques et Physique
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1 Introduction

Let R be a normalized root system in Rd i.e. R is a finite subset of Rd\{0} such that
for every α ∈ R, ∥α∥ =

√
2, R∩Rα = {±α} and σαR = R, where σα is the reflection with

respect to the hyperplane Hα orthogonal to α (see [13] for details on root systems).
For ξ ∈ Rd, let Dξ be the Dunkl operator defined on C1(Rd) by

Dξf(x) = ∂ξf(x) +
∑
α∈R+

k(α) ⟨α, ξ⟩ f(x)− f(σα(x))

⟨α, x⟩
, (1.1)

where ∂ξ is the ξ-directional partial derivative, R+ is a fixed positive subsystem of R and
k : R 7−→ [0,+∞[ is a fixed multiplicity function i.e. k is W -invariant, where W is the
Coxeter-Weyl group generated by the reflections σα, α ∈ R (see [6]). These operators are
related to partial derivatives by means of the Dunkl intertwining operator Vk (see [5] or
[6]) as follows

∀ ξ ∈ Rd, DξVk = Vk∂ξ. (1.2)

The operator Vk is a topological isomorphism from the space C∞(Rd)1 onto itself satisfying
(1.2) and Vk(1) = 1 (see [26]) and for every x ∈ Rd, there exists a unique probability
measure µx on Rd with compact support contained in

C(x) := co{gx, g ∈ W} (1.3)

(the convex hull of W.x, the orbit of x under the group W ) such that (see [22] or [23])

∀ f ∈ C∞(Rd), Vk(f)(x) =

∫
Rd

f(y)dµx(y). (1.4)

We know ([9]) that if k > 0, the support of µx is W -invariant and contains W.x.

The Dunkl-Laplace operator is then defined by ∆k =
∑d

j=1D
2
j , where Dj = Dej ,

j = 1, ..., d ( (ej)1≤j≤d is the canonical basis of Rd) are commuting operators (see [3] and
[6]). Its action on C2-functions is given by

∆kf(x) = ∆f(x) + 2
∑
α∈R+

k(α)
(⟨∇f(x), α⟩

⟨α, x⟩
− f(x)− f(σα(x))

⟨α, x⟩2
)
, (1.5)

1carrying its usual Fréchet topology.
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where ∆ (resp. ∇ ) is the usual Laplace (resp. gradient) operator,(see [6]).
For abbreviation, we introduce the wight function

ωk(x) :=
∏

α∈R+
| ⟨α, x⟩ |2k(α) (1.6)

which is W -invariant and homogeneous of degree 2γ, with the index γ :=
∑

α∈R+
k(α).

An important fact about the Dunkl-Laplace operator is that it generates a generalized
heat semi-group which kernel is given by (see [21])

pt(x, y) :=
1

(2t)d/2+γck
τ−x

(
e−

∥.∥2
4t

)
(y), x, y ∈ Rd (1.7)

:=
1

(2t)d/2+γck
e−(∥x∥2+∥y∥2)/4tEk(

x√
2t
,

y√
2t
), (1.8)

where Ek(., .) is the Dunkl kernel defined by Ek(x, y) = Vk(e
⟨.,y⟩)(x) (see [4], [6] and [23]),

ck is the Macdonald-Mehta constant (see [7]) given by

ck :=
∫
Rd exp(−∥x∥2

2 )ωk(x)dx (1.9)

and τx is the Dunkl translation operator which acts on C∞(Rd)-functions (see Annex A
for precise definition and essential properties). However, note that when f ∈ C∞(Rd) is a
radial function (i.e. f(x) = f̃(∥x∥) with f̃ the profile function of f), τxf is given by

∀ y ∈ Rd, τxf(y) =

∫
Rd

f̃(
√

∥x∥2 + ∥y∥2 + 2 ⟨x, z⟩)dµy(z) (1.10)

(see [24]). This formula shows that the Dunkl translation operators are positivity preserv-
ing on the set of radial functions.

Harmonic functions for the Dunkl-Laplacian, i.e. C2-functions u such that ∆ku = 0,
have for a long time attracted the attention of researchers involved in Dunkl theory (see
([17]), [18] and [24]) but their study was limited to C∞-functions f defined on whole Rd

or on the unit ball but having extension to whole Rd.
In a recent paper ([8]), we have found a volume mean value property characterization (see
below) which allows us to study Dunkl-harmonic (D-harmonic) functions on any open
W -invariant subset of Rd (see [8] and [10]). This new approach has many benefits in
particular to tackle Dunkl potential theory. It is the aim of this paper to introduce, via
the heat Dunkl-semigroup and our volume mean value operator, the Dunkl-Newtonian
potentials and their use to study Dunkl-subharmonic functions.
Let Ω be a W -invariant open subset of Rd. A function u : Ω −→ [−∞,+∞[ is called
Dunkl-subharmonic (D-subharmonic) if
1. u is upper semi-continuous (u.s.c.) on Ω,

2. u is not identically −∞ on each connected component of Ω,

3. u satisfies the volume sub-mean property i.e. for all closed ball B(x, r) ⊂ Ω, we have

u(x) ≤ M r
B(u)(x). (1.11)
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Here M r
B(f)(x) is the volume mean of f at (x, r) introduced by the authors ([8]) and

defined by

M r
B(f)(x) :=

1

mk(B(0, r))

∫
Rd

f(y)hk(r, x, y)ωk(y)dy,
2 (1.12)

where mk is the measure dmk(x) := ωk(x)dx and y 7→ hk(r, x, y) is a compactly supported
measurable function (see section 2) given by

hk(r, x, y) :=

∫
Rd

1[0,r](
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµy(z). (1.13)

Of particular importance for this paper is the Dunkl type Newton kernel which is
defined, when d+ 2γ > 2 (transient case), by means of the Dunkl heat kernel as follows

Nk(x, y) :=

∫ +∞

0
pt(x, y)dt. (1.14)

and which is finite if y is not in the W -orbit of x.

We will show that typical examples of D-subharmonic functions are the Dunkl-Newton
potentials of nonpositive Radon measures. Nevertheless, in particular for lack of a non-
centered Poisson kernel and because of the complexity of the Dunkl translation oper-
ators, the D-subharmonicity of these examples is not immediate and our approach to
D-subharmonic functions requires some specific tools that will be presented below.

We turn now to the content and the organization of this paper. In section 2, we recall
the properties of the so-called harmonic kernel hk(r, x, y) and some representation formulas
involving the mean value operators.
In section 3, we study the notion of subharmonicity in Dunkl setting. In particular, we
will prove that D-subharmonic functions satisfy the strong maximum principle.
The section 4 is devoted to give some characterizations of D-subharmonic functions. Here,
an approximation result is the essential tool to extend the properties of C2-D-subharmonic
functions to arbitrary D-subharmonic functions.
The notion of Riesz measure of a D-subharmonic function will be introduced in section 5.
We will study the Dunkl type Newton kernel and potential of a Radon measure on Rd in
section 6. In particular, we will discuss the D-harmonicity and the D-superhamonicity of
these objects and we will obtain the mass uniqueness principle.
Finally, in section 7, we prove a Riesz decomposition theorem for D-subharmonic functions
and we describe all bounded from above D-subharmonic functions in the whole space.

Notations: Let us introduce the following functional spaces and notations which will be
used throughout the paper. For Ω a W -invariant open subset of Rd, we denote by:
• L1

k,loc(Ω) = L1
loc(Ω, mk) the space of measurable functions f : Ω −→ C such that∫

K |f(x)|ωk(x)dx < +∞ for any compact set K ⊂ Ω.
• D(Ω) the space of C∞-functions on Ω with compact support.

2Note that if the function f is u.s.c, then f is bounded from above on compact sets and Mr
B(f)(x) is

well-defined (eventually equal to −∞).
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• D′(Ω) the space of distributions on Ω (i.e. the topological dual of D(Ω) carrying the
Fréchet topology).
• M+(Rd) the set of nonnegative Radon measures on Rd.
• S(Rd) the Schwartz space of C∞-functions on Rd which are rapidly decreasing together
with their derivatives.

• B(a, ρ)
(
resp.

◦
B(a, ρ), resp. BW (a, ρ) := ∪g∈WB(ga, ρ)

)
the closed Euclidean

(
resp.

the open Euclidean, resp. the closed Dunkl
)
ball centered at a and with radius ρ > 0.

2 The harmonic kernel and the mean value operators

2.1 Properties of the harmonic kernel

Let (r, x, y) 7→ hk(r, x, y) the harmonic kernel defined by (1.13). We note that in the
classical case (i.e. k = 0), we have µy = δy and h0(r, x, y) = 1[0,r](∥x− y∥) = 1B(x,r)(y).
The harmonic kernel satisfies the following properties (see [8]):

1. For all r > 0 and x, y ∈ Rd, 0 ≤ hk(r, x, y) ≤ 1.

2. For all fixed x, y ∈ Rd, the function r 7−→ hk(r, x, y) is right-continuous and non
decreasing on ]0,+∞[.

3. For all fixed r > 0 and x ∈ Rd,

B(x, r) ⊂ supp hk(r, x, . ) ⊂ BW (x, r) := ∪g∈WB(gx, r). (2.1)

The first inclusion is proved in [9] while the second one is proved in [8].

4. Let r > 0 and x ∈ Rd. For any sequence (χε) ⊂ D(Rd) of radial functions such that
for every ε > 0, 0 ≤ χε ≤ 1, χε = 1 on B(0, r) and y ∈ Rd, limε→0 χε(y) = 1B(0,r)(y),
we have

∀ y ∈ Rd, hk(r, x, y) = lim
ε→0

τ−xχε(y). (2.2)

5. For all r > 0, all x, y ∈ Rd and all g ∈ W , we have

hk(r, x, y) = hk(r, y, x) and hk(r, gx, y) = hk(r, x, g
−1y). (2.3)

6. For all r > 0 and x ∈ Rd, we have

∥hk(r, x, .)∥k,1 :=
∫
Rd

hk(r, x, y)ωk(y)dy = mk(B(0, r)) =
dkr

d+2γ

d+ 2γ
, (2.4)

where dk is the constant

dk :=
∫
Sd−1 ωk(ξ)dσ(ξ) =

ck
2d/2+γ−1Γ(d/2+γ)

. (2.5)

Here dσ(ξ) is the surface measure of the unit sphere Sd−1 of Rd and ck is defined in
(1.9).
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7. Let r > 0 and x ∈ Rd. Then the function hk(r, x, .) is upper semi-continuous on Rd.

8. The harmonic kernel satisfies the following fundamental geometric inequality: if
∥a− b∥ ≤ 2r with r > 0, then

∀ ξ ∈ Rd, hk(r, a, ξ) ≤ hk(4r, b, ξ). (2.6)

Note that if k = 0, this inequality says that if ∥a− b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

9. Let x ∈ Rd. Then the family of probability measures

dηkx,r(y) =
1

mk[B(0, r)]
hk(r, x, y)ωk(y)dy (2.7)

is an approximation of the Dirac measure δx as r −→ 0. That is

∀ α > 0, lim
r→0

∫
∥x−y∥>α

dηkx,r(y) = 0 (2.8)

and if f is a continuous function on a W -invariant open neighborhood of x, then
(see [8], Proposition 3.2):

lim
r→0

∫
Rd

f(y)dηkx,r = lim
r→0

M r
B(f)(x) = f(x). (2.9)

Let Ω be a W -invariant nonempty open subset of Rd. The boundeness of hk as well as
its support property (2.1) allowed us to define the volume mean of any f ∈ L1

k,loc(Ω) at
(x, r) by (1.12) whenever B(x, r) ⊂ Ω. We will need the following notations which will be
used frequently in this paper:

∀ r > 0, Ωr :=
{
x ∈ Ω; dist(x, ∂Ω) > r

}
, (2.10)

rΩ := sup{r > 0; Ωr ̸= ∅}. (2.11)

Clearly, we have Ωr1 ⊂ Ωr2 whenever r2 ≤ r1 and Ω = ∪r>0Ωr = ∪r<rΩΩr. Moreover,
since Ωr =

{
x ∈ Ω; B(x, r) ⊂ Ω

}
, the open set Ωr, r < rΩ, is W -invariant.

The volume mean operator of f ∈ L1
k,loc(Ω) has the following properties (the first and the

second results are proved in [10] while the third is proved in [19]):

Proposition 2.1 Let f ∈ L1
k,loc(Ω).

1. Let r < rΩ. Then the function M r
B(f) belongs to L1

k,loc(Ωr).

2. Let x ∈ Ω. Then the function r 7→ M r
B(f)(x) is continuous on ]0, ϱx[ with

ϱx := dist(x, ∂Ω). (2.12)

3. For almost every3 x ∈ Ω, we have limr→0M
r
B(f)(x) = f(x).

3Note that negligible sets for the Lebesgue measure coincide with negligible sets for the measure mk.
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2.2 Representation formulas for the mean value operators

In this subsection, we will recall some representation formulas obtained by the authors in
[8] and [10]. These formulas play a key role in the study of D-subharmonic functions in
sections 4, 5 and 7.
Let us begin to recall that the spherical mean for C∞-functions defined on whole Rd as
follows (see [18])

M r
S(f)(x) :=

1

dk

∫
Sd−1

τxf(ry)ωk(y)dσ(y)
4. (2.13)

It is shown in [24] that there exists a compactly supported probability measure σk
x,r on Rd

such that the spherical mean of f ∈ C∞(Rd) at (x, r) ∈ Rd × R+ is given by

M r
S(f)(x) =

∫
Rd

f(y)dσk
x,r(y), (2.14)

with
supp σk

x,r ⊂ BW (x, r) = ∪g∈WB(gx, r). (2.15)

Formula (2.14) shows that we can define the spherical mean at (x, r) of any measurable
nonnegative (resp. nonpositive, resp. bounded) function on BW (x, r).

The following crucial results, proved by the authors, on the link between the spherical
and volume means hold: If f ∈ C2(Ω), then for every closed ball B(x, r) ⊂ Ω, r > 0, we
have:

M r
S(f)(x) = f(x) +

1

d+ 2γ

∫ r

0
M t

B(∆kf)(x) tdt, (2.16)

and

M r
B(f)(x) = f(x) +

1

rd+2γ

∫ r

0

∫ ρ

0
M t

B(∆kf)(x) t dt ρ
d+2γ−1dρ. (2.17)

Note that (2.16) and (2.17) have been proved at first for C∞(Rd)-functions in [8] and then
have been extended by the authors to C2(Ω)-functions using approximation results (see
[10] for more details).
Furthermore, the following relation holds for continuous functions on Ω (see [10])

M r
B(f)(x) =

d+ 2γ

rd+2γ

∫ r

0
M t

S(f)(x)t
d+2γ−1dt, whenever B(x, r) ⊂ Ω. (2.18)

Now, let f be an upper semi-continuous (u.s.c.) function on Ω and let B(x, r) ⊂ Ω.
As f is u.s.c., by adding a constant, we can assume that f is nonpositive on the compact
set BW (x, r). Therefore, using (2.1) and (2.15), we can define the Dunkl-volume and the
Dunkl-spherical means of f relative to (x, r). Moreover, we have

Lemma 2.1 The relation (2.18) holds for the u.s.c. function f on Ω (the two terms of
(2.18) being eventually equal to −∞).

4Recalling that dσ is the surface measure on the unit sphere Sd−1 of Rd.
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Proof: Fix x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω. Since f is bounded from above on
BW (x, r), there is a decreasing sequence of continuous functions (fn) such that fn −→ f
pointwise on BW (x, r). Replacing fn by fn− supBW (x,r) f1 and f by f − supBW (x,r) f1, we

may assume that f and all fn are nonpositive on BW (x, r).
For t ∈]0, r], set gn(t) = M t

S(fn)(x) and g(t) = M t
S(f)(x). We can see that the sequence

(gn) is decreasing and from the monotone convergence theorem applied to the sequence
(fn), we get gn −→ g pointwise on ]0, r] and in particular, g is a measurable function.
Let us now apply the monotone convergence theorem to the sequence (gn), we obtain∫ r

0
M t

S(f)(x)t
2γ+d−1dt = lim

n−→+∞

∫ r

0
M t

S(fn)(x)t
2γ+d−1dt. (2.19)

But, by the first step,

2γ + d

r2γ+d

∫ r

0
M t

S(fn)(x)t
2γ+d−1dt = M r

B(fn)(x) (2.20)

and once again by the monotone convergence theorem, we have

lim
n−→+∞

M r
B(fn)(x) = M r

B(f)(x). (2.21)

Finally, we deduce the relation (2.18) from (2.19), (2.20) and (2.21). �

3 Dunkl subharmonic functions

In this section, we study some properties of D-subharmonic functions (see definition (1.11))
on a W -invariant open set Ω ⊂ Rd. In particular, we will prove that they satisfy the strong
maximum principle and the uniqueness principle.

Let us denote by SHk(Ω) the set of D-subharmonic functions on Ω which is clearly
a convex cone. Furthermore, it is not difficult to see that if u, v ∈ SHk(Ω) and if f is a
convex and non-decreasing function on R, then max(u, v) and f(u) are also in SHk(Ω).
As in the classical case, a function u is called D-superharmonic if −u is D-subharmonic.

3.1 Local properties of D-subharmonic functions

Proposition 3.1 Let u ∈ SHk(Ω). Then the function u belongs to L1
k,loc(Ω).

Proof: Fix Ω0 a connected component of Ω. Let

E := {x ∈ Ω0, uωk is integrable over some neighbourhood of x}.

Let x ∈ E. Then there exists r > 0 such that B(x, r) ⊂ Ω0 and
∫
B(x,r) |u(y)|ωk(y)dy <

+∞. For z ∈ B(x, r/2), we have B(z, r/2) ⊂ B(x, r) and hence uωk is integrable over
B(z, r/2). Thus, B(x, r/2) ⊂ E and E is an open subset of Ω0.
Now, let x ∈ Ω0\E. Because uωk is not integrable on any neighborhood of x, we must
have

∫
B(x,R) |u(y)|ωk(y)dy = +∞ for all R > 0 such that B(x,R) ⊂ Ω0. Fix r > 0 such

that B(x, 6r) ⊂ Ω0. We will prove that B(x, 2r) ⊂ Ω0\E.
Since u is u.s.c., we can assume that u is nonpositive on the compact set K = BW (x, 6r)5.

5replacing u by u−maxK u.
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Let z ∈ B(x, 2r). From (2.6) and the nonpositivity of u, we deduce that∫
Rd

u(y)hk(4r, z, y)ωk(y)dy ≤
∫
Rd

u(y)hk(r, x, y)ωk(y)dy. (3.1)

Now, if we apply (2.6) once again where we replace respectively r, a, b and ξ by r/4, x, y
and x we get

∀ y ∈ B(x, r/2), h(r/4, x, x) ≤ hk(r, y, x) (3.2)

Thus, using (3.2), (2.3), (3.1), (2.1) and the fact that u ≤ 0, we obtain∫
Rd

u(y)hk(4r, z, y)ωk(y)dy ≤
∫
B(x,r/2)

u(y)hk(r, x, y)ωk(y)dy

≤ hk(r/4, x, x)

∫
B(x,r/2)

u(y)ωk(y)dy = −∞.

Consequently, from the previous inequality we getM4r
B (u)(z) = −∞, and therefore, u(z) =

−∞ by the sub-mean property. Hence, u = −∞ on B(x, 2r) and this proves that Ω0\E
is an open subset of Ω0. Finally, as u ̸= −∞ on Ω0 and using the connectedness of Ω0,
we must have E = Ω0. The connected component Ω0 being arbitrary, Proposition 3.1 is
proved. �

Let u ∈ SHk(Ω). Using the generalized Lebesgue differentiation theorem (see [19])
and Proposition 3.1, we have u(x) = limr→0M

r
B(u)(x) for almost all x ∈ Ω.

In the classical case (i.e. when k = 0), this equality holds everywhere for any subharmonic
function (see for example [1], Corollary 3.2.6 or [12], Lemma 2.4.4). In the following result,
we will extend this fundamental property to D-subharmonic functions.

Proposition 3.2 Let u ∈ SHk(Ω). Then, for every x ∈ Ω, we have

u(x) = lim
r→0

M r
B(u)(x). (3.3)

Proof: Fix x ∈ Ω and R > 0 such that B(x,R) ⊂ Ω. As above, we may assume that u is
negative on the compact set BW (x,R). We distinguish two cases:
First case: Suppose that u(x) > −∞. By upper semi-continuity, for all ε > 0 , there
exists α ∈]0, R] such that

u(y) < u(x) + ε, whenever y ∈ B(x, α). (3.4)

From the sub-mean property and the fact that u < 0 on BW (x,R), we have

∀ r ∈]0, R], u(x) ≤ M r
B(u)(x) =

∫
Rd

u(y)dηkx,r(y) ≤
∫
B(x,α)

u(y)dηkx,r(y),

where dηkx,r(y) is the probability measure defined by (2.7).
Using (3.4), we deduce that

∀ r ∈]0, R], u(x) ≤ M r
B(u)(x) ≤ (u(x) + ε)

∫
B(x,α)

dηkx,r(y). (3.5)

9



As from (2.8) limr→0

∫
B(x,α) dη

k
x,r(y) = 1, there exists β ∈]0, R[ such that

∀ r ∈]0, β],
∫
B(x,α)

dηkx,r(y) ≥ 1− ε. (3.6)

Now, if we have taken ε > 0 small enough to ensure that u(x) + ε < 0, we deduce from
(3.5) and (3.6) that

∀ r ∈]0, β], u(x) ≤ M r
B(u)(x) ≤ u(x) + ε(1− ε− u(x)).

This implies that M r
B(u)(x) −→ u(x) as r −→ 0. This proves the result in this case.

Second case: Suppose that u(x) = −∞. For every n ∈ N\{0}, there is a ∈]0, R] such
that u(y) ≤ −n whenever y ∈ B(x, a). Therefore,

∀ r ∈]0, a], M r
B(u)(x) ≤ −n

∫
B(x,a)

dηkx,r(y). (3.7)

Again by (2.8), there exists b > 0 such that

∀ r ∈]0, b],
∫
B(x,a)

dηkx,r(y) ≥ 1/2. (3.8)

From (3.7) and (3.8) we obtain ∀ r ∈]0,min(a, b)], M r
B(u)(x) ≤ −n/2. Therefore,

M r
B(u)(x) −→ −∞ as r −→ 0 and the result is also proved in this case.

�
From the previous Proposition, we immediately obtain the uniqueness principle that a D-
subharmonic function is determined by its restriction to the complementary of a negligible
set. More precisely:

Corollary 3.1 If u and v are D-subharmonic functions on a W -invariant open set Ω ⊂ Rd

and u(x) = v(x) for almost every x ∈ Ω, then u and v are identically equal in Ω.

In the following result we consider the convergence property of a decreasing sequence
of D-subharmonic functions.

Proposition 3.3 Let (un) be a decreasing sequence of D-subharmonic functions on Ω and
u(x) := limn→+∞ un(x). If u is not identically −∞ on each connected component of Ω,
then u is D-subharmonic on Ω.

Proof: Clearly u is u.s.c. on Ω as being a decreasing limit of u.s.c. functions. Let x ∈ Ω
and r > 0 such that B(x, r) ⊂ Ω. By the monotone convergence theorem, we get

u(x) = lim
n→+∞

un(x) ≤ lim
n→+∞

M r
B(un)(x) = M r

B(u)(x).

This implies that u is D-subharmonic on Ω. �
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3.2 The strong Maximum principle

The following theorem is a generalization of the strong maximum principle for D-harmonic
functions obtained by the authors in [8] (Theorem 4.1).

Theorem 3.1 Let u ∈ SHk(Ω) and suppose that Ω is connected.

i) If u has a maximum in Ω, then u is constant.

ii) If Ω is bounded and lim supz→x u(z) ≤ 0, for all x ∈ ∂Ω, then u ≤ 0 on Ω.

Proof: i) Let x0 ∈ Ω such that u(x) ≤ u(x0) for all x ∈ Ω. Let

Ω0 := {x ∈ Ω, u(x) < u(x0)}.

Because u is u.s.c., Ω0 is an open subset of Ω.
Now, let x ∈ Ω\Ω0 i.e. u(x) = u(x0) and r > 0 such that B(x, r) ⊂ Ω. By the sub-mean
property, we clearly have

u(x0) = u(x) ≤ M r
B(u)(x) ≤ u(x0).

This yields
1

mk(B(0, r))

∫
Rd

[u(x0)− u(y)]hk(r, x, y)ωk(y)dy = 0.

Hence, u(x0) = u(y) for almost every y ∈ supp hk(r, x, .) and by (2.1), u(x0) = u(y)

for almost every y ∈
◦
B(x, r). Let us now introduce the nonpositive function v(y) =

u(y) − u(x0), y ∈
◦
B(x, r). Suppose that there exists a ∈

◦
B(x, r) such that v(a) < 0 and

take λ ∈ R such that v(a) < λ < 0. Since v is u.s.c at the point a, there is ϵ > 0 such that

B(a, ϵ) ⊂
◦
B(x, r) and v(y) < λ for all y ∈ B(a, ϵ). This contradicts the fact that v = 0

a.e. on
◦
B(x, r) and this proves that u ≡ u(x0) on

◦
B(x, r).

Consequently, Ω\Ω0 is an open subset of Ω containing x0. But Ω is connected, then Ω0 = ∅
and this shows i).
ii) Define the function ũ on the compact closure Ω of Ω by ũ(x) = u(x) if x ∈ Ω and
ũ(x) = lim supy→x, y∈Ω u(y) if x ∈ ∂Ω.

Clearly ũ is u.s.c. on Ω. Consequently, there exists x0 ∈ Ω such that ũ(x0) = supΩ ũ(x).
If ũ(x0) > 0, then by our hypothesis necessarily x0 ∈ Ω and by i) we have u(x) = u(x0) > 0
for every x ∈ Ω. We obtain a contradiction to the fact that lim supy→x u(y) ≤ 0. �

Corollary 3.2 Let u ∈ SHk(Ω) and suppose that G is a connected W -invariant open
subset of Ω with compact closure G ⊂ Ω. If s is D-superharmonic on Ω and u ≤ s on ∂G,
then u ≤ s on G.

Proof: Clearly u− s is D-subharmonic on G and for x ∈ ∂G, we have

lim sup
z→x

[u(z)− s(z)] ≤ lim sup
z→x

u(z)− lim inf
z→x

s(z) = u(x)− s(x) ≤ 0.

Hence, the result follows from Theorem 3.1, ii). �
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4 Characterization of Dunkl subharmonic functions

Our aim in this section is give some characterizations of the ∆k-subharmonicity. We will
first do this for C2-∆k-subharmonic functions. Then, an approximation method allowed
us to extend the results to any ∆k-subharmonic function.

4.1 Characterization of C2− D-subharmonic functions

As a first result, we have

Proposition 4.1 Let u ∈ C2(Ω). Then the following assertions are equivalent

i) u ∈ SHk(Ω), ii) ∆ku ≥ 0 on Ω, iii) u(x) ≤ M r
S(u)(x) whenever B(x, r) ⊂ Ω.

Proof: i) =⇒ ii) Suppose that ∆ku(x) < 0 for some x ∈ Ω. By (2.9), we have
limt→0M

t
B(∆ku)(x) = ∆ku(x). Hence, there exists r ∈]0, ϱx[ such that6

M t
B(∆ku)(x) ≤

1

2
∆ku(x) < 0 for all t ∈]0, r].

This implies that

1

r2γ+d

∫ r

0

∫ ρ

0
M t

B(∆ku)(x) t dt ρ
2γ+d−1dρ ≤ r2

4(d+ 2γ + 2)
∆ku(x) < 0.

Therefore, by (2.17) we obtain M r
B(u)(x) < u(x). A contradiction with the sub-mean

property.
ii) =⇒ iii) This follows immediately from the relation (2.16).
iii) =⇒ i) From (2.18) and a direct integration with respect to r, we obtain the result. �

The C2- D-subharmonicity can be characterized in terms of the monotonicity with
respect to r of the spherical and volume means. More precisely, we have

Proposition 4.2 Let u ∈ C2(Ω). The following statements are equivalent

i) u ∈ SHk(Ω),

ii) for every x ∈ Ω, the function r 7−→ M r
B(u)(x) is non-decreasing on ]0, ϱx[ and

lim
r→0

M r
B(u)(x) = u(x), (4.1)

iii) for every x ∈ Ω, the function r 7−→ M r
S(u)(x) is non-decreasing on ]0, ϱx[ and

lim
r→0

M r
S(u)(x) = u(x), (4.2)

iv) u ∈ L1
k,loc(Ω), limr→0M

r
B(u)(x) = u(x) for every x ∈ Ω and M r

B(u)(x) ≤ M r
S(u)(x),

whenever B(x, r) ⊂ Ω.

6We recall that ϱx is the distance from x to the boundary of Ω (see (2.12)).
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Proof: At first, using Proposition 2.1- 2), formulas (2.16) and (2.17), we deduce that
the functions r 7−→ M r

B(f)(x) and r 7−→ M r
S(f)(x) are differentiable on ]0, ϱx[ and the

relations (4.1) and (4.2) are always satisfied for any fixed function f ∈ C2(Ω) and for any
fixed x ∈ Ω. We note also that the first condition in assertion iv) is redundant but we
will need it in order to extend this result to an arbitrary D-subharmonic function (see
Theorem 4.2 below).
ii) =⇒ i) As r 7−→ M r

B(u)(x) is non-decreasing, (4.1) implies that the sub-mean property
is clearly satisfied.
i) =⇒ iii) We use the fact that ∆ku ≥ 0 on Ω and we differentiate with respect to r the
relation (2.16) and we get d

drM
r
S(u)(x) ≥ 0 i.e we obtain iii).

iii) =⇒ iv) It is a direct consequence of the relation (2.18).
iv) =⇒ ii) We differentiate with respect to r in the relation (2.18) and we obtain

d

dr
M r

B(u)(x) =
d+ 2γ

r

(
M r

S(u)(x)−M r
B(u)(x)

)
≥ 0.

This implies that r 7−→ M r
B(u)(x) is non-decreasing on ]0, ϱx[. �

4.2 Approximation of D-subharmonic functions by C∞-functions

Let us consider the following radial function φ(x) := a exp (− 1
1−∥x∥2 )1B(0,1)(x), x ∈ Rd,

where a is a constant such that x 7−→ φ(x)ωk(x) is a probability density.
For ε > 0, define the function

φε(x) =
1

εd+2γ
φ(

x

ε
). (4.3)

It is well known that φε ∈ D(Rd) is radial with supp φε ⊂ B(0, ε).

In order to approximate D-subharmonic functions by smooth D-subharmonic functions,
we need the following facts, proved in [10], on Dunkl convolution product

Proposition 4.3 Let u ∈ L1
k,loc(Ω) and rΩ given by (2.11). For 0 < ε < rΩ, define the

function uε by

∀ x ∈ Ωε, uε(x) := u ∗k φε(x) :=

∫
Rd

u(y)τ−xφε(y)ωk(y)dy. (4.4)

Then the sequence (uε)ε<rΩ satisfies

i) For every ε < rΩ, the function uε is in C∞(Ωε) and we have

∆kuε(x) = ∆k(u ∗k φε)(x) = u ∗k ∆kφε(x), x ∈ Ωε. (4.5)

ii) For every ε < rΩ and every closed ball B(x, r) ⊂ Ωε, we have

M r
B(uε)(x) := M r

B(u ∗k φε)(x) = M r
B(u) ∗k φε(x). (4.6)

iii) For almost every x ∈ Ω, uε(x) −→ u(x) as ε −→ 0.
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iv) If u is continuous on Ω, then for every x ∈ Ω, uε(x) −→ u(x) as ε −→ 0.

Moreover, the following associativity result(
u ∗k φε1

)
∗k φε2 =

(
u ∗k φε2

)
∗k φε1 , on Ωε1+ε2 , (4.7)

holds whenever ε1 + ε2 < rΩ (see [10], Proposition 3.3).

Remark 4.1 In order to prove that u∗kφε is well defined on Ωε, we have used the following
support property (see [10])

supp τ−xφε ⊂ BW (x, ε) = ∪g∈WB(gx, ε). (4.8)

Our approximate result is as follows:

Theorem 4.1 Let u ∈ SHk(Ω) and uε the functions defined by (4.4). Then we have

1) for every 0 < ε < rΩ, the function uε is D-subharmonic and of class C∞ on Ωε,

2) for every 0 < ρ < rΩ, the sequence (uε)0<ε<ρ of C∞ and D-subharmonic functions on
Ωρ is non-decreasing 7 and converges pointwise to u on Ωρ as ε → 0,

3) for all B(x, r) ⊂ Ω, M r
B(uε)(x) −→ M r

B(u)(x) and M r
S(uε)(x) −→ M r

S(u)(x) as ε → 0.

Proof: 1) By Proposition 3.1, u ∈ L1
k,loc(Ω) and then from Proposition 4.3 we deduce

that uε ∈ C∞(Ωε). On the other hand, as u is D-subharmonic on Ω and τ−xφε ≥ 0, (4.6)
implies that

M r
B(uε)(x) ≥ uε(x), for all B(x, r) ⊂ Ωε.

Therefore, uε is D-subharmonic on Ωε.
2) Choose 0 < ρ < rΩ (i.e. Ωρ is nonempty). By 1) and i) of Proposition 4.3, we have
uε ∈ C∞(Ωρ) ∩ SHk(Ωρ) for all ε < ρ.
• We will prove in two steps that the sequence (uε)0<ε<ρ is non-decreasing.
Step1: Suppose that u is of class C2 on Ω. According to [10] (see Proposition 3.2), the
relation (4.4) can be rewritten in spherical coordinates as follows

u ∗k φε(x) = dk

∫ ε

0
φ̃ε(t)t

d+2γ−1M t
S(u)(x)dt, (4.9)

where φ̃ε is the profile function of φε and dk is the constant given by (2.5). Using the
change of variables θ = t/ε in (4.9) and recalling (4.3), we deduce that

uε(x) = dk

∫ 1

0
φ̃(θ) θd+2γ−1M θε

S (u)(x)dθ.

Since, r 7−→ M r
S(u)(x) is non-decreasing (see Proposition 4.2), we conclude that (uε)0<ε<ρ

is a non-decreasing sequence.
Step 2: Suppose only that u ∈ SHk(Ω). In order to use the same idea many times in the
sequel of this paper, we will present the argument in the form of the following fundamental
approximation lemma:

7i.e. for all fixed x ∈ Ωρ, ε 7→ uε(x) is a non-decreasing function on ]0, ρ[.
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Lemma 4.1 Let v ∈ L1
k,loc(Ω) and (φε) the sequence defined by (4.3). Assume that for

any ε < rΩ, the function v ∗k φε belongs to SHk(Ωε). Then

a) for every 0 < ρ < rΩ, the sequence (v ∗k φε)0<ε<ρ is non-decreasing on Ωρ,

b) the function s : x 7→ limε→0 v ∗k φε(x) is well defined and D-subharmonic on Ω and
v = s almost everywhere on Ω.

Assume the result of the Lemma for the moment.
By Proposition 3.1 and the statement 1) of the theorem, the hypotheses of Lemma 4.1 are
satisfied. Consequently, using Lemma 4.1 and the uniqueness principle (Corollary 3.1), we
obtain the statement 2).
3) By 2), the result follows immediately from the monotone convergence theorem. �

Proof of Lemma 4.1: a) Fix ρ ∈]0, rΩ[ and let η ∈]0, ρ[. By our hypothesis and Proposition
4.3, the function v ∗k φη ∈ C∞(Ωρ) ∩ SHk(Ωρ). Consequently, by the statement 1) of
Theorem 4.1, the functions [v ∗k φη] ∗k φε, with ε > 0 such that η + ε < ρ, are in
C∞(Ωρ) ∩ SHk(Ωρ). Furthermore, by the step 1, the sequence

(
[v ∗k φη] ∗k φε

)
0<ε<ρ−η

is
non-decreasing i.e. if 0 < ε1 ≤ ε2 < ρ− η, then

∀ x ∈ Ωρ, [v ∗k φη] ∗k φε1(x) ≤ [v ∗k φη] ∗k φε2(x).

By (4.7) the previous inequality can be written

∀ x ∈ Ωρ, [v ∗k φε1 ] ∗k φη(x) ≤ [v ∗k φε2 ] ∗k φη(x).

Finally, letting η −→ 0 and using the statement iv) of Proposition 4.3, we obtain

∀ x ∈ Ωρ, v ∗k φε1(x) ≤ v ∗k φε2(x).

This proves the assertion a).
b) Let 0 < ρ < rΩ. Since the sequence (v ∗k φε)0<ε<ρ is non-decreasing on Ωρ, we deduce
that for any x ∈ Ωρ, s(x) := limε→0 v∗kφε(x) exists in [−∞,+∞[. On the other hand, from
Proposition 4.3-iii), we see that s = v almost everywhere on Ωρ. In particular s ̸= −∞
on each connected component of Ωρ. Consequently, by a) and Proposition 3.3 we deduce
that s ∈ SHk(Ωρ) as a pointwise decreasing limit of D-subharmonic functions on Ωρ. As
ρ > 0 can be taken arbitrary small, the proof of the lemma is complete. �

Now, we will extend the results of Proposition 4.2 to any D-subharmonic function (see
[1], Corollary 3.2.6 for the classical case).

Theorem 4.2 Let u be an u.s.c. function on a W -invariant open set Ω ⊂ Rd. Assume
that u is not identically −∞ on each connected component of Ω. Then the statements i),
ii), iii) and iv) of Proposition 4.2 are equivalent.

Proof: i) =⇒ ii) Let u ∈ SHk(Ω). We already know that (4.1) holds (see Proposition
3.2). Let (uε) be the sequence defined by (4.4). By Theorem 4.1, uε ∈ C∞(Ωε)∩SHk(Ωε).
Therefore, using Proposition 4.2, r 7−→ M r

B(uε)(x) is non-decreasing on ]0, dist(x, ∂Ωε)[.
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Letting ε −→ 0 and using Theorem 4.1, 3), we deduce that r 7−→ M r
B(u)(x) is also non-

decreasing.
ii) =⇒ i) This is obvious.
i) =⇒ iii) If u ∈ SHk(Ω) ∩ C∞(Ω), the result is proved in Proposition 4.2.
Let us now suppose only that u ∈ SHk(Ω). By Proposition 4.3 and Theorem 4.1, the
functions uε defined by (4.4) are in SHk(Ωε) ∩ C∞(Ωε).
Consequently, we have
a) the function r 7−→ M r

S(uε)(x) is non-decreasing on ]0, dist(x, ∂Ωε)[,
b) for all 0 < ε < ρ, limr→0M

r
S(uε)(x) = uε(x),

c) for all 0 < ε < ρ, uε(x) ≤ M r
S(uε)(x),

where ρ = ρ(x) > 0 is such that x ∈ Ωε for all ε < ρ.
From a) and Theorem 4.1-3), we can see that r 7−→ M r

S(u)(x) is also non-decreasing as a
pointwise limit of non-decreasing functions.
Using c) and letting ε −→ 0, we have u(x) ≤ M r

S(u)(x). Moreover, since (uε)0<ε<ρ is a
non-decreasing sequence, we deduce that

∀ 0 < ε < ρ, u(x) ≤ M r
S(u)(x) ≤ M r

S(uε)(x).

According to b), this implies that

∀ 0 < ε < ρ, u(x) ≤ lim
r→0

M r
S(u)(x) ≤ lim

r→0
M r

S(uε)(x) = uε(x).

Finally, letting ε −→ 0 and using Theorem 4.1-2), we deduce the desired result.
iii) =⇒ i) Let x ∈ Ω and r ∈]0, ϱx[ be fixed and assume that u is nonpositive on the
compact set BW (x, r) (using the upper semi-continuity of u). For all ρ ∈]0, r[, we have

2γ + d

r2γ+d

∫ r

ρ
M t

S(u)(x)t
2γ+d−1dt ≥ Mρ

S(u)(x)
(
1− (ρ/r)d+2γ

)
.

Since t 7−→ M t
S(u)(x) is nonpositive on ]0, r], letting ρ −→ 0 and using the monotone

convergence theorem, Lemma 2.1 and the relation (4.2), we obtain

M r
B(u)(x) ≥ u(x).

This proves that u is D-subharmonic on Ω.
i) =⇒ iv) Let u ∈ SHk(Ω). We know that the function uωk is locally integrable on Ω
and limr→0M

r
B(u)(x) = u(x) for every x ∈ Ω. By Proposition 4.2, the result is true when

u ∈ C2(Ω). Now, suppose only that u is in SHk(Ω). Considering the D-subharmonic
functions uε defined in Theorem 4.1 , we get for ε small enough

M r
B(uε)(x) ≤ M r

S(uε)(x).

By Theorem 4.1, we deduce that M r
B(u)(x) ≤ M r

S(u)(x).
iv) =⇒ i) We will use the same idea as in [12] (Lemma 2.4.4). First, we need the following
lemma:

16



Lemma 4.2 Let f ∈ L1
k,loc(Ω) be an u.s.c. function. Then for every x ∈ Ω and r > 0

such that B(x, r) ⊂ Ω, the function t 7−→ M t
S(f)(x)t

d+2γ−1 is integrable on [0, r] and we
have

M r
B(f)(x) =

d+ 2γ

rd+2γ

∫ r

0
M t

S(f)(x)t
d+2γ−1dt. (4.10)

Proof: Assume that f is nonpositive in the fixed Dunkl ball BW (x, r) ⊂ Ω. The formula
(4.10) has been established in Lemma 2.1. Therefore, it suffices to show that M r

B(f)(x) ̸=
−∞. Denoting Cr := (mk(B(0, r)))−1, by (2.1) and the fact that hk(r, x, y) ≤ 1, we get

|M r
B(f)(x)| ≤ Cr

∫
BW (x,r) |f(y)|hk(r, x, y)ωk(y)dy ≤ Cr

∫
BW (x,r) |f(y)|ωk(y)dy < +∞.

�
Now, we turn to the proof of iv) =⇒ i). Let x ∈ Ω. Suppose that M r

B(u)(x) ≤
M r

S(u)(x) for every r ∈]0, ϱx[. Since u ∈ L1
k,loc(Ω), by Lemma 4.2, the function r 7−→

M r
B(u)(x) is absolutely continuous on every closed interval [a, b] ⊂]0, ϱx[ as a product of

two absolutely continuous functions. Hence, it is almost everywhere differentiable on [a, b]
and we have

d

dr
M r

B(u)(x) =
d+ 2γ

r

(
M r

S(u)(x)−M r
B(u)(x)

)
≥ 0 a.e..

Thus, r 7−→ M r
B(u)(x) is non-decreasing on [a, b] (see [2], Proposition 5.3). That is, for

every 0 < t ≤ r < ϱx, we have M t
B(u)(x) ≤ M r

B(u)(x). Letting t −→ 0, we deduce that
u(x) ≤ M r

B(u)(x). This proves that u is in SHk(Ω) and the Theorem is completely proved.
�

5 ∆k-Riesz measure

In this section, we introduce the Riesz measure of a function u ∈ SHk(Ω). In order to
do this, we will clarify some facts about the action of Dunkl operators on distributions.
Let us start by recalling the following integration by parts formula see [5] or [23]): Let
f, g ∈ C1(Ω) such that g has compact support and Dξ be the ξ-directional Dunkl operator
defined by (1.1). Then we have∫

Ω
Dξf(x)g(x)ωk(x)dx = −

∫
Ω
f(x)Dξg(x)ωk(x)dx. (5.1)

For a distribution T ∈ D′(Ω), we define the weak Dunkl ξ-directional derivative of T
(ξ ∈ Rd) by

∀ ϕ ∈ D(Ω), ⟨DξT, ϕ⟩ = −⟨T,Dξϕ⟩ .

Note that by the intertwining relation (1.2), the operator Dξ = Vk∂ξV
−1
k : C∞(Rd) −→

C∞(Rd) is continuous for the Fréchet topology. Moreover, since Dξ leaves the space D(Ω)
invariant, we deduce that Dξ : D(Ω) −→ D(Ω) is also continuous for the Fréchet topology.
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This justifies thatDξT is well defined as an element of D′(Ω). In particular, if f ∈ L1
k,loc(Ω)

i.e. fωk ∈ L1
loc(Ω), the weak Dunkl-Laplacian of fωk is given by

∀ ϕ ∈ D(Ω), ⟨∆k(fωk), ϕ⟩ = ⟨fωk,∆kϕ⟩ =
∫
Ω
f(x)∆kϕ(x)ωk(x)dx. (5.2)

Our first main result states that:

Theorem 5.1 Let u ∈ SHk(Ω). Then there exists a nonnegative Radon measure µ in Ω
such that ∆k[uωk] = µ in the sense of distributions. We will call µ the ∆k-Riesz measure
related to u.

Proof: As u ∈ L1
k,loc(Ω) , uωk defines a distribution. Let ϕ ∈ D(Ω) and let (uε)0<ε<ρ be the

sequence of functions defined by (4.4) with ρ such that supp ϕ ⊂ Ωρ. As 0 ≤ uε−u ≤ uρ−u,
by Theorem 4.1 and the dominated convergence theorem, we have

⟨∆k[uωk], ϕ⟩ =
∫
Ω
u(x)∆kϕ(x)ωk(x)dx = lim

ε→0

∫
Ω
uε(x)∆kϕ(x)ωk(x)dx.

Now, using the integration by parts formula (5.1), we deduce that

⟨∆k[uωk], ϕ⟩ = lim
ε→0

∫
Ω
∆kuε(x)ϕ(x)ωk(x)dx. (5.3)

Consequently, [∆kuε]ωk −→ ∆k[uωk] in D′(Ω) as ε → 0. Moreover, from (5.3) and the fact
that ∆kuε ≥ 0 (Theorem 4.1 and Proposition 4.1), we see that ∆k[uωk] is a nonnegative
distribution on Ω. Then, according to [25], there exists a nonnegative Radon measure µ
on Ω such that ∆k[uωk] = µ and the proposition is proved. �

Example 5.1 Let u ∈ SHk(Ω) ∩ C2(Ω). Using (5.2) and (5.1), clearly the ∆k-Riesz
measure of u is given by ∆ku(x)ωk(x)dx.

Now, we will establish a type Weyl’s lemma for D-subharmonic functions:

Theorem 5.2 Let u ∈ L1
k,loc(Ω). If ∆k(uωk) ≥ 0 in D′(Ω), then there exists a D-

subharmonic function s on Ω such that u = s a.e. in Ω.

Proof: Let us denote by µ the nonnegative Radon measure ∆k(uωk) and let φε be the
function given by (4.3). We claim that

∀ ε < rΩ, ∀ x ∈ Ωε, ∆k(u ∗k φε)(x) = µ ∗k φε(x) :=

∫
Ω
τ−xφε(y)dµ(y)

8. (5.4)

Indeed, by Proposition 4.3, the function u ∗k φε is of class C∞ on Ωε. Then, using
respectively the relations (4.5), (4.4) and (A.6), we get

∆k(u ∗k φε)(x) = [u ∗k (∆kφε)](x) =

∫
Ω
u(y)τ−x[∆kφε](y)ωk(y)dy

=

∫
Ω
u(y)∆k[τ−xφε](y)ωk(y)dy = ⟨uωk,∆k[τ−xφε]⟩

= µ ∗k φε(x).

8Note that by (4.8), µ ∗k φε is well defined on Ωε for any nonnegative Radon measure µ on Ω.
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Since τ−xφε ≥ 0, (5.4) implies that ∆k[u ∗k φε] ≥ 0 on Ωε. Hence, the function u ∗k φε ∈
SHk(Ωε) (see Proposition 4.1). Thus, we obtain the result by using Lemma 4.1, b). �

In the following result, we characterize the D-subharmonicity by means of the positivity
of the distributional Dunkl Laplacian.

Corollary 5.1 Let u be a function defined on Ω. Then u ∈ SHk(Ω) if and only if u
satisfies: u ∈ L1

k,loc(Ω), ∆k(uωk) ≥ 0 in D′(Ω) and u(x) = limr→0M
r
B(u)(x) for every

x ∈ Ω.

Proof: The necessity part follows from Propositions 3.1, 3.2 and 5.1. Now, will show
the sufficiency part. By Theorem 5.2, there exists a function v ∈ SHk(Ω) such that
u(x) = v(x) for almost every x ∈ Ω. Therefore, for all x ∈ Ω and all r > 0 small enough,
we have M r

B(u)(x) = M r
B(v)(x). Now, using Proposition 3.2, we deduce that u and v are

identically equal in Ω and then u is in SHk(Ω). �
Corollary 5.2 The cone SHk(Ω) is closed for the L1

k,loc(Ω) topology.

Proof: Let (un) be a sequence of D-subharmonic functions on Ω such that un −→ u in
L1
k,loc(Ω). As, unωk and uωk are in L1

loc(Ω), we deduce that unωk −→ uωk in D′(Ω).
Hence, ∆k(unωk) −→ ∆k(uω) in D′(Ω). By Corollary 5.1, as ∆k(unωk) ≥ 0, we deduce
that ∆k(uωk) ≥ 0 in D′(Ω). Now, by Theorem 5.2 there exists a D-subharmonic function
s on Ω such that u = s a.e. in Ω. Then u = s in L1

k,loc(Ω) and the result is proved. �
In [10], Weyl’s lemma for D-harmonic functions has been proved. Here, we will give

another proof of such result. In order to do this, we will prove the following lemma:

Lemma 5.1 A function u : Ω 7−→ R is D-harmonic if and only if it is simultaneously
D-subharmonic and D-superharmonic on Ω.

Proof: It is enough to show the sufficiency part. Let ρ > 0 small enough and consider the
function uε, with ε < ρ, defined by (4.4). Clearly, by Theorem 4.1, the functions uε and
−uε are in C∞(Ωρ)∩SHk(Ωρ). Hence, by Proposition 4.1, we deduce that uε is D-harmonic
in Ωρ. Again from Proposition 4.1, uε(x) = M r

S(uε)(x) whenever B(x, r) ⊂ Ωρ. Letting
ε −→ 0 and using Theorem 4.1, we deduce that u(x) = M r

S(u)(x) whenever B(x, r) ⊂ Ωρ.
Since ρ is arbitrary small, we deduce that

u(x) = M r
S(u)(x), for every B(x, r) ⊂ Ω.

Finally, if we use (4.9), we conclude that for any ε > 0, u coincides with the D-harmonic
function uε on Ωε. That is the function u is D-harmonic on Ω as desired. �
Corollary 5.3 If u ∈ L1

k,loc(Ω) satisfies ∆k[uωk] = 0 in D′(Ω), then there exists a D-
harmonic function h on Ω such that u and h coincide a.e. on Ω.

Proof: From Theorem 5.2, there exist two functions u1, u2 such that u1 is D-subharmonic
on Ω, u2 is D-superharmonic on Ω and u = u1 = u2 almost everywhere. Moreover, by
Proposition 3.2, we have

∀ x ∈ Ω, u1(x) = lim
r→0

M r
B(u1)(x) = lim

r→0
M r

B(u2)(x) = u2(x).

Therefore, the function h := u1 = u2 is simultaneously D-subharmonic and D-superharmonic
on Ω. Hence, by the first step, h is D-harmonic in Ω and h = u almost everywhere in Ω.�
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6 Dunkl-Newtonian Potentials

In this section, we introduce the Dunkl-Newton kernel and the corresponding Dunkl-
Newtonian potentials and we study some of their properties. Throughout this section, we
will always suppose that d+ 2γ > 2 (transient condition).

6.1 Dunkl type Newton kernel

Consider the Dunkl-Newton kernel defined by (1.14). It takes also the following form:

Proposition 6.1 For every x, y ∈ Rd, we have

Nk(x, y) =
1

dk(d+ 2γ − 2)

∫
Rd

(
∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩

) 2−(d+2γ)
2

dµy(z). (6.1)

Proof: From (1.7) and (1.10), we have

pt(x, y) =
1

(2t)
d
2
+γck

∫
Rd

e−
∥x∥2+∥y∥2−2 ⟨x,z⟩

4t dµy(z). (6.2)

Hence, by the change of variables 1/4t ↔ t in the integral (1.14) and using (2.5), we can
write

Nk(x, y) =
1

2dkΓ(d/2 + γ)

∫ +∞

0
t
d
2
+γ−2

∫
Rd

e−t(∥x∥2+∥y∥2−2 ⟨x,z⟩)dµy(z)dt.

Applying Fubini’s theorem and then using the identity A−λ = 1
Γ(λ)

∫ +∞
0 sλ−1e−sAds, A ≥ 0

and λ > 0 (when A = 0, the both terms are equal to +∞) by taking A = ∥x∥2 + ∥y∥2 −
2 ⟨x, z⟩ and λ = d+2γ−2

2 , we obtain the result. �

Example 6.1 1) When k = 0 and d > 2, the Rösler measure µx is equal to δx (the Dirac
measure at x) and then N0(x, y) =

1
(d−2)ωd−1

∥x− y∥2−d is the classical Newton kernel 9.

2) We consider Rd (d ≥ 1) with the root system Rm := {±e1, . . . ,±em}, where m is a
fixed integer in {1, . . . , d} and (ej)1≤j≤d is the canonical basis of Rd. For ξ ∈ Rd, we will
denote ξ = (ξ(m), ξ′) ∈ Rm × Rd−m.
Noting that the Coxeter-Weyl group is given by W = Zm

2 and that the Zm
2 -orbit of a point

ξ ∈ Rd is given by

Zm
2 .ξ := {ε.ξ := (ε1ξ1, . . . , εmξm, ξ′), ε = (εi)1≤i≤m ∈ {±1}m}.

The multiplicity function can be represented by the m-multidimensional parameter k =
(k1, . . . , km) with kj = k(ej) > 0. Moreover, the Rösler measure is of the form µy =
µ(y(m),y′) = µy1 ⊗ · · · ⊗ µym ⊗ δy′ with µyi the Z2-Rösler measure at point yi. If yi = 0, we
know that µ0 = δ0 and if yi ̸= 0, we have

⟨µyi , f⟩ :=
∫ 1

−1
f(tyi)ϕki(t)dt, f ∈ C(R),

9ωd−1 is the area of Sd−1.
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where ϕki is the Z2-Dunkl density function of parameter ki given by (see [4] or [23] p.104)

ϕki(t) :=
Γ(ki + 1/2)√

πΓ(ki)
(1− t)ki−1(1 + t)ki1[−1,1](t).

Let C := [dk(d+ 2γ − 2)]−1. Then the Zm
2 -Dunkl-Newton kernel is of the form

N
Zm
2

k (x, y) = C

∫
[−1,1]m

(
∥x(m)∥2 + ∥y(m)∥2 − 2

m∑
j=1

tjxjyj + ∥x′ − y′∥2
)1− d

2
−γ

×
m∏
i=1

ϕki(ti)dt1 . . . dtm.

Proposition 6.2 Let x, y ∈ Rd, with x ̸= 0.

1) If y /∈ W.x, then 0 < Nk(x, y) < +∞.

2) When d ≥ 2 and γ > 0, we have Nk(x, x) = +∞.

Proof: 1) Let y ∈ Rd fixed. It is well known (see [21] and [23]) that

pt(x, y) ≤
1

(2t)
d
2
+γck

max
g∈W

e−(∥x−gy∥2)/4t. (6.3)

Hence, Nk(x, y) < +∞ for all x /∈ W.y.
2) At first suppose that x is not in the hyperplanes Hα, α ∈ R (i.e. x lives in a Weyl
chamber). It is enough to prove that I :=

∫ 1
0 pt(x, x) = +∞. To do this, we need

the following short-time asymptotic result of the Dunkl heat kernel established in [15]
(Corollary 2): Let C be a fixed Weyl chamber. If x, y ∈ C, then

pt(x, y) ∼t→0

(
ωk(x)ωk(y)

)−1/2
(4πt)−d/2e−

∥x−y∥2
4t .

For y = x, we obtain pt(x, x) ∼t→0

(
ωk(x)

)−1
(4πt)−d/2 and I = +∞ as desired.

When x ∈ Hα for some α ∈ R, the result follows by using the lower semi-continuity of the
function x 7−→ Nk(x, x) (as non-decreasing limit of the sequence of continuous functions
x 7−→

∫ n
1/n pt(x, x)dt). Indeed, if x ∈ Hα, Nk(x, x) = lim infy→xNk(y, y) = +∞ because

Nk(y, y) = +∞ if y converges to x in a Weyl chamber limited by Hα. �

Remark 6.1 For g ̸= id, it is much more difficult to see if Nk(x, gx) is finite or infinite.
This will be more explained in a forthcoming paper. However, from the relation (6.5) (see
the next result), we can see that Nk(x, gx) = +∞ if and only if Nk(x, g

−1x) = +∞.

Proposition 6.3 The Dunkl-Newton kernel satisfies the following properties:

1. For all x, y ∈ Rd, we have

Nk(x, y) =
1

dk

∫ +∞

0
t1−d−2γhk(t, x, y)dt. (6.4)
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2. For every x, y ∈ Rd. Then

Nk(x, y) = Nk(y, x), Nk(gx, y) = Nk(x, g
−1y). (6.5)

3. For all x, y ∈ Rd with x /∈ W.y, we have

min
g∈W

(
∥x− gy∥2−(d+2γ)

)
≤ dk(d+2γ− 2)Nk(x, y) ≤ max

g∈W

(
∥x− gy∥2−(d+2γ)

)
. (6.6)

4. For all y ∈ Rd fixed, the function x 7−→ Nk(x, y) is lower semi-continuous (l.s.c.)
on Rd and of class C∞ on Rd\W.y.

Proof: 1. Fix x, y ∈ Rd. By (6.1) and Fubini’s theorem , we have

Nk(x, y) =
1

dk

∫
Rd

(∫ +∞

√
∥x∥2+∥y∥2−2 ⟨x,z⟩

t1−(d+2γ)dt
)
dµy(z)

=
1

dk

∫ +∞

0
t1−(d+2γ)

(∫
Rd

1[0,t](
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµy(z)
)
dt

=
1

dk

∫ +∞

0
t1−(d+2γ)hk(t, x, y)dt.

2. We obtain (6.5) by using (6.4) and the properties (2.3) of the harmonic kernel.
3. At first, we note that from (1.3) for z ∈ supp µy we can write z =

∑
g∈W λg(z)gy,

where λg(z) ∈ [0, 1] are such that
∑

g∈W λg(z) = 1. Then we have

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩ =
∑
g∈W

λg(z)∥x− gy∥2. (6.7)

Now, as f : t 7−→ t1−
d
2
−γ is a convex function on ]0,+∞[, by (6.7) we have(

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩
)1− d

2
−γ

≤ max
g∈W

(
∥x− gy∥2−(d+2γ)

)
.

This implies the right inequality. Again by convexity of the function f , Jensen’s inequality
and (6.7), we get

dk(d+ 2γ − 2)Nk(x, y) ≥
(∫

Rd

(∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµy(z)
) 2−(d+2γ)

2

=
( ∑

g∈W

( ∫
Rd

λg(z)dµy(z)
)
∥x− gy∥2

) 2−(d+2γ)
2

≥
(
max
g∈W

∥x− gy∥2
) 2−(d+2γ)

2
= min

g∈W

(
∥x− gy∥2−(d+2γ)

)
,

where in the last line we have used the fact that f is a decreasing function.
4. The function x 7→ Nk(x, y) is l.s.c. on Rd as being the increasing limit of the sequence
(fn) of continuous functions defined by fn : x 7→

∫ n
1/n pt(x, y)dt.

As µy is with compact support, we can differentiate locally in a neighborhood of x /∈ W.y
under the integral in the relation (6.1) and we obtain the result. �

22



Theorem 6.1 Let x0 ∈ Rd. Then the function Nk(x0, .) is

1) D-superharmonic on Rd,

2) locally integrable on Rd with respect to the measure ωk(x)dx and we have

−∆k

(
Nk(x0, .)ωk

)
= δx0 in D′(Rd), (6.8)

where δx0 is the Dirac measure at x0.

3) D-harmonic on Rd\W.x0 (W.x0 the W -orbit of x0).

Proof: Fix x0 ∈ Rd. We will use the following properties of the Dunkl heat kernel (see
[21])

(∆k − ∂t) pt(x0, .)(x) = 0 and lim
t→0

pt(x0, .)ωk = δx0 in D′(Rd), (6.9)

We consider the function

Sx0,r(x) :=

∫ +∞

r
pt(x0, x)dt. (6.10)

1) By the monotone convergence theorem, we see that the function Nk(x0, .) is the point-
wise increasing limit of the sequence

(
Sx0,1/n

)
n
. Hence, by Proposition 3.3, it suffices to

prove that for every r > 0, Sx0,r is D-superharmonic on Rd. To do this, we will use the
result of Proposition 4.1.
The function pt(x0, .) is of class C

∞ on Rd and we can differentiate under the integral sign
in the relation (6.2) to obtain

∂jpt(x0, .)(x) = − 1

2t

1

(2t)
d
2
+γck

∫
Rd

(xj − zj)e
− 1

4t
(∥x∥2+∥x0∥2−2 ⟨x,z⟩)dµx0(z)

and

∂i∂jpt(x0, .)(x) = −δij
1

2t
pt(x0, x)

+
1

4t2
1

(2t)
d
2
+γck

∫
Rd

(xj − zj)(xi − zi)e
− 1

4t
(∥x∥2+∥x0∥2−2 ⟨x,z⟩)dµx0(z),

where δij is the Kronecker symbol.
Using the fact that supp µx0 ⊂ B(0, ∥x0∥), we deduce that

|∂jpt(x0, .)(x)| ≤
∥x∥+ ∥x0∥
(2t)1+

d
2
+γck

,

|∂i∂jpt(x0, .)(x)| ≤
1

(2t)1+
d
2
+γck

+
(∥x∥+ ∥x0∥)2

(2t)2+
d
2
+γck

.
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Let R > 0. The previous inequalities and the differentiation theorem under the integral

sign imply that Sx0,r is of class C2 on the open ball
◦
B(0, R) and by (6.9) we deduce for

any x ∈
◦
B(0, R) that

∆kSx0,r(x) =

∫ +∞

r
∆k (pt(x0, .)) (x)dt =

∫ +∞

r
∂tpt(x0, x)dt = −pr(x0, x) < 0. (6.11)

Therefore, Sx0,r is D-superharmonic on
◦
B(0, R). As R > 0 is arbitrary, we conclude that

Sx0,r is D-superharmonic on Rd as desired.

2) From the statement 1) and Proposition 3.1, we deduce that Nk(x0, .) ∈ L1
k,loc(Rd). By

the dominated convergence theorem, we can see that Sx0,rωk −→ Nk(x0, .)ωk in D′(Rd) as
r −→ 0. This implies that

∆k(Sx0,rωk) −→ ∆k(Nk(x0, .)ωk) in D′(Rd) as r −→ 0.

On the other hand, from (6.11), (5.1) and (6.9), we have

lim
r→0

∆k(Sx0,rωk) = −δx0 in D′(Rd).

This gives (6.8).

3) From the relation (6.8), we deduce that the function Nk(x0, .)ωk is D-harmonic in the
sense of distributions on Rd\{x0}. Hence, by applying Weyl’s Lemma (see Corollary 5.3)
on the W -invariant open set Rd\W.x0, there exists a D-harmonic function h on Rd\W.x0
such that Nk(x0, x) = h(x) for almost every x ∈ Rd\W.x0. Now, using the smoothness of
the function Nk(x0, .) on Rd\W.x0, we obtain Nk(x0, .) = h on Rd\W.x0.
This completes the proof. �

6.2 Dunkl-Newtonian potential of Radon measures

Definition 6.1 Let µ ∈ M+(Rd). The Dunkl-Newtonian potential of µ is defined by

Nk[µ](x) :=

∫
Rd

Nk(x, y)dµ(y), x ∈ Rd. (6.12)

Remark 6.2 Let µ be a signed Radon measure on Rd and µ = µ+ − µ− its Hahn-
Jordan decomposition. We can also define the Dunkl-Newtonian potential of µ by setting
Nk[µ](x) := Nk[µ

+](x)−Nk[µ
−](x) whenever for every x ∈ Rd, Nk[µ

+](x) and Nk[µ
−](x)

are not infinite simultaneously.

Proposition 6.4 Let µ ∈ M+(Rd). A necessary and sufficient condition for finiteness
a.e. of the Dunkl-Newtonian potential of µ is that∫

Rd

(1 + ∥y∥)2−d−2γ dµ(y) < +∞. (6.13)
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We need the following lemma:

Lemma 6.1 Let µ be a finite nonnegative Radon measure on Rd. Then Nk[µ] belongs to
L1
k,loc(Rd). In particular, Nk[µ] is finite a.e..

Proof: Fix R > 0. Using Fubini’s theorem, we have∫
B(0,R)

Nk[µ](x)ωk(x)dx =

∫
Rd

∫
B(0,R)

Nk(x, y)ωk(x)dx dµ(y).

As µ(Rd) < +∞, it suffices to show that there exists a constant C = C(R, d, γ) > 0 such
that

∀ y ∈ Rd,

∫
B(0,R)

Nk(x, y)ωk(x)dx ≤ C. (6.14)

Let x ∈ B(0, R) and y ∈ Rd. From the relations (6.4), we can write

Nk(x, y) =
1

dk

∫ 1

0
t1−d−2γhk(t, x, y)dt+

1

dk

∫ +∞

1
t1−d−2γhk(t, x, y)dt := I(x, y) + J(x, y).

• Since hk(t, x, y) ≤ 1, we can see that J ≤ 1
dk(d+2γ−2) . This implies that

∀ y ∈ Rd,

∫
B(0,R)

J(x, y)ωk(x)dx ≤ mk[B(0, R)]

dk(d+ 2γ − 2)
= C1.

• Applying Fubini’s theorem and then using (2.3) and (2.4), we deduce that

∀ y ∈ Rd,

∫
B(0,R)

I(x, y)ωk(x)dx ≤ 1

dk

∫ 1

0
t1−d−2γ∥hk(t, y, .)∥L1(Rd,mk)

dt

=
1

2(d+ 2γ)
= C2.

Finally, we obtain (6.14) by taking C = C1 + C2. �
Proof of Proposition 6.4. Assume that (6.13) holds. We will show that x 7−→ Nk[µ](x)ωk(x)
is locally integrable. Let r ≥ 1. By Fubini’s theorem, we have∫

B(0,r)
Nk[µ](x)ωk(x)dx =

∫
∥y∥≤2r

(∫
B(0,r)

Nk(x, y)ωk(x)dx
)
dµ(y)

+

∫
∥y∥>2r

(∫
B(0,r)

Nk(x, y)ωk(x)dx
)
dµ(y) = J1 + J2.

From Lemma 6.1, J1 < +∞. Now, by (6.6), we have

J2 ≤
1

dk(d+ 2γ − 2)

∫
∥y∥>2r

(∫
B(0,r)

max
g∈W

(
∥x− gy∥2−d−2γ

)
ωk(x)dx

)
dµ(y).
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But, for all x ∈ B(0, r) and all g ∈ W , ∥x − gy∥ ≥ ∥y∥ − ∥x∥ ≥ 1
2∥y∥ because ∥y∥ ≥ 2r.

Moreover, since r ≥ 1, we also have ∥y∥ ≥ 1
2(1 + ∥y∥). Hence, we get

∀ g ∈ W, ∥x− gy∥ ≥ 1

4
(1 + ∥y∥).

Thus,

J2 ≤
4d+2γ−2mk[B(0, r)]

dk(d+ 2γ − 2)

∫
∥y∥>2r

(1 + ∥y∥)2−d−2γdµ(y) < +∞.

Conversely, suppose that (6.13) does not hold. Let x ∈ B(0, 1). Using (6.6) and the
inequality ∥x− gy∥ ≤ 1 + ∥y∥ for all g ∈ W , we deduce that

dk(d+ 2γ − 2)Nk[µ](x) = dk(d+ 2γ − 2)

∫
Rd

Nk(x, y)dµ(y)

≥
∫
Rd

(
max
g∈W

∥x− gy∥
)2−(d+2γ)

dµ(y)

≥
∫
Rd

(
1 + ∥y∥

)2−(d+2γ)
dµ(y).

Hence, if
∫
Rd

(
1 + ∥y∥

)2−(d+2γ)
dµ(y) = +∞, then Nk[µ](x) = +∞ on B(0, 1) and we get

a contradiction. �

Proposition 6.5 Let µ ∈ M+(Rd) with compact support. Then

Nk[µ](x) ∼
µ(Rd)

dk(d+ 2γ − 2)
∥x∥2−(d+2γ) as ∥x∥ −→ +∞.

Proof: Let R > 0 such that supp µ ⊂ B(0, R). By the Cauchy-Schwarz inequality, we
have

∀ z ∈ supp µy ⊂ B(0, ∥y∥), (∥x∥ − ∥y∥)2 ≤ ∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩ ≤ (∥x∥+ ∥y∥)2.

Therefore, by (6.1) we obtain for every y ∈ B(0, R) fixed and ∥x∥ ≥ 2R

(∥x∥+ ∥y∥)2−d−2γ ≤ C.Nk(x, y) ≤ (∥x∥ − ∥y∥)2−d−2γ ,

where C = dk(d+ 2γ − 2). If we integrate these inequalities with respect to the measure
dµ(y) and we divide by ∥x∥2−d−2γ , we obtain the result by letting ∥x∥ −→ +∞. �

Proposition 6.6 Let µ be a nonnegative Radon measure on Rd.

i) If µ has compact support, then Nk[µ] is D-superharmonic on Rd and D-harmonic on
Rd\W.supp µ.

ii) If Nk[µ](x) < +∞ for at least one x, then Nk[µ] is D-superharmonic on Rd.
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Proof: i) Let µ be a compactly supported and nonnegative Radon measure on Rd.
• For n ≥ 1, consider the function

Fn(x) :=

∫
supp µ

( ∫ n

1/n
pt(x, y)dt

)
dµ(y).

By the continuity theorem under the integral sign, we can see that Fn is continuous on
Rd. Furthermore, using the monotone convergence theorem, we deduce that Nk[µ] is a
pointwise increasing limit of the sequence (Fn) of continuous functions. Therefore, the
lower semi-continuity of the function Nk[µ] on Rd follows.
Let x ∈ Rd and r > 0. Using Fubini’s theorem and the D-superharmonicity of the function
ξ 7−→ Nk(ξ, y), we have

M r
B(Nk[µ])(x) =

∫
Rd

M r
B[Nk(., y)](x)dµ(y) ≤

∫
Rd

Nk(x, y)dµ(y) = Nk[µ](x).

This implies that Nk[µ] is D-superharmonic on Rd.
• According to Lemma 5.1, we need only to prove that Nk[µ] is D-subharmonic on Ω :=
Rd\W.supp µ. Let B(x, r) ⊂ Ω. Again, by Fubini’s theorem and the D-harmonicity of
Nk(., y) on Rd \W.y, we deduce that

M r
B(Nk[µ])(x) =

∫
Rd

M r
B[Nk(., y)](x)dµ(y) =

∫
Rd

Nk(x, y)dµ(y) = Nk[µ](x).

In particular, Nk[µ] satisfies the sub-mean property.
Now, it remains to show that Nk[µ] is u.s.c. on Ω. In fact, Nk[µ] is continuous on Ω.
Indeed, fix x0 ∈ Ω and R > 0 such that δ := dist (B(x0, R),W.supp µ) > 0. We know that
x 7→ Nk(x, y) is continuous on Ω for every y ∈ supp µ. Moreover, from (6.3), we deduce
that

∀ x ∈ B(x0, R), ∀ y ∈ supp µ, pt(x, y) ≤
1

(2t)
d
2
+γck

e−δ/4t.

This implies that

∀ (x, y) ∈ B(x0, R)× supp µ, Nk(x, y) ≤
∫ +∞

0

1

(2t)
d
2
+γck

e−δ/4tdt := Cδ < +∞.

Consequently, by the continuity theorem under the integral sign, we conclude that Nk[µ]
is continuous on B(x0, R). This finishes the proof of i).

ii) Assume that Nk[µ](x0) < +∞ for some x0 ∈ Rd. We consider the sequence of functions
defined by

ϕn(x) =

∫
B(0,n)

Nk(x, y)dµ(y).

From i), we see that ϕn is D-superharmonic on Rd and ϕn(x) ↑ Nk[µ](x) as n −→ +∞.
Hence, from Proposition 3.3 the function Nk[µ] is D-superharmonic on Rd. �
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Proposition 6.7 Let µ ∈ M+(Rd) satisfying the finiteness condition (6.13). Then Nk[µ]
satisfies the Dunkl-Poisson equation

−∆k

(
Nk[µ]ωk

)
= µ in D′(Rd). (6.15)

Proof: By Proposition 6.6, Nk[µ] is D-superharmonic and then the function Nk[µ]ωk

defines a distribution on Rd. Let φ ∈ D(Rd). Using the fact that Nk[µ]ωk is locally
integrable, we can apply Fubini’s theorem to obtain

⟨∆k

(
Nk[µ]ωk

)
, φ⟩ =

∫
Rd

(∫
Rd

Nk(x, y)dµ(y)
)
∆kφ(x)ωk(x)dx

=

∫
Rd

(∫
Rd

Nk(x, y)∆kφ(x)ωk(x)dx
)
dµ(y)

=

∫
Rd

⟨∆k

(
Nk(., y)ωk

)
, φ⟩ dµ(y).

As Nk(x, y) = Nk(y, x), from (6.8) we obtain ⟨∆k

(
Nk[µ]ωk

)
, φ⟩ = −

∫
Rd φ(y)dµ(y), as

desired. �
From the previous result, we can deduce the uniqueness principle which states that

Corollary 6.1 Let µ, ν ∈ M+(Rd). Assume that µ and ν satisfy (6.13) and Nk[µ] =
Nk[ν] a.e. on Rd. Then µ = ν.

In the following result, we will obtain all distributional solutions of the Dunkl-Poisson
equation (see [16] for the classical case):

Proposition 6.8 Let f ∈ L1
loc(Rd) such that

∫
Rd(1 + ∥y∥)2−d−2γ |f(y)|dy < +∞. Then

the function Nk[f ] : x 7→
∫
Rd Nk(x, y)f(y)dy is a solution of the Poisson equation:

−∆k(uωk) = f in D′(Rd). (6.16)

Moreover, any solution u of (6.16) in L1
k,loc(Rd) is of the form Nk[f ] + h, where h is a

D-harmonic function on Rd.

Proof: By decomposing f = f+ − f−, where f+ = max(f, 0) and f− = max(−f, 0), we
may assume that f is nonnegative. Using Proposition 6.4, we deduce that Nk[f ] is finite
a.e and Proposition 6.7 implies that it satisfies the Poisson equation (6.16).
Now, let v be a solution of (6.16). Then ∆k(vωk − Nk[f ]ωk) = 0 in distributional sense.
Thus, by Weyl’s lemma v = Nk[f ] + h a.e for some D-harmonic function h on Rd. That is
v = Nk[f ] + h in L1

k,loc(Rd).
�

7 Decompositions of Dunkl subharmonic functions

7.1 Riesz decomposition theorems

One of the most fundamental results in the theory of classical subharmonic functions is
due to F. Riesz ([20]) and states that any subharmonic function can be locally written as
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the sum of a Newtonian potential plus a harmonic function (see for example [11]). In the
following result, we will obtain an analog of this result for D-subharmonic functions.

Theorem 7.1 Let Ω ⊂ Rd be open and W -invaraint, u ∈ SHk(Ω) and µ = ∆k[uωk] be
the ∆k-Riesz measure related to u. Then, for all W -invariant open set G with compact
closure G ⊂ Ω, there exists a unique D-harmonic function hG on G such that

∀ x ∈ G, u(x) = −
∫
G
Nk(x, y)dµ(y) + hG(x). (7.1)

Proof: Let G be a W -invariant open set with compact closure G ⊂ Ω and set µG := µ|G
the restriction of µ to G. Clearly, µG is a nonnegative Radon measure on Ω with compact
support contained in G. It is also the ∆k-Riesz measure of the restriction of u to G.
Furthermore, µG can be considered as a compactly supported nonnegative Radon measure
on Rd. Hence, by Proposition 6.6, the function Nk[µG] is D-superharmonic on Rd (then
also on G) and by the relation (6.15), we obtain

∆k (uωk +Nk[µG]ωk) = 0 in D′(G).

That is uωk+Nk[µG]ωk is a D-harmonic distribution on G. By Weyl’s lemma, there exists
a D-harmonic function hG on G such that u(x) = −Nk[µG](x) + hG(x), for almost every
x ∈ G. Finally, using the uniqueness principle (Corollary 3.1) we obtain the equality
everywhere on G. �

Now, we will give a global version of the Riesz decomposition theorem:

Theorem 7.2 Let Ω be a connected and W -invariant open subset of Rd, u ∈ SHk(Ω) and
let µ be the ∆k-Riesz measure of u. Assume that Nk[µ](x) < +∞ for at least one x ∈ Ω.
Then there is a unique D-harmonic function h on Ω such that

∀ x ∈ Ω, u(x) = −Nk[µ](x) + h(x), (7.2)

where Nk[µ](x) :=
∫
ΩNk(x, y)dµ(y). In this case, we say that u has a global Riesz decom-

position on Ω.

Proof: Let (On) be an open W -invariant exhaustion of Ω such that for every n (large

enough) the compact closure of On is contained in On+1 (we can take On := Ω 1
n
∩

◦
B(0, n),

with Ωr given by (2.10)) and let µn = µ|On
. As above, the function Nk[µn] : x 7→∫

On
Nk(x, y)dµ(y) is D-superhamonic on Rd and also on Ω.

Consequently, using the monotone convergence theorem, our hypothesis and Proposition
3.3, we deduce that Nk[µ] is D-superharmonic on Ω as being an increasing pointwise limit
of a sequence of D-superharmonic functions on Ω. In particular, this implies that the
function Nk[µ]ωk defines a distribution on Ω (by Proposition 3.1).
Now, if we use (6.8) and we proceed as in the proof of Proposition 6.7, we obtain

−∆k (Nk[µ]ωk) = µ in D′(Ω). (7.3)

Finally, we conclude the result by the same way, replacing G by Ω, as in the end of the
proof of Theorem 7.1. �
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Remark 7.1 In the relation (7.1) (resp. (7.2) on Ω), we see that hG ≥ u on G (resp.
h ≥ u). In this case, we say that hG (resp. h) is a D-harmonic majorant of u on G (resp.
on Ω). When Ω = Rd and under the same assumptions of Theorem 7.2, we will prove in
the next section that h is the least D-harmonic majorant of u on Rd in the sense that if
h1 is a D-harmonic function on Rd, then u ≤ h1 implies h ≤ h1.

7.2 Bounded from above Dunkl subharmonic functions on Rd

In this subsection, we will describe the D-subharmonic functions which are bounded from
above on the whole space Rd and we will characterize their related Riesz measures.

Theorem 7.3 Let u be a bounded from above D-subharmonic function on Rd and µ be
the associated ∆k-Riesz measure. Then u has a global Riesz decomposition on Rd given by

u(x) = sup
x∈Rd

u(x)−Nk[µ](x), x ∈ Rd. (7.4)

In the classical case, the proof of this theorem is based on the Nivanlinna theorems (see
[11], Theorem 3.20). Here, we will give another proof. We start by the following result:

Lemma 7.1 Let µ ∈ M+(Rd) and µ ∗k φε, ε > 0, be the function defined on Rd by (5.4).
Then, for every x ∈ Rd, we have

Nk

[
(µ ∗k φε)(y)ωk(y)dy

]
(x) =

∫
Rd

N(x, .) ∗k φε(z)dµ(z) (7.5)

and
lim
ε→0

Nk

[
(µ ∗k φε)(y)ωk(y)dy

]
(x) = Nk[µ](x). (7.6)

Note that the terms in (7.5) and (7.6) may be equal to +∞.

Proof: i) Let x ∈ Rd and ε > 0. We obtain (7.5) by using respectively (6.12), (5.4),
Fubini’s theorem and (A.8) as follows

Nk

[
(µ ∗k φε)(y)ωk(y)dy

]
(x) =

∫
Rd

Nk(x, y)
(∫

Rd

τ−yφε(z)dµ(z)
)
ωk(y)dy

=

∫
Rd

(∫
Rd

Nk(x, y)τ−zφε(y)ωk(y)dy
)
dµ(z)

=

∫
Rd

N(x, .) ∗k φε(z)dµ(z).

ii) As the function Nk(x, .) is D-superharmonic on Rd, by Theorem 4.1, N(x, .) is the
decreasing pointwise limit of the sequence (Nk(x, .) ∗k φε)ε as ε → 0. Consequently, (7.6)
follows from (7.5) and from the monotone convergence theorem. �
Proof of Theorem 7.3: We shall prove first the result when u is of class C2 on Rd. In this
case, the relation (2.16) plays a key role.
Let a := supx∈Rd u(x). We can see by (2.14) that M r

S(u)(x) ≤ a for every x ∈ Rd and

30



every r > 0. Moreover, since u ∈ SHk(Rd), the function r 7−→ M r
S(u)(x) is non decreasing

(by Proposition 4.2). Consequently, h(x) := limr→+∞M r
S(u)(x) exists and h(x) ≤ a for

every x ∈ Rd.
On the other hand, as ∆ku ≥ 0, by the monotone convergence theorem, we have

lim
r→+∞

1

d+ 2γ

∫ r

0
M t

B(∆ku)(x)t dt =
1

d+ 2γ

∫ +∞

0
M t

B(∆ku)(x)t dt.

Now, using the relations (6.4), (2.4) and applying Fubini’s theorem, we can see that

1

d+ 2γ

∫ +∞

0
M t

B(∆ku)(x)t dt =
1

dk

∫ +∞

0
t1−d−2γ

(∫
Rd

∆ku(y)hk(t, x, y)ωk(y)dy

)
dt

=

∫
Rd

Nk(x, y)∆ku(y)ωk(y)dy = Nk[µ](x),

where dµ(y) = ∆ku(y)ωk(y)dy is the ∆k-Riesz measure of u (see Example 5.1).
Hence, letting r −→ +∞ in the relation (2.16) with f = u, we deduce that

u(x) = h(x)−Nk[µ](x).

In particular, for all x ∈ Rd, Nk[µ](x) ≤ a− u(x) < +∞.
Using Theorem 7.2, we deduce that u has a global Riesz decomposition on Rd given by
u = h−Nk[µ] and the function h is D- harmonic on Rd. Since h ≤ a, by Liouville’s theorem
for bounded from above D-harmonic functions (see [8]), h is a constant. We denote again
by h this constant. Furthermore, since u is D-subharmonic, we have u(x) ≤ M r

S(u)(x) ≤ h.
Then, by taking the supremum of u(x) over x ∈ Rd, we get a ≤ h. Finally, we obtain
h = a and u = a−Nk[µ].
Let us now u be a D-subharmonic function on Rd and let uε = u ∗k φε be the function
defined by (4.4). We know that uε ∈ C∞(Rd) ∩ SHk(Rd) and its ∆k-Riesz measure is
given by dµε(x) := µ ∗k φε(x)ωk(x)dx (see the relation (5.4)). Moreover, as τ−xφε ≥ 0
and using (A.7) (recalling that

∫
Rd φε(y)ωk(y)dy = 1), uε is bounded from above and we

get aε := sup uε(x) ≤ a := supu(x).
Now, since u is the pointwise non-decreasing limit of the sequence (uε) (see Theorem 4.1),
the sequence of real numbers (aε) is also non-decreasing and aε ≥ a. This proves that
aε = a for all ε > 0. By the first step, we conclude that

∀ x ∈ Rd, uε(x) = a−Nk[µε](x) with dµε(y) = µ ∗k φε(y)ωk(y)dy.

Letting ε −→ 0 and using the relation (7.6), we deduce the desired result. �

Corollary 7.1 1. For every x0 ∈ Rd, the zero function is the greatest D-harmonic
minorant on Rd of the D-superharmonic function Nk(x0, .).

2. Let µ ∈ M+(Rd) such that Nk[µ](x) < +∞ for at least one x. Then the zero function
is the greatest D-harmonic minorant on Rd of the D-superharmonic function Nk[µ].
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3. A function u (not identically −∞) defined on Rd is of the form u = −Nk[µ]+h where
µ ∈ M+(Rd) and h is a D-harmonic function on Rd if and only if u ∈ SHk(Rd)
and u has a D-harmonic majorant on Rd. In this case, h is the least D-harmonic
majorant of u on Rd.

Proof: By taking µ = δx0 , the statement 1) is a particular case of 2).
2) Let h be a D-harmonic function on Rd such that h ≤ Nk[µ]. Then the function
s = h − Nk[µ] satisfies: i) s ≤ 0 on Rd, ii) s is in SHk(Rd) and iii) µ is the ∆k-Riesz
measure of s (by (6.15)). Therefore, by Theorem 7.3, we have

s = sup
Rd

s−Nk[µ] = h−Nk[µ].

Thus, h = supRd s and by i) we must have h ≤ 0. This proves 2).
3) Suppose that u = −Nk[µ] + h. Clearly u ∈ SHk(Rd) and u ≤ h. Now, let h1 be a D-
harmonic function on Rd such that u = −Nk[µ]+h ≤ h1. This implies that h−h1 ≤ Nk[µ].
Thus, by the statement 2), we obtain h ≤ h1. This proves that h is the least D-harmonic
majorant of u on Rd.
Conversely, assume that u ∈ SHk(Rd) and it has a D-harmonic majorant h1 on Rd. Then
the function u− h1 is nonpositive and D-subharmonic on Rd. Therefore, by Theorem 7.3,

∀ x ∈ Rd, u(x)− h1(x) = a−Nk[µ](x)

for some constant a ≤ 0. Thus, for h = a + h1, u = h − Nk[µ] is the global Riesz
decomposition of u and clearly we have h ≤ h1. �

Now, we will give a necessary and sufficient condition for µ ∈ M+(Rd) to be the
∆k-Riesz measure of a bounded from above D-subharmonic function on Rd.

Proposition 7.1 Let µ ∈ M+(Rd). Then µ is the ∆k-Riesz measure of a bounded from
above D-subharmonic function on Rd if and only if there exists x0 ∈ Rd such that∫ +∞

1
t1−d−2γnk(t, x0)dt < +∞ with nk(t, x0) :=

∫
Rd

hk(t, x0, y)dµ(y). (7.7)

Remark 7.2 In classical case (k=0), we have n0(t, x0) = µ[B(x0, t)] and we can always
assume x0 = 0 by replacing the subharmonic function u of ∆-Riesz measure µ by its
translate u(x0 + .) ([11], Theorem 3.20). But, if k ̸= 0 this is not possible for at least two
reasons. Firstly, the Dunkl translations act only on some functional spaces and not on sets.
Secondly, they are not always positive operators. In fact, even if u ∈ C∞(Rd) ∩ SHk(Rd)
(i.e. ∆ku ≥ 0), we don’t have necessarily τx[∆ku] ≥ 0 and thus τxu is not necessarily in
SHk(Rd).

Proof of Proposition 7.1: Let u ∈ SHk(Rd) bounded from above with ∆k-Riesz measure µ.
By Theorem 7.3, u is of the form u = supRd u−Nk[µ]. This proves that−Nk[µ] ∈ SHk(Rd).
Using (6.4) and Fubini’s theorem, we obtain for almost every x ∈ Rd∫ +∞

1 t1−d−2γnk(t, x)dt ≤
∫ +∞
0 t1−d−2γnk(t, x)dt = dkNk[µ](x) < +∞.
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Conversely, let µ ∈ M+(Rd) satisfying (7.7) for some x0 ∈ Rd. We will partially follow
the proof of Theorem 3.20 in [11]. Let u(x) = −Nk[µ](x). Then, by (6.15), it is enough
to prove that u ∈ SHk(Rd). We can write

u(x) = −
∫
BW (x0,1)

Nk(x, y)dµ(y)−
∫
Rd\BW (x0,1)

Nk(x, y)dµ(y) := u1(x) + u2(x).

From Proposition 6.6, the function u1 ∈ SHk(Rd). For n ∈ N with n > 1, we consider

vn(x) = −
∫
BW (x0,n)\BW (x0,1)

Nk(x, y)dµ(y).

Again by Proposition 6.6, the function vn ∈ SHk(Rd). Moreover, we see that u2 is the
pointwise decreasing limit of vn on Rd as n → +∞. By (6.4) and Fubini’s theorem, we
have

vn(x0) = − 1

dk

∫ ∞

0
t1−d−2γ

∫
BW (x0,n)\BW (x0,1)

hk(t, x0, y)dµ(y)dt

= − 1

dk

∫ ∞

1
t1−d−2γ

∫
BW (x0,n)\BW (x0,1)

hk(t, x0, y)dµ(y)dt

≥ − 1

dk

∫ ∞

1
t1−d−2γnk(t, x0)dt,

where in the second equality, the integral in t variables has been decomposed on ]0, 1[ and
]1,+∞[ and then we have used ∀ t ≤ 1, supp hk(t, x0, .) ⊂ BW (x0, t) ⊂ BW (x0, 1). Letting
n → +∞ and using our hypothesis (7.7), we deduce that u2(x0) > −∞. Consequently, by
Proposition 3.3, u2 ∈ SHk(Rd). Thus, since u = u1 + u2, u ∈ SHk(Rd). �

A Annex: The Dunkl transform and Dunkl’s translation
operators

• The Dunkl transform of a function f ∈ L1(Rd,mk) is defined by

Fk(f)(λ) :=

∫
Rd

f(x)Ek(−iλ, x)ωk(x)dx, λ ∈ Rd, (A.1)

where Ek(x, y) := Vk(e
⟨x,.⟩)(y), x, y ∈ Rd, is the Dunkl kernel which is analytically

extendable to Cd × Cd and satisfies the following properties: for all x ∈ Rd, y ∈ Cd, all
λ ∈ C and all multi-indices υ ∈ Nd (see [4], [6], [14] and [23])

Ek(x, y) = Ek(y, x), Ek(x, λy) = Ek(λx, y),
∣∣∂υ

yEk(x, y)
∣∣ ≤ ∥x∥|υ|max

g∈W
eRe ⟨gx,y⟩. (A.2)

It is well known (see [5] and [14]) that the Dunkl transform Fk is an isomorphism of S(Rd)
(the Schwartz space) onto itself and its inverse is given by

F−1
k (f)(x) = c−2

k

∫
Rd

f(λ)Ek(ix, λ)ωk(λ)dλ, x ∈ Rd, (A.3)
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where ck is the constant given by (1.9). Moreover, the following Plancherel theorem holds:
The transformation c−1

k Fk extends uniquely to an isometric isomorphism of L2(Rd,mk)
and we have ∥c−1

k Fk(f)∥L2(Rd,mk)
= ∥f∥L2(Rd,mk)

, f ∈ L2(Rd,mk).

• The Dunkl translation operators τx, x ∈ Rd, are defined on C∞(Rd) by (see [27])

∀ y ∈ Rd, τxf(y) =

∫
Rd

Vk ◦ Tz ◦ V −1
k (f)(y)dµx(z), (A.4)

where Tx is the classical translation operator given by Txf(y) = f(x + y). If f ∈ S(Rd),

τxf ∈ S(Rd) and using the Dunkl transform for all y ∈ Rd we have (see [27]):

τxf(y) = F−1
k [Ek(ix, .)Fk(f)](y) = c−2

k

∫
Rd

Fk(f)(λ)Ek(ix, λ)Ek(iy, λ)ωk(λ)dλ.

The operators τx, x ∈ Rd, satisfy the following properties:

1) For all x ∈ Rd, the operator τx is continuous from C∞(Rd) into itself.

2) For all f ∈ C∞(Rd) and all x, y ∈ Rd, we have

τxf(0) = f(x), τxf(y) = τyf(x). (A.5)

3) The Dunkl-Laplace operator ∆k commutes with the Dunkl translations i.e

τx(∆kf) = ∆k(τxf), x ∈ Rd, f ∈ C∞(Rd). (A.6)

4) For any f ∈ D(Rd), we have∫
Rd

τxf(y)ωk(y)dy =

∫
Rd

f(y)ωk(y)dy (A.7)

5) Let f ∈ S(Rd) be radial. Then we have (see [8], Lemme 3.1)

τ−xf(y) = τ−yf(x) (A.8)

6) Let f ∈ C∞(Rd) and g ∈ D(Rd). Then, we have (see [8], Proposition 2.1):

∀ x ∈ Rd,

∫
Rd

τxf(y)g(y)ωk(y)dy =

∫
Rd

f(y)τ−xg(y)ωk(y)dy. (A.9)
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[26] K. Trimèche. The Dunkl intertwining operator on spaces of functions and distributions and integral repre-
sentation of its dual. Integ. Transf. and Spec. Funct., 12(4), (2001), 394-374.
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