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Newtonian potentials and subharmonic functions
associated to root systems

Léonard GALLARDO* and Chaabane REJEB'

Abstract

The purpose of this paper is to present a new theory of subharmonic functions for
the Dunkl-Laplace operator A, in R? associated to a root system and a multiplicity
function £ > 0. In particular, we introduce and study a Dunkl-Newton kernel and
the corresponding potential of Radon measures. As applications we give a strong
maximum principle, a solution of the Poisson equation and a Riesz decomposition
theorem for Ag-subharmonic functions.

MSC (2010) primary: 31B05, 31C45, 33C52, 47B39; secondary: 33C52, 43A32, 51F15.

Key words: Dunkl-Laplace operator, Generalized volume mean value operator, Dunkl subharmonic
functions, Strong maximum principle, Ag-Riesz measure, Dunkl-Newton kernel and potentials, Riesz
decomposition theorem.
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1 Introduction

Let R be a normalized root system in R? i.e. R is a finite subset of R\ {0} such that
for every a € R, |la|| = v2, RNRa = {+a} and 0, R = R, where o, is the reflection with
respect to the hyperplane H, orthogonal to « (see [13] for details on root systems).

For ¢ € RY, let D¢ be the Dunkl operator defined on C'(RY) by

Dﬁf( aﬁf Z k ( ) f(o'a(x))7 (11)

ac€R4 <a’ $>

where O is the {-directional partial derivative, Ry is a fixed positive subsystem of R and
k: R — [0,+00] is a fixed multiplicity function i.e. k is W-invariant, where W is the
Coxeter-Weyl group generated by the reflections o4, a € R (see [6]). These operators are
related to partial derivatives by means of the Dunkl intertwining operator Vj (see [5] or
[6]) as follows

VEeRY DeVi = Viok. (1.2)
The operator V4 is a topological isomorphism from the space C"O(]Rd)1 onto itself satisfying
(1.2) and V(1) = 1 (see [26]) and for every z € R?, there exists a unique probability
measure /i, on R? with compact support contained in

C(z) := co{gx, g€ W} (1.3)
(the convex hull of W.z, the orbit of x under the group W) such that (see [22] or [23])
v feCORY), Vi(f)(z) = y f(y)dpa(y). (1.4)

We know ([9]) that if & > 0, the support of u, is W-invariant and contains W.z.
The Dunkl-Laplace operator is then defined by A = Z;l:l DJQ-, where D; = D,,,

j=1,...,d( (ej)1<j<d is the canonical basis of R?) are commuting operators (see [3] and
[6]). Its action on C2-functions is given by

Buf(e) = Ay +2 Y ko) (S0 SEZSGLN g

acR

Lcarrying its usual Fréchet topology.



where A (resp. V ) is the usual Laplace (resp. gradient) operator,(see [6]).
For abbreviation, we introduce the wight function

wr(2) = Tlacr, | (o 2) [P (1.6)
k(a).

An important fact about the Dunkl-Laplace operator is that it generates a generalized
heat semi-group which kernel is given by (see [21])

which is WW-invariant and homogeneous of degree 2, with the index v:= 3" . R

1 L J

pe(x,y) = m T—:c(e A )(y)a T,y €R (1.7)
1 2 T
— e VAL N . 1.8
@710, vl (18)
where Ej(.,.) is the Dunkl kernel defined by Ej(z,y) = Vi(e"¥)(z) (see [4], [6] and [23]),
¢, is the Macdonald-Mehta constant (see [7]) given by
T 2

o = fpa exp(—120 )0y (2)da (1.9)

and 7, is the Dunkl translation operator which acts on C*°(R?)-functions (see Annex A
for precise definition and essential properties). However, note that when f € C*° (RY) is a
radial function (i.e. f(z) = f(||z||) with f the profile function of f), 7, f is given by

VyeR’), n.f(y) = /Rd FV NI+ Tyl1? +2 (2, 2))dy (2) (1.10)

(see [24]). This formula shows that the Dunkl translation operators are positivity preserv-
ing on the set of radial functions.

Harmonic functions for the Dunkl-Laplacian, i.e. C?-functions u such that Ayu = 0,
have for a long time attracted the attention of researchers involved in Dunkl theory (see
([17]), [18] and [24]) but their study was limited to C*°-functions f defined on whole R?
or on the unit ball but having extension to whole R
In a recent paper ([8]), we have found a volume mean value property characterization (see
below) which allows us to study Dunkl-harmonic (D-harmonic) functions on any open
W-invariant subset of R? (see [8] and [10]). This new approach has many benefits in
particular to tackle Dunkl potential theory. It is the aim of this paper to introduce, via
the heat Dunkl-semigroup and our volume mean value operator, the Dunkl-Newtonian
potentials and their use to study Dunkl-subharmonic functions.

Let  be a W-invariant open subset of RY. A function u : Q — [—o0, +oo[ is called
Dunkl-subharmonic (D-subharmonic) if
1. w is upper semi-continuous (u.s.c.) on £,

2. u is not identically —oo on each connected component of €2,

3. wu satisfies the volume sub-mean property i.e. for all closed ball B(z,r) C 2, we have

u(z) < Mp(u)(x). (1.11)



Here Mp(f)(x) is the volume mean of f at (z,r) introduced by the authors ([8]) and

defined by
1

my(B(0,7)) Jr
where my, is the measure dmy(z) := wg(z)dz and y — hi(r, z,y) is a compactly supported
measurable function (see section 2) given by

Mp(f)(x) := @ (r, 2, y)wr(y)dy, 2 (1.12)

hi(r, 2, y) = /Rd Lo, (V212 + 1912 — 2 (z, 2))dpay (2). (1.13)

Of particular importance for this paper is the Dunkl type Newton kernel which is
defined, when d + 2 > 2 (transient case), by means of the Dunkl heat kernel as follows

+oo
Nu(z,y) == /0 pi(, ). (1.14)

and which is finite if y is not in the W-orbit of x.

We will show that typical examples of D-subharmonic functions are the Dunkl-Newton
potentials of nonpositive Radon measures. Nevertheless, in particular for lack of a non-
centered Poisson kernel and because of the complexity of the Dunkl translation oper-
ators, the D-subharmonicity of these examples is not immediate and our approach to
D-subharmonic functions requires some specific tools that will be presented below.

We turn now to the content and the organization of this paper. In section 2, we recall
the properties of the so-called harmonic kernel hy(r, z,y) and some representation formulas
involving the mean value operators.

In section 3, we study the notion of subharmonicity in Dunkl setting. In particular, we
will prove that D-subharmonic functions satisfy the strong maximum principle.

The section 4 is devoted to give some characterizations of D-subharmonic functions. Here,
an approximation result is the essential tool to extend the properties of C2-D-subharmonic
functions to arbitrary D-subharmonic functions.

The notion of Riesz measure of a D-subharmonic function will be introduced in section 5.
We will study the Dunkl type Newton kernel and potential of a Radon measure on R in
section 6. In particular, we will discuss the D-harmonicity and the D-superhamonicity of
these objects and we will obtain the mass uniqueness principle.

Finally, in section 7, we prove a Riesz decomposition theorem for D-subharmonic functions
and we describe all bounded from above D-subharmonic functions in the whole space.

Notations: Let us introduce the following functional spaces and notations which will be
used throughout the paper. For € a W-invariant open subset of R%, we denote by:
. Lllc,loc(Q> = L,.(Q, my) the space of measurable functions f : & — C such that

S |f(2)|wg(z)de < 400 for any compact set K C Q.
e D(Q) the space of C*°-functions on 2 with compact support.

“Note that if the function f is u.s.c, then f is bounded from above on compact sets and Mg (f)(x) is
well-defined (eventually equal to —o0).



e D'(Q) the space of distributions on Q (i.e. the topological dual of D(2) carrying the
Fréchet topology).

e M*(RY) the set of nonnegative Radon measures on R?.

e S(R?) the Schwartz space of C*°-functions on R? which are rapidly decreasing together
with their derivatioves.

e B(a,p) (resp. B(a, p), resp. BY (a,p) := UgewB(ga,p)) the closed Euclidean (resp.
the open Euclidean, resp. the closed Dunkl) ball centered at a and with radius p > 0.

2 The harmonic kernel and the mean value operators

2.1

Properties of the harmonic kernel

Let (r,x,y) — hg(r,z,y) the harmonic kernel defined by (1.13). We note that in the
classical case (i.e. k= 0), we have p, = d, and ho(r,z,y) = 1o, ([|* — yl]) = 1@ (¥)-
The harmonic kernel satisfies the following properties (see [8]):

1

2.

For all » > 0 and z,y € R%, 0 < hg(r,z,y) < 1.

For all fixed x,y € RY, the function r — hy(r,z,y) is right-continuous and non
decreasing on ]0, +oo.

For all fixed r > 0 and = € R¢,
B(x,r) C supp hi(r,z,.) € BV (2,7) := Ugew B(gz, 7). (2.1)
The first inclusion is proved in [9] while the second one is proved in [8].

Let » > 0 and = € R?. For any sequence (x.) C D(R?) of radial functions such that
for every € > 0,0 < x. <1, x. = L on B(0,r) and y € R?, lim. 0 x(y) = 10, (),
we have

Yy R hi(rw,y) = lim maxe(y). (2:2)

For all r > 0, all z,y € R? and all g € W, we have
hk(rax7y) = hk(ny?w) and hk(T’, gflf,y) = hk(nx?gily)' (23)

For all r > 0 and z € R?, we have

dkrd+27
d+ 2y’

(.l = [ o))y = mul B(O.1) = (24)

where d, is the constant
dy = [ga1 wr(§)do (&) = srmm—ttgmry (2.5)

Here do(€) is the surface measure of the unit sphere S of R? and ¢y, is defined in
(1.9).



7. Let 7 > 0 and = € R% Then the function hy(r, z,.) is upper semi-continuous on R

8. The harmonic kernel satisfies the following fundamental geometric inequality: if
la — b]] < 2r with r > 0, then

VEERT hy(r,a.€) < hi(dr,b,€). (2.6)
Note that if k£ = 0, this inequality says that if ||a — b|| < 2r, then B(a,r) C B(b,4r).

9. Let z € R% Then the family of probability measures

! . ) () (27)

k —
dnx,r(y) - mk[B(O,r

is an approximation of the Dirac measure §, as r — 0. That is

Va>0, lim dnk (y) =0 (2.8)

xT,r
"0 Sllz—yll>a

and if f is a continuous function on a W-invariant open neighborhood of z, then

(see [8], Proposition 3.2):

limy | f(@)dng, = lim M(£)(2) = f(2). (2.9)

r—0

Let © be a W-invariant nonempty open subset of R%. The boundeness of hy, as well as
its support property (2.1) allowed us to define the volume mean of any f € L1, () at
(z,7) by (1.12) whenever B(x,r) C Q. We will need the following notations which will be
used frequently in this paper:

Vr>0 Q := {a; € Q; dist(x,00) > T}, (2.10)

ro :=sup{r >0; Q, # 0}. (2.11)

Clearly, we have 2., C €, whenever o < r; and Q = U,»08l = Up<p,§2.. Moreover,
since ), = {x €Q; B(x,r)C Q}, the open set ., r < rq, is W-invariant.

The volume mean operator of f € L,lc,l oc(§2) has the following properties (the first and the
second results are proved in [10] while the third is proved in [19]):

Proposition 2.1 Let f € L}, .().
1. Let r < rq. Then the function Mp(f) belongs to L}CJOC(Q,«).
2. Let x € Q. Then the function r — Mp(f)(z) is continuous on |0, op[ with

0y := dist(x,00). (2.12)

3. For almost every’ x € Q, we have lim, o M5(f)(z) = f(x).

3Note that negligible sets for the Lebesgue measure coincide with negligible sets for the measure my,.



2.2 Representation formulas for the mean value operators

In this subsection, we will recall some representation formulas obtained by the authors in
[8] and [10]. These formulas play a key role in the study of D-subharmonic functions in
sections 4, 5 and 7.

Let us begin to recall that the spherical mean for C™-functions defined on whole R? as

follows (see [18])

M@ = oo [ eflryentn)doty)* (213)

It is shown in [24] that there exists a compactly supported probability measure U’;J, on R4
such that the spherical mean of f € C*°(R?) at (x,r) € R? x R, is given by

Mg(f)(z) = y Fy)dos (), (2.14)

with
supp O”;J. C BW(SU, r) = Ugew B(gz, 7). (2.15)
Formula (2.14) shows that we can define the spherical mean at (z,r) of any measurable

nonnegative (resp. nonpositive, resp. bounded) function on BY (z, 7).

The following crucial results, proved by the authors, on the link between the spherical
and volume means hold: If f € C?(f2), then for every closed ball B(z,r) C Q, r > 0, we
have:

M@ = f@) + g [ MA@ e (2.16)
and
Mg(f)(z) = f(z) + rd-lﬂv/o /Op MY(ALf) () t dt pT2Ldp. (2.17)

Note that (2.16) and (2.17) have been proved at first for C°°(R?)-functions in [8] and then
have been extended by the authors to C?(Q)-functions using approximation results (see
[10] for more details).

Furthermore, the following relation holds for continuous functions on € (see [10])

_d+2
Mg(f)(x) = ;23/ MEL(f)(x)t¥T® 7 dt,  whenever B(z,r) C Q. (2.18)
r
Now, let f be an upper semi-continuous (u.s.c.) function on Q and let B(z,r) C .
As f is u.s.c., by adding a constant, we can assume that f is nonpositive on the compact
set BY (z,r). Therefore, using (2.1) and (2.15), we can define the Dunkl-volume and the
Dunkl-spherical means of f relative to (z,r). Moreover, we have

Lemma 2.1 The relation (2.18) holds for the u.s.c. function f on Q (the two terms of
(2.18) being eventually equal to —o0).

4Recalling that do is the surface measure on the unit sphere S%~1 of RY.



Proof: Fix x € Q and r > 0 such that B(z,r) C Q. Since f is bounded from above on
BW (z,r), there is a decreasing sequence of continuous functions (f,,) such that f, — f
pointwise on BW (z,7). Replacing f,, by fn — SUppw (5 f1 and f by f—supgw ;. f1, we
may assume that f and all f,, are nonpositive on B (z, 7).

For t €]0,7], set g, (t) = MEL(fn)(z) and g(t) = MEL(f)(x). We can see that the sequence
(gn) is decreasing and from the monotone convergence theorem applied to the sequence
(fn), we get g, — g pointwise on ]0, 7] and in particular, g is a measurable function.
Let us now apply the monotone convergence theorem to the sequence (g,), we obtain

/ ML) ()t gt = lim / ME(fo) (@)t T4 1dt, (2.19)

n—+00
But, by the first step,

2y +d

Dt [ st = )@ (220
and once again by the monotone convergence theorem, we have

lim  Mp(f)(x) = Mp() (). (2:21)

Finally, we deduce the relation (2.18) from (2.19), (2.20) and (2.21). O

3 Dunkl subharmonic functions

In this section, we study some properties of D-subharmonic functions (see definition (1.11))
on a W-invariant open set @ C R?. In particular, we will prove that they satisfy the strong
maximum principle and the uniqueness principle.

Let us denote by SH(£2) the set of D-subharmonic functions on € which is clearly
a convex cone. Furthermore, it is not difficult to see that if u,v € SHy(2) and if f is a
convex and non-decreasing function on R, then max(u,v) and f(u) are also in SH ().
As in the classical case, a function u is called D-superharmonic if —u is D-subharmonic.

3.1 Local properties of D-subharmonic functions
Proposition 3.1 Let u € SHi(2). Then the function u belongs to L,lgvloc(Q).
Proof: Fix €y a connected component of 2. Let

E :={z €Qy, wuwy is integrable over some neighbourhood of x}.

Let x € E. Then there exists r > 0 such that B(z,r) C Qo and fB(l‘J‘) lu(y) wi(y)dy <
+oo. For z € B(x,r/2), we have B(z,7/2) C B(x,r) and hence uwy is integrable over
B(z,r/2). Thus, B(z,r/2) C E and E is an open subset of €.

Now, let z € Qo\E. Because uwy is not integrable on any neighborhood of z, we must
have fB(va) |u(y)|wk(y)dy = +oo for all R > 0 such that B(z, R) C Q. Fix r > 0 such
that B(x,6r) C . We will prove that B(x,2r) C Q\E.

Since u is u.s.c., we can assume that v is nonpositive on the compact set K = BW (z, 67)°.

Sreplacing u by u — maxx u.



Let z € B(z,2r). From (2.6) and the nonpositivity of u, we deduce that

[tz o)y < [ o)t pen)ds (3.)
Now, if we apply (2.6) once again where we replace respectively r, a, b and £ by /4, z, y
and x we get

Vye B(x,r/2), h(r/4,z,z) < hg(r,y,x) (3.2)

Thus, using (3.2), (2.3), (3.1), (2.1) and the fact that u < 0, we obtain

/ u(y)hy(4r, z, y)wi(y)dy < / u(y)hy(r, z, y)wi (y)dy
R4 B(z,r/2)

< hg(r/4,x, :L‘)/ u(y)wi (y)dy = —oo.
B(z,r/2)

Consequently, from the previous inequality we get M7 (u)(z) = —oo, and therefore, u(z) =
—o0 by the sub-mean property. Hence, u = —oo on B(x,2r) and this proves that Qo\F
is an open subset of Qy. Finally, as u # —o0 on ¢ and using the connectedness of ),
we must have E = )y. The connected component {2y being arbitrary, Proposition 3.1 is
proved. O

Let u € SHi(Q?). Using the generalized Lebesgue differentiation theorem (see [19])
and Proposition 3.1, we have u(x) = lim,_,o Mp(u)(z) for almost all x € Q.
In the classical case (i.e. when k = 0), this equality holds everywhere for any subharmonic
function (see for example [1], Corollary 3.2.6 or [12], Lemma 2.4.4). In the following result,
we will extend this fundamental property to D-subharmonic functions.

Proposition 3.2 Let u € SHy(Q2). Then, for every x € Q, we have
u(z) = lim Mp(u)(x). (3.3)
r—0

Proof: Fix x € Q and R > 0 such that B(z, R) C Q. As above, we may assume that u is
negative on the compact set BY (z, R). We distinguish two cases:

First case: Suppose that u(z) > —oo. By upper semi-continuity, for all € > 0 , there
exists « €]0, R] such that

u(y) < u(x) + e, whenever y € B(x, ). (3.4)

From the sub-mean property and the fact that u < 0 on BW(JZ, R), we have

u(y)dnt, () < / u(y)dnt (),

Vrelo,R], u(r) < Mp(u)(z)= / B(z,a)

Rd

where dn’lf’r(y) is the probability measure defined by (2.7).
Using (3.4), we deduce that

V€0, R), ulz) < My(u)() < (u(x) +e) /B k) (3.5)



As from (2.8) lim,_, fB(x o) dn’;m(y) = 1, there exists 5 €]0, R[ such that
vreos, [ akwzi-e (3.6)
B(z,a)

Now, if we have taken £ > 0 small enough to ensure that u(x) 4+ ¢ < 0, we deduce from
(3.5) and (3.6) that

Vre€lo,f], u(z) < Mpu)(z) <u(x)+e(l—e—u(x)).

This implies that Mp(u)(x) — u(x) as 7 — 0. This proves the result in this case.
Second case: Suppose that u(z) = —oo. For every n € N\{0}, there is a €]0, R] such
that u(y) < —n whenever y € B(z,a). Therefore,

Vrela, My < [ ik, ) (37)

Again by (2.8), there exists b > 0 such that
v r €]0,b), / dnf(y) > 1/2. (3.8)
B(z,a

From (3.7) and (3.8) we obtain V r €]0,min(a,b)], Mp(u)(z) < —n/2. Therefore,
My (u)(x) — —oo as r — 0 and the result is also proved in this case.

O
From the previous Proposition, we immediately obtain the uniqueness principle that a D-
subharmonic function is determined by its restriction to the complementary of a negligible
set. More precisely:

Corollary 3.1 Ifu andv are D-subharmonic functions on a W -invariant open set  C R?
and u(z) = v(x) for almost every x € Q, then u and v are identically equal in 2.

In the following result we consider the convergence property of a decreasing sequence
of D-subharmonic functions.

Proposition 3.3 Let (uy,) be a decreasing sequence of D-subharmonic functions on Q and
w(z) = limp 400 Un(x). If u is not identically —oo on each connected component of €,
then u is D-subharmonic on €.

Proof: Clearly u is u.s.c. on €2 as being a decreasing limit of u.s.c. functions. Let = € Q)
and r > 0 such that B(x,r) C Q. By the monotone convergence theorem, we get

u(z) = lim wu,(x) < lim Mp(uy)(z) = Mp(u)(x).

This implies that u is D-subharmonic on 2. 0

10



3.2 The strong Maximum principle

The following theorem is a generalization of the strong maximum principle for D-harmonic
functions obtained by the authors in [8] (Theorem 4.1).

Theorem 3.1 Let u € SHy () and suppose that 2 is connected.
i) If u has a mazimum in Q, then u is constant.
ii) If Q is bounded and limsup,_,, u(z) < 0, for all x € 02, then uw <0 on Q.

Proof: i) Let zp € Q such that u(x) < u(xp) for all x € Q. Let
Qo:={zreQ, ulx)<u(xo)}

Because u is u.s.c., €)g is an open subset of ().
Now, let z € Q\Qg i.e. u(z) = u(xp) and r > 0 such that B(z,r) C Q. By the sub-mean
property, we clearly have

u(zo) = u(x) < Mp(u)(z) < ulwo).

This yields 1
mi(B(0,7)) /Rd [u(zo) — u(y)|he(r, 2, y)ws(y)dy = 0.

Hence, u(xg) = u(y) for almost every y € supp hi(r,z,.) and by (2.1), u(zo) = u(y)
for almost every y € B(xz,r). Let us now introduce the nonpositive function v(y) =

u(y) — u(zo), y € B(x,r). Suppose that there exists a € B(z,r) such that v(a) < 0 and
take A € R such that v(a) < A < 0. Since v is u.s.c at the point a, there is € > 0 such that

B(a,e) C B(x,r) and v(y) < A for all y € B(a,€). This contradicts the fact that v = 0

a.e. on B(z,r) and this proves that u = u(zp) on é(m, T).

Consequently, 2\ is an open subset of Q containing 5. But € is connected, then Qy = 0
and this shows i).

ii) Define the function % on the compact closure Q of Q by @(x) = u(z) if z € Q and
u(r) = limsup,_,, ,equ(y) if x € 9.

Clearly u is u.s.c. on €. Consequently, there exists zo € Q such that u(xo) = supg u(z).
If u(xp) > 0, then by our hypothesis necessarily xo € 2 and by ¢) we have u(z) = u(xg) > 0
for every x € (2. We obtain a contradiction to the fact that limsup,_,, u(y) < 0. O

Corollary 3.2 Let u € SHi(Q2) and suppose that G is a connected W -invariant open
subset of Q with compact closure G C Q. If s is D-superharmonic on Q2 and u < s on 0G,
then u < s on G.

Proof: Clearly u — s is D-subharmonic on G and for x € dG, we have

limsup[u(z) — s(z)] < limsupu(z) — liminf s(z) = u(x) — s(xz) < 0.

2T 2T 2T

Hence, the result follows from Theorem 3.1, ii). O
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4 Characterization of Dunkl subharmonic functions

Our aim in this section is give some characterizations of the Ag-subharmonicity. We will
first do this for C?-Aj-subharmonic functions. Then, an approximation method allowed
us to extend the results to any Ag-subharmonic function.

4.1 Characterization of C?— D-subharmonic functions

As a first result, we have

Proposition 4.1 Let u € C?(Q). Then the following assertions are equivalent
i) ue SHE(), ) Apu>0o0nQ, 413) u(z) < Mg(u)(x) whenever B(x,r) C Q.

Proof: i) == ii) Suppose that Aju(z) < 0 for some x € Q. By (2.9), we have
limy—y0 M5 (Agu)(x) = Apu(z). Hence, there exists 7 €]0, g,[ such that®

1
ME(Agu)(x) < §Aku(a:) <0 forall te€]O,r].

This implies that

1 2

TP
1 2v+d—1
W/O/OMB(AkU)(w)tdtp”’ dp < -

r

Therefore, by (2.17) we obtain Mp(u)(x) < u(xz). A contradiction with the sub-mean

property.
ii) = iii) This follows immediately from the relation (2.16).
iii) = i) From (2.18) and a direct integration with respect to r, we obtain the result. [J

The C?- D-subharmonicity can be characterized in terms of the monotonicity with
respect to r of the spherical and volume means. More precisely, we have

Proposition 4.2 Let u € C?(2). The following statements are equivalent
i) ue SHE(Q),
ii) for every x € Q, the function r — Mp(u)(x) is non-decreasing on |0, o5 and

lim M5 (u)(z) = u(z), (4.1)

r—0
iii) for every x € Q, the function r — Mg(u)(x) is non-decreasing on ]0, 0, and

lim Mg(u)(z) = u(z), (4.2)

r—0

iv) u € Li"loc(Q), lim, o M5 (u)(x) = u(z) for every x € Q and Mp(u)(x) < Mg(u)(z),
whenever B(z,r) C Q.

5We recall that g, is the distance from x to the boundary of Q (see (2.12)).
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Proof: At first, using Proposition 2.1- 2), formulas (2.16) and (2.17), we deduce that
the functions r — Mp(f)(x) and r — M(f)(x) are differentiable on |0, o[ and the
relations (4.1) and (4.2) are always satisfied for any fixed function f € C%(f2) and for any
fixed x € 2. We note also that the first condition in assertion iv) is redundant but we
will need it in order to extend this result to an arbitrary D-subharmonic function (see
Theorem 4.2 below).

ii) = i) As 7 — Mp(u)(x) is non-decreasing, (4.1) implies that the sub-mean property
is clearly satisfied.

i) = iii) We use the fact that Agu > 0 on  and we differentiate with respect to r the
relation (2.16) and we get =M% (u)(z) > 0 i.e we obtain iii).

iii) = iv) It is a direct consequence of the relation (2.18).

iv) = ii) We differentiate with respect to r in the relation (2.18) and we obtain

d r d+2v r r
o Mp(u)(z) = (Mg (u) (@) — Mp(u)(z)) > 0.
This implies that r — M} (u)(x) is non-decreasing on |0, o, [. O

4.2 Approximation of D-subharmonic functions by C*-functions

Let us consider the following radial function ¢(z) := aexp (—W)lB(OJ)(w), r € RY,
where a is a constant such that = —— ¢(z)wg(z) is a probability density.

For € > 0, define the function

1 T

pe(z) = W‘P(g)- (4.3)

It is well known that ¢. € D(R?) is radial with supp . C B(0,¢).

In order to approximate D-subharmonic functions by smooth D-subharmonic functions,
we need the following facts, proved in [10], on Dunkl convolution product

Proposition 4.3 Let u € Ly, .(Q) and rq given by (2.11). For 0 < e < rq, define the
function u. by

VaoeQ, ulr):=ux*xep(r):= /Rd w(Y) T e (Y)wi(y)dy. (4.4)

Then the sequence (us)e<r,, Satisfies

i) For every e < rq, the function u. is in C*(S) and we have

Ague () = Ag(u* o) () = u*p Appe(x), x € Q.. (4.5)
if) For every € < rq and every closed ball B(x,r) C €., we have
Mp(ue)(x) == Mp(u i @c)(x) = Mp(u) %k e (). (4.6)
iii) For almost every x € Q, u.(xr) — u(zr) as e — 0.

13



iv) If u is continuous on 2, then for every x € Q, u.(z) — u(x) as e — 0.

Moreover, the following associativity result

(u *k 9061) ¥k Peg = (u *k 9052) *k Pepy 0N ey yey, (4'7)
holds whenever €1 + €2 < rq (see [10], Proposition 3.3).

Remark 4.1 In order to prove that uxg . is well defined on Q., we have used the following
support property (see [10])

supp T_ppe C BV (2,€) = Ugew B(gw, €). (4.8)

Our approximate result is as follows:
Theorem 4.1 Let u € SH(2) and u. the functions defined by (4.4). Then we have

1) for every 0 < € < rq, the function u. is D-subharmonic and of class C*° on Q,

2) for every 0 < p < rq, the sequence (ue)o<e<, of C°° and D-subharmonic functions on
1, is non-decreasing " and converges pointwise to u on Q, ase —0,

3) for all B(x,r) C Q, Mp(ue)(x) — Mp(u)(x) and Mg(ue)(x) — Mg(u)(x) ase — 0.

Proof: 1) By Proposition 3.1, u € L}, .(Q) and then from Proposition 4.3 we deduce
that u. € C>°(£2:). On the other hand, as u is D-subharmonic on Q and 7_p. > 0, (4.6)
implies that

Mp(u:)(x) > ue(x), for all B(z,r) C Q..

Therefore, u. is D-subharmonic on €2..

2) Choose 0 < p < rq (i.e. Q, is nonempty). By 1) and i) of Proposition 4.3, we have
us € C®(0,) NSH(Q,) for all € < p.

e We will prove in two steps that the sequence (ue)o<c<, is non-decreasing.

Stepl: Suppose that u is of class C2 on Q. According to [10] (see Proposition 3.2), the
relation (4.4) can be rewritten in spherical coordinates as follows

whipela) = dy [ ORI @i, (4.9)

where ¢ is the profile function of ¢, and dj is the constant given by (2.5). Using the
change of variables § = t/¢ in (4.9) and recalling (4.3), we deduce that

1
ue(x) = dy, /0 @(0) 0L M (u) () db.

Since, r — Mg(u)(x) is non-decreasing (see Proposition 4.2), we conclude that (ue)o<c<p
is a non-decreasing sequence.

Step 2: Suppose only that u € SHi(€2). In order to use the same idea many times in the
sequel of this paper, we will present the argument in the form of the following fundamental
approximation lemma:

"i.e. for all fixed = € Q,, € — u.(z) is a non-decreasing function on |0, p|.
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Lemma 4.1 Let v € L,IC’IOC(Q) and (pe) the sequence defined by (4.3). Assume that for
any € < rq, the function v x ps belongs to SH (). Then

a) for every 0 < p < rq, the sequence (v *i Pc)o<e<p is non-decreasing on Q,,

b) the function s : x — lime_o v %k @< (x) is well defined and D-subharmonic on Q and
v = s almost everywhere on €.

Assume the result of the Lemma for the moment.

By Proposition 3.1 and the statement 1) of the theorem, the hypotheses of Lemma 4.1 are
satisfied. Consequently, using Lemma 4.1 and the uniqueness principle (Corollary 3.1), we
obtain the statement 2).

3) By 2), the result follows immediately from the monotone convergence theorem. g

Proof of Lemma 4.1: a) Fix p €]0,rq[ and let n €]0, p[. By our hypothesis and Proposition
4.3, the function v * ¢, € C*(,) N SHi(Q,). Consequently, by the statement 1) of
Theorem 4.1, the functions [v x @y] *i e, with € > 0 such that n + e < p, are in
C®(Q2,) N S'Hk('Qp).' Furthermore, by the step 1, the sequence ([v %) ¢p] (‘05)0<6<p—n is
non-decreasing i.e. if 0 < e; <e9 < p—n, then

Ve, [V *p, ‘Pn] Qe (2) < U 9017] *k Pey (T).

By (4.7) the previous inequality can be written

Vae Qpa [U *k 9061] *k 9077(:”) < [U *k ‘1062] *k ‘Pn(x)'
Finally, letting 7 — 0 and using the statement iv) of Proposition 4.3, we obtain
Ve, vxe(x)<uvsx,ps,().

This proves the assertion a).

b) Let 0 < p < rq. Since the sequence (v *j ¥<)o<e<, is non-decreasing on §2,, we deduce
that for any z € Q,, s(x) := lim._,¢ v*, () exists in [—oo, +00[. On the other hand, from
Proposition 4.3-iii), we see that s = v almost everywhere on €2,. In particular s # —oo
on each connected component of ,. Consequently, by a) and Proposition 3.3 we deduce
that s € SHi(€,) as a pointwise decreasing limit of D-subharmonic functions on €,. As
p > 0 can be taken arbitrary small, the proof of the lemma is complete. 0

Now, we will extend the results of Proposition 4.2 to any D-subharmonic function (see
[1], Corollary 3.2.6 for the classical case).

Theorem 4.2 Let u be an u.s.c. function on a W-invariant open set Q C R%. Assume
that u is not identically —oo on each connected component of Q). Then the statements i),
it), 111) and i) of Proposition 4.2 are equivalent.

Proof: i) = 1ii) Let u € SHi(2). We already know that (4.1) holds (see Proposition
3.2). Let (u.) be the sequence defined by (4.4). By Theorem 4.1, u. € C*>°(:) NSH ().
Therefore, using Proposition 4.2, r — Mp(u.)(x) is non-decreasing on |0, dist(z, 0Q¢)|.
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Letting ¢ — 0 and using Theorem 4.1, 3), we deduce that r — M} (u)(z) is also non-
decreasing.

ii) = i) This is obvious.

i) = iii) If u € SHE(Q2) NC>(N), the result is proved in Proposition 4.2.

Let us now suppose only that u € SH(2). By Proposition 4.3 and Theorem 4.1, the
functions u. defined by (4.4) are in SH(Q:) NC>(Q.).

Consequently, we have

a) the function r — Mg(u.)(x) is non-decreasing on |0, dist(x, 0€)|,

b) for all 0 < e < p, lim, 0 Mg (ue)(z) = us(x),

c) for all 0 < e < p, ue () < Mg(ue)(x),

where p = p(x) > 0 is such that x € . for all € < p.

From a) and Theorem 4.1-3), we can see that 7 — M¢g(u)(x) is also non-decreasing as a
pointwise limit of non-decreasing functions.

Using c) and letting e — 0, we have u(x) < Mg(u)(x). Moreover, since (ug)o<e<) is a
non-decreasing sequence, we deduce that

VO0<e<p ulz) < MEw)(z) < M) (@)
According to b), this implies that

VO <e<p u(@) < lim Myu)(@) < lim Mj(u.) (@) = ue().
r—0 r—0

Finally, letting ¢ — 0 and using Theorem 4.1-2), we deduce the desired result.

ili) = i) Let x € Q and r €]0, g;[ be fixed and assume that u is nonpositive on the

compact set BY (z,7) (using the upper semi-continuity of ). For all p €]0, [, we have

T | MBI 2 M@ @) (1~ (/)

Since t — ME(u)(x) is nonpositive on ]0,r], letting p — 0 and using the monotone
convergence theorem, Lemma 2.1 and the relation (4.2), we obtain

Mp(u)(z) = u(z).

This proves that u is D-subharmonic on €.

i) = iv) Let u € SHi(Q2). We know that the function uwy is locally integrable on €
and lim, o Mp(u)(z) = u(z) for every x € Q. By Proposition 4.2, the result is true when
u € C%(Q). Now, suppose only that u is in SH;(Q). Considering the D-subharmonic
functions u. defined in Theorem 4.1 , we get for £ small enough

Mp(ue)(x) < Mg(ue)(x).

By Theorem 4.1, we deduce that Mp(u)(x) < Mg(u)(z).
iv) = i) We will use the same idea as in [12] (Lemma 2.4.4). First, we need the following
lemma:
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Lemma 4.2 Let f € Lk 10c(€2) be an w.s.c. function. Then for every x € 2 and r > 0

such that B(z,r) C Q, the function t — ME(f)(x)t4T27=1 is integrable on [0,7] and we
have

_d+2y -
Mu(f)(@) = St / ML(F) ()27, (4.10)
Proof: Assume that f is nonpositive in the fixed Dunkl ball BY (z,7) c Q. The formula
(4.10) has been established in Lemma 2.1. Therefore, it suffices to show that My (f)(z) #
—00. Denoting C, := (my(B(0,7)))~%, by (2.1) and the fact that hy(r,z,y) < 1, we get

IME(f)(@)] < Cr [gw (g [F @) hi(r, 2, y)wn@)dy < Cr [pw 0y 1f (W) lwr(y)dy < +oo.
0

Now, we turn to the proof of iv) — z) Let z € Q. Suppose that Mp(u)(z) <
Mg (u)(z) for every r €]0, 0.[. Since u € Lk 10c(£2), by Lemma 4.2, the function r +—
M7F,(u)(z) is absolutely continuous on every closed interval [a,b] C]O, 0;] as a product of
two absolutely continuous functions. Hence, it is almost everywhere differentiable on [a, b]
and we have

d . d+ 2v
EMB(U)(QT) =

(M§(u)(z) — Mp(u)(z)) >0 ae..

Thus, r — MJp(u)(x) is non-decreasing on [a,b] (see [2], Proposition 5.3). That is, for
every 0 < t <7 < gz, we have M5(u)(z) < Mj(u)(x). Letting t — 0, we deduce that
u(z) < Mp(u)(z). This proves that u is in SHy(2) and the Theorem is completely proved.

U

5 Aj;-Riesz measure

In this section, we introduce the Riesz measure of a function u € SHy(2). In order to
do this, we will clarify some facts about the action of Dunkl operators on distributions.
Let us start by recalling the following integration by parts formula see [5] or [23]): Let
f,g9 € CH(Q) such that g has compact support and D be the ¢-directional Dunkl operator
defined by (1.1). Then we have

/Dgf(x)g(x)wk(x)dm:—/ f(x)Deg(x)wi(x)da. (5.1)
Q Q

For a distribution 7' € D'(2), we define the weak Dunkl ¢-directional derivative of T'
(€ € RY) by

v ¢ € D(), <D§T7¢> :_<TaD§¢>'
Note that by the intertwining relation (1.2), the operator D¢ = V3 0:V, ' : C®(R?) —
C>(R%) is continuous for the Fréchet topology. Moreover, since Dy leaves the space D(Q2)
invariant, we deduce that D¢ : D(2) — D(€2) is also continuous for the Fréchet topology.
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This justifies that D¢T is well defined as an element of D’(€2). In particular, if f € L, (€2)
i.e. fw, € L} (), the weak Dunkl-Laplacian of fuwy, is given by

loc

Vo eEDQ), (Aulfur)d) = (for Ard) = /Q f@)Apd(@)wr(@)de.  (5.2)

Our first main result states that:

Theorem 5.1 Let u € SHi(Y). Then there exists a nonnegative Radon measure p in €
such that Agluwg] = p in the sense of distributions. We will call p the A-Riesz measure
related to u.

Proof: Asu € L}, () , uwy, defines a distribution. Let ¢ € D(£2) and let (us)o<e<, be the
sequence of functions defined by (4.4) with p such that supp ¢ C Q,. As 0 < u.—u < u,—u,
by Theorem 4.1 and the dominated convergence theorem, we have

. ) = | w@do@hnalde = lim [ w0 A
Now, using the integration by parts formula (5.1), we deduce that

{Aguwr], ¢) = lim ; Apue(z)P(x)wp (x)dz. (5:3)

Consequently, [Aguc|wr — Aguwg] in D'(Q) as € — 0. Moreover, from (5.3) and the fact
that Agus > 0 (Theorem 4.1 and Proposition 4.1), we see that Ag[uwy] is a nonnegative
distribution on €. Then, according to [25], there exists a nonnegative Radon measure p
on € such that Ag[uwy] = p and the proposition is proved. O

Example 5.1 Let u € SHi(Q) NC*Q). Using (5.2) and (5.1), clearly the Ay-Riesz
measure of u is given by Apu(z)wg(z)dx.

Now, we will establish a type Weyl’s lemma for D-subharmonic functions:

Theorem 5.2 Let u € Lllc,loc(Q)' If Ap(uwg) > 0 in D'(Q), then there exists a D-
subharmonic function s on Q) such that u=s a.e. in Q.

Proof: Let us denote by p the nonnegative Radon measure A (uwy) and let ¢ be the
function given by (4.3). We claim that

Ve<rg, VzeQ, Ap(u*pp)(r)=p*;pe(z):= /Qf—msos(y)du(y)g- (5.4)

Indeed, by Proposition 4.3, the function u %, . is of class C° on €2.. Then, using
respectively the relations (4.5), (4.4) and (A.6), we get

Al 02) () = [ (Ape)] () = /Q w(y) s [ Drpe) (0 () dy

- /Q () Arlr—otoe) () eon () dy = (o, A lraipe])

= M *E Sps(x)'

8Note that by (4.8), u #x @. is well defined on . for any nonnegative Radon measure y on €.
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Since T_zp: > 0, (5.4) implies that Ag[u x; pz] > 0 on .. Hence, the function u j, p. €
SHi () (see Proposition 4.1). Thus, we obtain the result by using Lemma 4.1, b). O

In the following result, we characterize the D-subharmonicity by means of the positivity
of the distributional Dunkl Laplacian.

Corollary 5.1 Let u be a function defined on Q. Then u € SHi(Q2) if and only if u
satisfies: u € Lllc,loc(Q)’ Ap(uwg) > 0 in D'(Q) and u(z) = lim,_,o M} (u)(x) for every
x € Q.

Proof: The necessity part follows from Propositions 3.1, 3.2 and 5.1. Now, will show
the sufficiency part. By Theorem 5.2, there exists a function v € SHy(€2) such that
u(x) = v(z) for almost every = € Q. Therefore, for all z € Q and all » > 0 small enough,
we have M (u)(x) = Mp(v)(x). Now, using Proposition 3.2, we deduce that u and v are
identically equal in © and then u is in SHj(12). O

Corollary 5.2 The cone SHy(Q2) is closed for the L}C,ZOC(Q) topology.

Proof: Let (u,) be a sequence of D-subharmonic functions on 2 such that w, — wu in
L} 10.(0). As, upwy and uwy, are in L (Q), we deduce that u,wy — uwyg in D'(Q).
Hence, Ag(unwi) — Ag(uw) in D/(Q). By Corollary 5.1, as Ag(unwy) > 0, we deduce
that Ag(uwg) > 0 in D'(2). Now, by Theorem 5.2 there exists a D-subharmonic function
s on {2 such that u = s a.e. in (2. Then u = s in Li,,loc(Q) and the result is proved. O

In [10], Weyl’s lemma for D-harmonic functions has been proved. Here, we will give
another proof of such result. In order to do this, we will prove the following lemma:

Lemma 5.1 A function u : Q —— R is D-harmonic if and only if it is simultaneously
D-subharmonic and D-superharmonic on 2.

Proof: 1t is enough to show the sufficiency part. Let p > 0 small enough and consider the
function wu., with e < p, defined by (4.4). Clearly, by Theorem 4.1, the functions u. and
—u, are in C*(Q,)NSH(€2,). Hence, by Proposition 4.1, we deduce that u. is D-harmonic
in ©,. Again from Proposition 4.1, u.(x) = Mg(u.)(x) whenever B(x,r) C Q,. Letting
e — 0 and using Theorem 4.1, we deduce that u(x) = M§(u)(x) whenever B(x,r) C §,,.
Since p is arbitrary small, we deduce that

u(z) = Mg(u)(x), for every B(x,r)C .
Finally, if we use (4.9), we conclude that for any € > 0, u coincides with the D-harmonic
function u. on €).. That is the function u is D-harmonic on €2 as desired. Il

Corollary 5.3 If u € L#loc(Q) satisfies Apluwg] = 0 in D'(Q), then there exists a D-
harmonic function h on Q such that u and h coincide a.e. on Q.

Proof: From Theorem 5.2, there exist two functions w1, us such that u; is D-subharmonic
on (), uy is D-superharmonic on 2 and v = u; = uo almost everywhere. Moreover, by
Proposition 3.2, we have

Ve, u(x)= }1_r>1(1) Mp(up)(z) = }1_% Mg (ug)(x) = ua(z).

Therefore, the function h := u; = wusg is simultaneously D-subharmonic and D-superharmonic
on {). Hence, by the first step, h is D-harmonic in 2 and h = u almost everywhere in €2.[]
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6 Dunkl-Newtonian Potentials

In this section, we introduce the Dunkl-Newton kernel and the corresponding Dunkl-
Newtonian potentials and we study some of their properties. Throughout this section, we
will always suppose that d 4+ 2y > 2 (transient condition).

6.1 Dunkl type Newton kernel
Consider the Dunkl-Newton kernel defined by (1.14). It takes also the following form:

Proposition 6.1 For every x,y € R?, we have

1 2—(d+27)

Nio) = g L (PP =2 @) dn). 6

Proof: From (1.7) and (1.10), we have

1 _ el +llyl? =2 (x,2)
pla) = g [T ) 6.2)
(2t)2+76k Rd

Hence, by the change of variables 1/4t <> ¢ in the integral (1.14) and using (2.5), we can
write

1 T o [ el P2 (.2))
M) = s L T L Dpay ().

© 24, T(d/2 + )
Applying Fubini’s theorem and then using the identity A=* = ﬁ f0+°° s le=s4ds, A >0
and A > 0 (when A = 0, the both terms are equal to 4+o00) by taking A = ||z||?> + ||ly/|> —
2(x,z) and A = W, we obtain the result. O

Example 6.1 1) When k =0 and d > 2, the Rosler measure i, is equal to 6, (the Dirac

measure at x) and then No(z,y) = ﬁ”m —y||>=¢ is the classical Newton kernel .

Jwd—1
2) We consider R? (d > 1) with the root system R,, := {%ei,...,+en}, where m is a
fived integer in {1,...,d} and (ej)1<j<a is the canonical basis of R%. For & € RY, we will
denote € = (€M), ¢') € R™ x R,
Noting that the Cozxeter-Weyl group is given by W = Z5' and that the Z5'-orbit of a point
€ e R? is given by

Zyr & :={e.&:=(e1&1,. .., em&m, &), €= (gi)i<icm € {£1}"}.

The multiplicity function can be represented by the m-multidimensional parameter k =
(k1,... km) with k; = k(e;) > 0. Moreover, the Rosler measure is of the form p, =
Hy(m) gy = Hyy @ =+ & fly,, @ Oy with py, the Zo-Rdsler measure at point y;. If y; = 0, we
know that pg = 6o and if y; # 0, we have

1
(g ) = / ot [ C®).

9wg4_1 is the area of S¢71.
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where ¢y, is the Zo-Dunkl density function of parameter k; given by (see [4] or [23] p.104)

1, (t) = W@ — R )R (),

Let C := [dg(d + 2y — 2)]7L. Then the Z5*-Dunkl-Newton kernel is of the form

m d
Zy m m 17777
NE@w=0f (P I =23 s =)
o P
X H br, (t3)dty .. . dtp,.
1=1

Proposition 6.2 Let x,y € R?, with x # 0.
1) Ify ¢ W, then 0 < Ni(z,y) < +00.
2) When d > 2 and v > 0, we have Ny(x,x) = +0o0.

Proof: 1) Let y € R? fixed. It is well known (see [21] and [23]) that

L e (le—gul®)/at (6.3)

pe(@,y) £ ——5——
(Qt)g—wck gEW

Hence, Ni(z,y) < +oo for all x ¢ W.y.

2) At first suppose that x is not in the hyperplanes H,, o € R (i.e. z lives in a Weyl
chamber). It is enough to prove that I := fol pi(xz,x) = +oo. To do this, we need
the following short-time asymptotic result of the Dunkl heat kernel established in [15]
(Corollary 2): Let C be a fixed Weyl chamber. If z,y € C, then

2
llz—yll

Pe(2,Y) ~i-0 (wk(w)wk(y))_1/2(47rt)_d/2e_ Tt

For y = x, we obtain pi(z,x) ~¢_0 (wk(m))_1(47rt)_d/2 and I = 400 as desired.

When x € H, for some « € R, the result follows by using the lower semi-continuity of the
function z — Ni(x,z) (as non-decreasing limit of the sequence of continuous functions
T — ff;n pe(x,x)dt). Indeed, if € Hy, Ni(z,z) = liminf, ,, Ni(y,y) = 400 because
Ni(y,y) = 400 if y converges to x in a Weyl chamber limited by H,. O

Remark 6.1 For g # id, it is much more difficult to see if Ni(x,gx) is finite or infinite.
This will be more explained in a forthcoming paper. However, from the relation (6.5) (see
the next result), we can see that Ni(x, gr) = +oc if and only if Ny(x, g 1x) = +o0.

Proposition 6.3 The Dunkl-Newton kernel satisfies the following properties:
1. For all z,y € R%, we have

1 [t
Nife,) = /0 12 (1, 2,y dt. (6.4)
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2. For every x,y € R?. Then
Ni(z,y) = Ni(y,2),  Ni(gz,y) = Ni(x,97"y). (6.5)
3. For all x,y € R* with x ¢ W.y, we have

min (|2 — gy ) < di(d+2y ~2)Ni(e,y) < ma (|l — gy ). (6:6)

4. For all y € R? fized, the function x — Ny (x,vy) is lower semi-continuous (L.s.c.)
on RY and of class C* on RH\W.y.

Proof: 1. Fix z,y € R%. By (6.1) and Fubini’s theorem , we have

1 oo 1—(d+27)
M@”:£W< t dt) dp(2)

]2+ lyl1? =2 (z,2)
1

—+o00
— [ ([ 1y (VIR T 22 (2)) de
k Jo R4
_ 1
di. Jo

2. We obtain (6.5) by using (6.4) and the properties (2.3) of the harmonic kernel.
3. At first, we note that from (1.3) for z € supp py we can write z = 3 -y Ag(2)gy,
where \g(2) € [0,1] are such that }_ .y, Ag(z) = 1. Then we have

2] + llyll* = 2 (@, 2) = > Ag(2) e — gyl*. (6.7)
geWwW

20 (¢ 2, y)dt

Now, as f : t — #1=5=7 is a convex function on 10, +o0[, by (6.7) we have
(ol + 191 ~ 20, ) * 7 < mae (o — gul>-(@20).
T gew

This implies the right inequality. Again by convexity of the function f, Jensen’s inequality
and (6.7), we get

2—(d+2v)

ddd+2w—%NM%y)Z(A;MMV+HWQ—2@J»¢w@D

_ ( 3 (/Rd Ag(2)dpy(2)) ||z — ng2)

2—(d+2v)

geWw
2 (d+27)
> (max/o - gyl?) © = min (o — gy ),
- \gew gewW

where in the last line we have used the fact that f is a decreasing function.

4. The function 2 — Ni(z,v) is Ls.c. on R? as being the increasing limit of the sequence
(fn) of continuous functions defined by f, : z — ff}n pe(x, y)dt.

As 1, is with compact support, we can differentiate locally in a neighborhood of « ¢ W.y
under the integral in the relation (6.1) and we obtain the result. g
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Theorem 6.1 Let xg € R%. Then the function Ny(zo,.) is
1) D-superharmonic on R,

2) locally integrable on R® with respect to the measure wy(x)dx and we have
—Ak (Nk(x(], )wk) = 5$0 m D,(Rd), (68)
where 0, is the Dirac measure at xg.

3) D-harmonic on R\W.xzq (W.zq the W-orbit of xo).

Proof: Fix zo € RY. We will use the following properties of the Dunkl heat kernel (see

[21])
(A — 04) pe(zo,.)(z) =0 and %i_]g%pt(mo, Jwp =0z, in D'(RY), (6.9)

We consider the function oo
Saor () 5:/ pi(wo, z)dt. (6.10)

1) By the monotone convergence theorem, we see that the function Ni(xo,.) is the point-
wise increasing limit of the sequence (Sxml /n)n' Hence, by Proposition 3.3, it suffices to
prove that for every r > 0, Sy, is D-superharmonic on R?. To do this, we will use the
result of Proposition 4.1.

The function p; (o, .) is of class C> on R? and we can differentiate under the integral sign
in the relation (6.2) to obtain

11 s e (s
ajpt(gjo’)(x) = —%W/Rd(l‘j —zj)e 4z(|| I*+llzol|* =2 (z, >)dﬂx0('z)
and
1
0i0ipe(wo, ) (x) = =0ij5pe(T0, @)

1 1 1 2 2
- - oW — z)e— a Uzl ol =2 (x.2)) 4
442 (21&)%‘*"?% /Rd(xj zj)(xi — zi)e” a o (2)

where 6;; is the Kronecker symbol.
Using the fact that supp pz, C B(0, ||zo]|), we deduce that

izl + ol
8p o, )\T 37,
osman, ol < o
1 (2] + 1o )?

|0ijpe(o, ) ()] <

@) (202 e
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Let R > 0. The previous inequalities and the differentiation theorem under the integral
sign imply that Sy, , is of class C? on the open ball é(O, R) and by (6.9) we deduce for
any r € é(O, R) that
too +o0
ApSyor(z) = Ay (pe(xo,.)) (z)dt = /r Opt(xo, x)dt = —pr(zg,z) < 0. (6.11)

,
o

Therefore, Sy, , is D-superharmonic on B(0, R). As R > 0 is arbitrary, we conclude that

Szo,r is D-superharmonic on RY as desired.

2) From the statement 1) and Proposition 3.1, we deduce that Ny (vo,.) € L}, .(R%). By

the dominated convergence theorem, we can see that Sy, ,wy — N (2o, .)wi in D'(RY) as
r — 0. This implies that

A (Szorwr) — Ap(Ni(zo, Jwg) in D'(RY) as r— 0.
On the other hand, from (6.11), (5.1) and (6.9), we have
lim A(Syy pwk) = =0z in D'(RY).

This gives (6.8).

3) From the relation (6.8), we deduce that the function Ni(xg,.)wy is D-harmonic in the
sense of distributions on R%\{xq}. Hence, by applying Weyl’s Lemma (see Corollary 5.3)
on the W-invariant open set Rd\VV.:EO, there exists a D-harmonic function h on Rd\W:EO
such that Ny (zg,z) = h(zx) for almost every € R¥\W.zo. Now, using the smoothness of
the function Ny (zo,.) on RA\W.xg, we obtain Ny (zo,.) = h on RN\ W.xg.

This completes the proof. O

6.2 Dunkl-Newtonian potential of Radon measures

Definition 6.1 Let y € M*T(R%). The Dunkl-Newtonian potential of u is defined by
Ni[pl () = /Rd Nu(@, )duy), = € R (6.12)

Remark 6.2 Let 1 be a signed Radon measure on R% and p = ut — p= its Hahn-
Jordan decomposition. We can also define the Dunkl-Newtonian potential of p by setting
Nelp](z) := Ni[pt)(x) — Ni[u~](z) whenever for every x € R, Ni[u*](z) and Ng[u~](z)
are not infinite simultaneously.

Proposition 6.4 Let p € MT(RY). A necessary and sufficient condition for finiteness
a.e. of the Dunkl-Newtonian potential of u is that

L Q1o duty) < o (613)
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We need the following lemma:

Lemma 6.1 Let u be a finite nonnegative Radon measure on R?. Then N (1] belongs to
L,%/, loc(Rd). In particular, Ni[p] is finite a.e..

Proof: Fix R > 0. Using Fubini’s theorem, we have
[ Nl@eeds= [ [ NiGeyente)ds duty)
B(0,R) Re JB(0,R)
As pu(R?) < +oo0, it suffices to show that there exists a constant C' = C(R,d,~) > 0 such
that

Yy e RY, / Ni(z, y)wg(x)dx < C. (6.14)
B(O,R)

Let x € B(0,R) and y € R%. From the relations (6.4), we can write

1 1 1 —+oo
NM%MZ/tF“”m@wwMH—/ P2 (1 )t = 1 y) + J (2, y).
1

di Jo dy,
e Since hi(t,x,y) < 1, we can see that J < m. This implies that
B(0, R)]
Vy e RY / J(z, wa:da:gmk[—’:C.

e Applying Fubini’s theorem and then using (2.3) and (2.4), we deduce that

IR
Vye Rda / I(x,y)wk(x)dx < d/ tl ¢ Q’YHhk(tayv ')HLl(Rd,mk)dt
B(0,R) kJo

1

. ——
2d+2y) O °

Finally, we obtain (6.14) by taking C' = Cy + Ca. O

Proof of Proposition 6.4. Assume that (6.13) holds. We will show that  — Ni[p](z)wg(x)
is locally integrable. Let r > 1. By Fubini’s theorem, we have

/B(O,r) Ni[p](z)wy(z)dx = /Ily||§2r </B(0,r) Nk(x,y)wk(x)daj)d,u(y)

" /|y||>2r </B(07¢) Ni(w,y)wr(a)dz ) duly) = Ji + Ja.

From Lemma 6.1, J; < 400. Now, by (6.6), we have

1
Jy < / / max ( ||z — 2=d=2v) o, (2)dx ) d .
S T S oy 2 (12 = 9012 ) wn(e)da) )
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But, for all z € B(0,7) and all g € W, ||z — gy| > [ly|| — ||lz[| > 5|lyl| because ||y|| > 2r.
Moreover, since r > 1, we also have [|y|| > (1 + ||y||). Hence, we get

1
Vgew, fo—gyl> 7L+ Iyl

Thus,

gy < A2 mal B(0. )]
o dk(d+2")/—2)

Conversely, suppose that (6.13) does not hold. Let x € B(0,1). Using (6.6) and the
inequality ||z — gy|| < 1+ ||y|| for all g € W, we deduce that

A”20+wwﬁﬁﬂmmm<+w.
y||>2r

di(d + 2v — 2)Ni[p|(z) = dy(d + 27 — 2) /Rd Ny (2, y)du(y)

2—(d+2v)
> _
> /Rd (ggg\\x ng) du(y)

2—(d+2y)
> [ () auty).
Rd

Hence, if [pq (1+ Hy||)2_(d+27)du(y) = 400, then Ng[u](z) = +00 on B(0,1) and we get
a contradiction. OJ

Proposition 6.5 Let € M (R?) with compact support. Then

M(Rd) 2—(d+27)
Nelpl(w) ~ g 5=y el as o]l — +oc.

Proof: Let R > 0 such that supp ¢ C B(0, R). By the Cauchy-Schwarz inequality, we
have

V2 € supp py € BO, [lyll),  (lzll = llyl)® < =l + Iyl = 22, 2) < (]l + llyl)*.
Therefore, by (6.1) we obtain for every y € B(0, R) fixed and ||z| > 2R
(Il + lyID*~47> < C.Ni(z,y) < (ll2ll = lly )=,

where C' = d(d 4 2y — 2). If we integrate these inequalities with respect to the measure
du(y) and we divide by ||z[>~%~27, we obtain the result by letting ||z| — 4oc. O

Proposition 6.6 Let 1 be a nonnegative Radon measure on R?.

i) If i has compact support, then Ny[u] is D-superharmonic on R and D-harmonic on
RANW.supp p.

ii) If Np[u](x) < +oo for at least one x, then Ni[u] is D-superharmonic on RY.
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Proof: i) Let u be a compactly supported and nonnegative Radon measure on R,
e For n > 1, consider the function

F,(z):= /Supp ) (/1/n pe(,y)dt)du(y).

By the continuity theorem under the integral sign, we can see that F;, is continuous on
R?. Furthermore, using the monotone convergence theorem, we deduce that Ny, (] is a
pointwise increasing limit of the sequence (F),) of continuous functions. Therefore, the
lower semi-continuity of the function Ny[u] on R? follows.

Let 2 € R¢ and r > 0. Using Fubini’s theorem and the D-superharmonicity of the function
& — Ni(&,y), we have

MEOD(@) = [ MENCl@)dn) < [ Ve g)duty) = M)

This implies that N[y is D-superharmonic on R

e According to Lemma 5.1, we need only to prove that Ni[u] is D-subharmonic on Q :=
RNW.supp u. Let B(z,r) C Q. Again, by Fubini’s theorem and the D-harmonicity of
Ni(.,y) on R\ W.y, we deduce that

MEMD@) = [ MENCl@)dnt) = [ Ve g)duts) = M)

In particular, Ny[u] satisfies the sub-mean property.

Now, it remains to show that Nj[u] is w.s.c. on €. In fact, Ni[u] is continuous on .
Indeed, fix xg € 2 and R > 0 such that § := dist (B(zo, R), W.supp p) > 0. We know that
x — Ng(z,y) is continuous on €2 for every y € supp u. Moreover, from (6.3), we deduce
that

1
V€ B(xg,R), Vyesupp p, piz,y)< - o—0/4t

(2t) 2 +76k
This implies that

1

+oo
V(xay) EB('%'OvR) X supp W, Nk($7y) </ T d.
0o (2t)

- et == C5 < 400.
5+7Ck

Consequently, by the continuity theorem under the integral sign, we conclude that Ny[u]
is continuous on B(zg, R). This finishes the proof of i).

ii) Assume that Ny [u](zo) < +oo for some zg € R?. We consider the sequence of functions
defined by

() = /B o Nele ).

From i), we see that ¢, is D-superharmonic on R? and ¢, (z) 1 Ni[u](z) as n — +oo.
Hence, from Proposition 3.3 the function N[u] is D-superharmonic on R?. O
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Proposition 6.7 Let u € MT(R?) satisfying the finiteness condition (6.13). Then N[y
satisfies the Dunkl-Poisson equation

—Ak (Nk[u]wk) = U mn D/(Rd). (615)

Proof: By Proposition 6.6, Ni[u] is D-superharmonic and then the function Nj[u]wy
defines a distribution on RY. Let ¢ € D(RY). Using the fact that Ny[u]wy is locally
integrable, we can apply Fubini’s theorem to obtain

(Ag (Ni[plwr), 0) = /

([ Niley)du(y)) Axple)op(@)d
R4 Rd

= [, ([ Mt w)duplaanords ) duty)
R4 Rd
- /Rd (A (Ni(, y)wr), @) du(y).

As Ni(z,y) = Ni(y,z), from (6.8) we obtain (Ak(Nk[,u]wk),@ = —fRd o(y)du(y), as
desired. 0

From the previous result, we can deduce the uniqueness principle which states that

Corollary 6.1 Let p,v € MT(RY). Assume that p and v satisfy (6.13) and Ni[u] =
Ni[v] a.e. on R Then pu=v.

In the following result, we will obtain all distributional solutions of the Dunkl-Poisson
equation (see [16] for the classical case):

Proposition 6.8 Let f € L} (R?) such that [z.(1+ [ly])*=@27|f(y)|dy < +oc0. Then
the function Ni[f] : x— [pa Ne(x,vy)f(y)dy is a solution of the Poisson equation:

—Ap(uwp) = f in D'(RY). (6.16)

Moreover, any solution u of (6.16) in L}C’loc(Rd) is of the form Ny[f] + h, where h is a
D-harmonic function on R?.
Proof: By decomposing f = fT — f~, where fT = max(f,0) and f~ = max(—f,0), we
may assume that f is nonnegative. Using Proposition 6.4, we deduce that Ni[f] is finite
a.e and Proposition 6.7 implies that it satisfies the Poisson equation (6.16).
Now, let v be a solution of (6.16). Then Ay(vwy — Ni[f]wr) = 0 in distributional sense.
Thus, by Weyl’s lemma v = Ni[f] + h a.e for some D-harmonic function h on R¢. That is
v = Ni[f]+hin Ly, (RY).

O

7 Decompositions of Dunkl subharmonic functions

7.1 Riesz decomposition theorems

One of the most fundamental results in the theory of classical subharmonic functions is
due to F. Riesz ([20]) and states that any subharmonic function can be locally written as
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the sum of a Newtonian potential plus a harmonic function (see for example [11]). In the
following result, we will obtain an analog of this result for D-subharmonic functions.

Theorem 7.1 Let Q C R? be open and W -invaraint, u € SHy(Q) and u = Apfuwy] be
the Ay-Riesz measure related to w. Then, for all W-invariant open set G with compact
closure G C ), there exists a unique D-harmonic function hg on G such that

VeeG, ulx)= —/GNk(x,y)du(y) + hag(x). (7.1)

Proof: Let G be a W-invariant open set with compact closure G C Q and set ug := G
the restriction of u to GG. Clearly, ug is a nonnegative Radon measure on 2 with compact
support contained in G. It is also the Aj-Riesz measure of the restriction of u to G.
Furthermore, ug can be considered as a compactly supported nonnegative Radon measure
on R?. Hence, by Proposition 6.6, the function Ni[ug] is D-superharmonic on R? (then
also on G) and by the relation (6.15), we obtain

Ay, (uwg + Ni[pglwr) =0 in D'(G).

That is uwy, + N [g|wk is a D-harmonic distribution on G. By Weyl’s lemma, there exists

a D-harmonic function hg on G such that u(z) = —Ni[pua](x) + ha(z), for almost every
x € G. Finally, using the uniqueness principle (Corollary 3.1) we obtain the equality
everywhere on G. O

Now, we will give a global version of the Riesz decomposition theorem:

Theorem 7.2 Let Q be a connected and W -invariant open subset of R, u € SH(Q) and
let p be the Ag-Riesz measure of w. Assume that Ni[u](x) < +oo for at least one x € Q.
Then there is a unique D-harmonic function h on  such that

VaeQ, wux)=—Ngul(z)+ h(x), (7.2)

where Ni[p](x) == [o Ni(x,y)du(y). In this case, we say that u has a global Riesz decom-
position on .

Proof: Let (O,,) be an open W-invariant exhaustion of 2 such that for every n (large

enough) the compact closure of O, is contained in O, 11 (we can take O,, :== Q1 N B(0,n),

n

with €, given by (2.10)) and let p, = pjo,. As above, the function Ni[u,] : z —
fOn Ni(x,y)du(y) is D-superhamonic on R? and also on €.

Consequently, using the monotone convergence theorem, our hypothesis and Proposition
3.3, we deduce that Ni[u| is D-superharmonic on 2 as being an increasing pointwise limit
of a sequence of D-superharmonic functions on 2. In particular, this implies that the
function Ny [u|wy defines a distribution on © (by Proposition 3.1).

Now, if we use (6.8) and we proceed as in the proof of Proposition 6.7, we obtain

—Ag (Ng[plwg) = p in D'(Q). (7.3)

Finally, we conclude the result by the same way, replacing G by 2, as in the end of the
proof of Theorem 7.1. O

29



Remark 7.1 In the relation (7.1) (resp. (7.2) on ), we see that hg > u on G (resp.
h > w). In this case, we say that hg (resp. h) is a D-harmonic majorant of u on G (resp.
on Q). When Q =R? and under the same assumptions of Theorem 7.2, we will prove in
the next section that h is the least D-harmonic majorant of u on R? in the sense that if
h1 is a D-harmonic function on Rd, then u < hy implies h < hq.

7.2 Bounded from above Dunkl subharmonic functions on R¢

In this subsection, we will describe the D-subharmonic functions which are bounded from
above on the whole space R% and we will characterize their related Riesz measures.

Theorem 7.3 Let u be a bounded from above D-subharmonic function on R% and 1 be
the associated Ay-Riesz measure. Then u has a global Riesz decomposition on R given by

u(z) = S;lﬂgd u(z) — Np[p](z), =R (7.4)

In the classical case, the proof of this theorem is based on the Nivanlinna theorems (see
[11], Theorem 3.20). Here, we will give another proof. We start by the following result:

Lemma 7.1 Let € MT(RY) and pu* -, € > 0, be the function defined on R® by (5.4).
Then, for every x € R%, we have

Ni (15 pe) ()wi(y)dy] () = /]Rd N(x,.) *1, pe(2)dp(z) (7.5)
and
lim N [(1 1 p2) (v)wi (y)dy] (2) = Nie[u] (). (7.6)
Note that the terms in (7.5) and (7.6) may be equal to +oo.

Proof: i) Let 2 € R? and ¢ > 0. We obtain (7.5) by using respectively (6.12), (5.4),
Fubini’s theorem and (A.8) as follows

Nl e enas) (@) = [ Nute( [ rpe(dntz) o)y
= / ( Nk(x,y)T_z%(y)wk(y)dy)du(Z)
Re \ JRd
= [ N ) e)an(z)
Rd

ii) As the function Ni(z,.) is D-superharmonic on R? by Theorem 4.1, N(z,.) is the
decreasing pointwise limit of the sequence (Ni(z,.) *1 <), as € — 0. Consequently, (7.6)
follows from (7.5) and from the monotone convergence theorem. O

Proof of Theorem 7.3: We shall prove first the result when u is of class C? on RY. In this
case, the relation (2.16) plays a key role.
Let a := sup,cga u(r). We can see by (2.14) that M%(u)(z) < a for every x € R? and
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every r > 0. Moreover, since u € SHy(R?), the function r — M (u)(x) is non decreasing
(by Proposition 4.2). Consequently, h(z) := lim, o M{(u)(x) exists and h(z) < a for
every x € RY.

On the other hand, as Agu > 0, by the monotone convergence theorem, we have

—+00

1
Mp(A tdt.
[+ 27 J, B(Agu)(z)

lim
r—+oo d + 27y

/0 "ML (A ()t di =

Now, using the relations (6.4), (2.4) and applying Fubini’s theorem, we can see that

1 Feo 1 [t

ML (A tdt =— ld=2y A h(t dy | dt
d+2v Jy B( ku>($) dr, Jo iy ku(y) i( ,w,y)wk(y) Yy

_ /R Nilay)Avu(y)wr(y)dy = Nilul(@).

where du(y) = Agu(y)wi(y)dy is the Ag-Riesz measure of u (see Example 5.1).
Hence, letting » — +o0 in the relation (2.16) with f = u, we deduce that

u(z) = h(z) = Ni[p](z).

In particular, for all 2 € R% Ny[u](z) < a — u(x) < +oo.

Using Theorem 7.2, we deduce that u has a global Riesz decomposition on R? given by
u = h— Ni[p] and the function A is D- harmonic on R?. Since h < a, by Liouville’s theorem
for bounded from above D-harmonic functions (see [8]), h is a constant. We denote again
by h this constant. Furthermore, since u is D-subharmonic, we have u(x) < Mg(u)(x) < h.
Then, by taking the supremum of u(z) over z € R? we get a < h. Finally, we obtain
h =a and u = a — Ng[u].

Let us now u be a D-subharmonic function on R% and let u. = u %5 . be the function
defined by (4.4). We know that u. € C>®°(R?%) N SHi(RY) and its Aj-Riesz measure is
given by du.(z) := p *k we(x)wg(x)dx (see the relation (5.4)). Moreover, as 7_,p. > 0
and using (A.7) (recalling that [pq - (y)wi(y)dy = 1), u. is bounded from above and we
get ae :=sup u.(x) < a:=supu(z).

Now, since u is the pointwise non-decreasing limit of the sequence (u.) (see Theorem 4.1),
the sequence of real numbers (a.) is also non-decreasing and a. > a. This proves that
ae. = a for all € > 0. By the first step, we conclude that

Vo eRY u(r) =a— Nilpel(x) with duc(y) =y oe(y)wi(y)dy.
Letting ¢ — 0 and using the relation (7.6), we deduce the desired result. O

Corollary 7.1 1. For every xy € RY, the zero function is the greatest D-harmonic
minorant on R? of the D-superharmonic function Ny (zo,.).

2. Let p € M*(R?) such that Ny[u](x) < +oo for at least one x. Then the zero function
is the greatest D-harmonic minorant on R? of the D-superharmonic function Ni[u).
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3. A function u (not identically —oc) defined on R? is of the form u = — Ny [u]+h where
p € MTRY) and h is a D-harmonic function on R if and only if u € SHy(R?)
and u has a D-harmonic majorant on R%. In this case, h is the least D-harmonic
majorant of u on R?.

Proof: By taking p = d,,, the statement 1) is a particular case of 2).

2) Let h be a D-harmonic function on R? such that h < Ni[u]. Then the function
s = h — Ni[u] satisfies: i) s <0 on R? i) s is in SHy(R?Y) and iii) p is the Aj-Riesz
measure of s (by (6.15)). Therefore, by Theorem 7.3, we have

s =sup s — Ni[u] = h — Ni[pl.
R4

Thus, h = supga s and by i) we must have A < 0. This proves 2).

3) Suppose that u = —Ny[u] + h. Clearly u € SH;(R?) and u < h. Now, let h; be a D-
harmonic function on RY such that u = —Nj,[u]+h < hy. This implies that h—hy < Ng[u].
Thus, by the statement 2), we obtain h < hj. This proves that h is the least D-harmonic
majorant of u on RY.

Conversely, assume that u € SHx(RY) and it has a D-harmonic majorant h; on R?. Then
the function u — hy is nonpositive and D-subharmonic on R?. Therefore, by Theorem 7.3,

VaoeRY u(z)—hi(z) =a— Npy(z)

for some constant a < 0. Thus, for h = a + hy, u = h — Ng[u] is the global Riesz
decomposition of u and clearly we have h < hy. O

Now, we will give a necessary and sufficient condition for u € M¥*(R?) to be the
Ag-Riesz measure of a bounded from above D-subharmonic function on R<.

Proposition 7.1 Let € MT(RY). Then u is the Ay-Riesz measure of a bounded from
above D-subharmonic function on R if and only if there exists zo € R such that

+o0
/ 12y (¢, xo)dt < 400 with  ny(t, z0) == / hi(t, zo,y)dp(y). (7.7)
1 R4

Remark 7.2 In classical case (k=0), we have ny(t,zo) = u[B(xo,t)] and we can always
assume xog = 0 by replacing the subharmonic function u of A-Riesz measure p by its
translate u(xo +.) ([11], Theorem 3.20). But, if k # 0 this is not possible for at least two
reasons. Firstly, the Dunkl translations act only on some functional spaces and not on sets.
Secondly, they are not always positive operators. In fact, even if u € C°(R?) N SHy(R?)
(i.e. Agu > 0), we don’t have necessarily T,[Agu] > 0 and thus T,u is not necessarily in
SHj(RY).

Proof of Proposition 7.1: Let u € SHj(R?) bounded from above with Aj-Riesz measure .
By Theorem 7.3, u is of the form u = supgas u— Ny[u]. This proves that — Ny [u] € SHi(RY).
Using (6.4) and Fubini’s theorem, we obtain for almost every = € R?

o2y (1, ) dt < [y 02 g (1, )t = dy Nilpi () < +oo.
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Conversely, let € M*(R?) satisfying (7.7) for some zg € R?. We will partially follow
the proof of Theorem 3.20 in [11]. Let u(z) = —Ng[p](z). Then, by (6.15), it is enough
to prove that u € SHy,(R?). We can write

we) == [ Nt = [ N () = () + )

From Proposition 6.6, the function u; € S?—[k(]Rd). For n € N with n > 1, we consider

Ni(z,y)du(y).

vp(x) =

/BW(:EO,n)\BW (z0,1)

Again by Proposition 6.6, the function v, € SH;(R?). Moreover, we see that us is the
pointwise decreasing limit of v, on R? as n — +o00. By (6.4) and Fubini’s theorem, we
have

(oo =~ [ 17 [ ha(t, 0, y)dp(y)dt
dr Jo BW (20,n)\ B (20,1)

1 o0
_ _/ tldQ“f/ hi(t, o, y)du(y)dt
di J1 BW (20,n)\BW (z0,1)

1 o0
> _dk‘/ tl_d_2ﬂ/nk(tax0)dt7
1

where in the second equality, the integral in ¢ variables has been decomposed on |0, 1[ and
]1, +oo[ and then we have used V ¢ < 1, supp h(t, zo,.) C BY (z0,t) € BV (0,1). Letting
n — 400 and using our hypothesis (7.7), we deduce that us(xg) > —oo. Consequently, by
Proposition 3.3, uy € SHy(R?). Thus, since u = uy + uz, u € SHi(R?). O

A  Annex: The Dunkl transform and Dunkl’s translation
operators

e The Dunkl transform of a function f € L'(R%, my) is defined by
Fiu(H)N) = [ f@)Ex(—i\ z)wy(z)dz, A€ R?, (A.1)
Rd

where Ej(z,y) := Vi(e®))(y), x,y € R% is the Dunkl kernel which is analytically
extendable to C? x C? and satisfies the following properties: for all z € R?, y € C%, all
A € C and all multi-indices v € N? (see [4], [6], [14] and [23])

Ey(z,y) = Ex(y, z), Ex(w,\y) = Ex(Az,y), 0] Er(x,y)| < | gé%emgx’”- (A.2)

It is well known (see [5] and [14]) that the Dunkl transform F, is an isomorphism of S(R9)
(the Schwartz space) onto itself and its inverse is given by

F (@) =¢;? /Rd FONEg(iz, Nwip(AN)dA, = e RY, (A.3)
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where ¢y, is the constant given by (1.9). Moreover, the following Plancherel theorem holds:
The transformation clzl]-"k extends uniquely to an isometric isomorphism of L?(R%, my,)
and we have [lcg' () ) = 1712t my)s S/ € L(RY m).

e The Dunkl translation operators 7.,z € R%, are defined on C*°(R?) by (see [27])

VueRl nf) = [ VioT.o V(s (A.4)

where T}, is the classical translation operator given by T, f(y) = f(z +y). If f € S(R?),
7.f € S(R?) and using the Dunkl transform for all y € R? we have (see [27]):

T f(y) = Fy [Exliz, ) Fr(H)](y) = ¢, y Fi(f)N) By (iz, \) Ex(iy, N)wg (A)dA.

The operators 7,z € R?, satisfy the following properties:
1) For all x € R% the operator 7, is continuous from C>(R%) into itself.

2) For all f € C*(R?) and all z,y € R, we have
f(0) = f(x), 7f(y) =7f(2). (A.5)
3) The Dunkl-Laplace operator Ay commutes with the Dunkl translations i.e
o(Akf) = Ai(ref), wERL feCTRY). (A-6)
4) For any f € D(R?), we have
/R [ Tef (W)wi(y)dy = /R LS Wer(y)dy (A7)
5) Let f € S(RY) be radial. Then we have (see [8], Lemme 3.1)

T2 f(y) = 7y [(2) (A.8)

6) Let f € C*(R%) and g € D(R?). Then, we have (see [8], Proposition 2.1):

VaeR, [ nf@aatid = [ O owemd.  (A)
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