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Abstract

Estimating the pose of a camera from a scene model is a challenging problem when
the camera is in a position not covered by the views used to build the model, because
feature matching is dif cult. Several viewpoint simulation techniques have been recently
proposed in this context. They generally come with a high computational cost, are lim-
ited to speci ¢ scenes such as urban environments or object-centred scenes, or need an
initial pose guess. This paper presents a viewpoint simulation method well suited to most
scenes and query views. Two major problems are addressed: the positioning of the vir-
tual viewpoints with respect to the scene, and the synthesis of geometrically consistent
patches. Experiments show that patch synthesis dramatically improves the accuracy of
the pose in case of dif cult registration, with a limited computational cost.

1 Introduction

Camera pose estimation from a single query view and an unstructured scene model,
ically made of a 3D point cloud endowed with local photometric descriptors, is encou
tered in many computer vision applications. These applications include, for instance, &
mented reality applications [4], vision-based robot positioning [6] and aerial image ge
registration [25]. In many applications, the scene model is built from a collection of imag
(called hereconstruction viewswith a structure-from-motion (SfM) algorithm. The local
descriptors of the 3D points are extracted from the construction views as, e.g., SIFT
tures [16]. Afterward, these descriptors are used to match interest points of the query \
and 3D points, which makes it possible to solve the perspective-n-point (PnP) problem
and estimate the pose. This approach presents a major issue when the construction vie'
not cover the whole set of potential viewpoints. Indeed, a query view taken from an unc
ered viewpoint is likely to give too few reliable point correspondences because of the limi
invariance of the photometric descriptors to viewpoint changes [19]. A good example
such a situation is described by the authors of [25] who aim at registering a view from
aerial drone to a model built from ground-level construction views.

To make the matching step easier, several recent works propose to generate synt
views from the construction views through some geometric transformations corresponc

C 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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to uncovered viewpoints, for instance [17, 20] in the context of image matching and [23] ir
the context of pose estimation. The existing approaches are generally dedicated to spec
scene types or do not scale up well. The objective of the present work is to propose a vie
synthesis method that is tractable for most scenes and makes pose estimation possible
any query view in the scene. The following section discusses the related literature.

1.1 View synthesis for pose estimation

Two views of a plane of equation’ X + d = 0 in the 3D scene, taken from cameras with
projection matrice® = Ki[RijT] (i 2 f 1;2g, wherekK; is the intrinsic parameter matrix and
[RjTi]is the camera pose) can be mapped by a homography of equation

H=KyR Tn'=d)K,?! 1)

whereR= R;Rl andT = T, RT, see [8].

It is therefore possible to generate, for any virtual canfera synthetic view of a locally
planar part of the 3D scene, from a construction view corresponding to the real daimera
Photometric descriptors can be extracted from such a synthetic view to enrich the scel
model and make it easier to match a query view. An open question is, however, to sele
appropriate virtual positions with respect to the observed scene.

The authors of [14, 15, 30] generate fronto-parallel views of planar structures, whict
comes down to choosing a single virtual position in front of the considered scene plane
Robustness to viewpoint changes is improved but still limited in case of slanted views of th
plane. In [28], pose estimation in a urban environment is addressed. The virtual positions |
on a dense grid at street level and a rough 3D planar model of the scene is used. Synthe
views, generated in [28] by ray-tracing, are matched to the query view, which gives reliabl
place recognition. Synthetic views from street level are also used in [11] to improve imag
registration to urban models. The preceding papers focuses on images taken by a pedest
in a urban environments, which justi es the eye-level view assumption. The authors of [25
address the ground-to-aerial registration problem where this simplifying assumption does n
hold. Nevertheless, they assume that an estimation of the aerial position is available fro
GPS tags. This makes it possible to generate a synthetic view from a dense reconstructior
the scene corresponding to the GPS position, which can be accurately registered to the qu
view. A similar idea is exploited in [6] in the context of vision-based robot localization where
it is assumed that an estimation of the pose is available to drive view synthesis. The sar
assumption is used in some simultaneous localization and mapping (SLAM) applications 1
generate synthetic patches, after [18], or in tracking-by-synthesis [27].

These works require either a dense scene model (or a multiplanar textured reconstructi
of the scene) [11, 15, 28, 30], or an initial guess for the pose [6, 25, 27]. In [23], no initial
guess is available and the scene model is an unstructured 3D point cloud. It is assume
however, that virtual viewpoints are regularly distributed on a sphere centered on the mode
This restricts the applicability to relatively small object-centered scenes. In addition, al
viewpoints have to be simulated to produce synthetic patches for all 3D points, making th
algorithm quite demanding in terms of computing time.

As a conclusion of this short survey, and to the best of our knowledge, it seems the
existing view synthesis approaches generally need some prior information on the scene
do not simply scale up to larger scenes.

In this paper, we consider pose estimation from a query view, based on a SfM model c
the scene, without initial pose guess. For instance, such a problem has to be solved wh
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initializing a tracking process. Each 3D point of the model is endowed with the collecti
of the corresponding SIFT descriptors matched in the SfM step. SIFT keypoints from:
query view are matched to the model points by nearest-neighbour matching followed
PnP-RANSAC [7]. Our goal is to add SIFT descriptors coming from synthesized patche:
order to facilitate keypoint matching when the query view is not covered by the construct
views. The additional SIFT descriptors are extracted around the reprojected scene poin
the synthesized patches. Two problems have to be solved in a computationally ef cient w
the positioning of the virtual cameras with respect to the scene in order to cover all poter
viewpoints, and the simulation of realistic views from these virtual cameras.

1.2 Contributions

Our contributions are twofold. In Section 2, we propose a method to position the virtt
viewpoints with respect to a segmentation of the scene in planar parts. An adapted mee
for viewpoint changes, introduced in [20], ensures that the existing viewpoints are comple
with relatively few virtual viewpoints. This positioning is generic and does not require al
limiting assumption on the sought pose. In Section 3, we propose an ef cient scheme
viewpoint simulation. In [11, 25, 28], an image is generated for any virtual viewpoint than
to the dense scene model, and subsequently matched to the query view. In [6, 23], |
patches are generated for any interest point thanks to a local planarity assumption. The
approach fails in cases where some parts of the scene are not correctly densi ed, anc
latter is computationally demanding without any pose guess. We propose an intermec
approach consisting in synthesizing semi-local planar patches of the scene and enrichin
scene model with descriptors from these synthesized patches, using a visibility constr:
Section 4 shows that this approach is sound and tractable for scenes ranging from s
objects to complete buildings.

2 Virtual viewpoint positioning

We position virtual viewpoints in the scene, in order to simulate, in a subsequent stage,
appearance of the scene viewed from these viewpoints. The proposed method is based «
assumption that the scene is piecewise planar, which is not restrictive in most human-n
environments. The following subsections discuss how to sample virtual viewpoints arour
planar patch, and how to segment a point model into a set of planar patches.

2.1 View direction sampling

Considering a planar patch, we want any potential view of the patch to be close eno
either to one of the simulated viewpoints or to one of the construction views, in order tl
SIFT features extracted from them can be matched. With af ne cameras, the transition
de ned in [20], is a good indication of how easy it is to match SIFT features. Although
has been shown in [23] that homographic synthesis yields better results than af ne synthe
the af ne model, as a rst order approximation, is suf cient to position synthetic viewpoints
If Ais the af ne map between two imagésandl, of a planar scene (that i, = Aly), then

A has a unique decomposition:

A= RY)TRE)= 1 S00) - STV

t 0 cogf) sin(f )
sinly) coqy) 0 1

sinf)  cogf) 2)
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3|

1) (2) 3 4)
Figure 1: In (1), parameterization of an af ne camera pointing to a planar patds: a
scale factory the rotation around the optical axig,the latitude and the longitude. In
(2), distribution of the sampled virtual viewpoints on a half-sphere lying on a planar patch
Map of the transition Blt§ as de ned in Equation 2 to the closest viewpoint (blue is 0 and
red is greater than the 2) for a planar patch of thpot dataset: with respect to the real
viewpoints only (3) and with respect to the additional virtual viewpoints (4). The centres of
the blue patches correspond to the viewpoint positions. We can see in (4) that most potent
viewpoints are within a limited tilt of a real or synthetic viewpoint, making it possible to
match SIFT features.

» b 4
| Y A J
\;b » b 7

Figure 2: Virtual viewpoint positioning relative to some of the segmented patches (gree
points). In the left scene, only two rings of virtual viewpoints (in green) are added as the
other potential viewpoints would have been close to existing viewpoints (in red).

whereR(y ) andR(f ) are rotation matrices, artd 1 is the transition tilt between the two
views. If one of the view is fronto-parallel, the parameters correspond to the notations c
Figure 1 (1), witht = 1=coqq). Parametet expresses how much the view is attened
out. Assuming SIFT features invariant to similarities, Equation (2) shows that, att xed
andf , anyl andy give the same features. This motivates to position the virtual viewpoints
around the planar patch similarly to [20], that is(gf ) such that = 2™2 (m 2 f 1;2; 3g)
andf = n72 =t (with n such thatf spang[0;360]). The resulting sampling can be seen
in Figure 1 (2). It should be noted that only af ne cameras are considered in ASIFT [20].
This justi es that ASIFT limitsf to [0; 180 ] (for symmetry reasons) and does not consider
the distance to the scene. Since we consider pinhole cameras, we have to set the distanc
the virtual camera to the planar patch. We use the average distance of the real cameras
limit interpolation artefacts during synthesis. Since we are not interested in adding virtue
viewpoints if a real viewpoint is already available, in order to limit redundant information,
virtu§l Vviewpoints are added only if the transition tilt to one of the real viewpoints is larger
than 2. This s illustrated in Figure 1 (3-4).

The following section explains how to segment the scene into planar patches, each one
them being associated with virtual viewpoints through the preceding process, as in Figure

2.2 Planar segmentation

Segmentation is not an easy task because the SfM point cloud is noisy and non-uniform
sampled. We rst estimate the normals at each point, via PCA on the neighbouring point
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Figure 3: Three segmentation examples on an object-centred scene (left and middle) &
building (right). The datasets are theok, pot andCAB datasets that can be seen in Figure 5
Each planar patch is in a different colour. We can see that the curved surface of the p
correctly approximated by a set of planar patches.

as in [10]. A simple iterative RANSAC scheme is used: RANSAC (with a tting criterior
based on both the distance between the points and the plane and the consistency c
normals at each point, described in [24]) gives points lying on a plane, which are iterativ
removed until 90% of the model points are associated with a plane. Note that the tti
criterion eliminates points around the edges of the scene, the normal of these points b
not consistent [5]. This robusti es the estimationroih Equation (1).

Synthesizing the appearance of a patch far away from a virtual camera is likely to su
from image quantization. This typically happens when synthesizing the appearance of |:
planes such as building facades. We therefore segment further the planes into smaller s
points included in square cells oriented along the two principal directions of the plane,
of width equal to the average distance between a point and the cameras that reconstr
it, in order to ensure that the local scale change induced by a homography does not van
much across the synthesized patch. Note that these cells are not necessarily aligned wi
scene edges. The pieces of planes obtained by this segmentation arglealéegatches

Examples of segmentations are shown in Figure 3. Virtual viewpoints are positior
around the planar patches as in Figure 2. See also the yidogositioning .
tower_positioning andCAB_positioning available as supplementary materials.

3 Patch synthesis

This section describes the simulation process. The scene model is supposed to be segn
into planar patches, each one of them being associated with a set of virtual viewpoints.

3.1 Image transformation

For each virtual viewpoint, the aspect of each planar patch is simulated with the homogra
given by (1). SIFT descriptors are extracted from the simulated views and associated \
the corresponding 3D points. This in an intermediate approach between [11] where syntt
views come from fullimages, and [23] (additional experiments available in [22]) where ma
small overlapping patches are produced.

The remaining problem is to de ne from which construction view the synthetic patch
should be simulated. As a patch may not have been fully observed in a single construc
view, we may have to use several construction views. The views are selected using a gr
approach, by iteratively selecting the construction viewpoints in which the largest numbe
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Figure 4: Examples of real viewpoint selection to be used in patch synthesis.

model points belonging to the considered planar patch are visible. The stopping criterion
that 90% of the patch points are visible from at least one of the viewpoints. A point of the
model is considered visible in a construction view if there is a descriptor extracted from thi
view associated with this point in the SfM model. In all our experiments we needed at mos
ve views to cover 90% of the points on a planar patch.

Figure 4 shows the set of points in a planar patch and the associated construction view
the same colour. SIFT descriptors extracted from simulated views based on the constructi
view are associated with these 3D points.

3.2 Visibility from virtual viewpoints

The preceding procedure simulates the aspect of planar shapes from virtual viewpoints, k
it does not take into account potential occlusions from other parts of the scene. This mea
that it could simulate the appearance of some parts of a patch from a position where the
are actually not visible. The resulting descriptors would not only unnecessarily increase tt
complexity of the model, but would also increase the outlier rate in the matching stage.

We therefore impose an additional visibility constraint. The authors of [13] propose ar
ef cient method that only relies on 3D point location (no meshing is needed) and perform:
well on point clouds with a non uniform density. The set of model points visible from
a pointO is computed as follows. The model points are transformed using the so-calle
ipping transformation given by:

pO

= p+ 2R jj pij) p=ij pij 3
wherep is a vector fromO to a point of the model anR is a smoothing parameter. Lietbe

the set of the transformed points. The set of points visible f@dbelongs to the preimage

of the convex hull oP%[ O. It is shown in [13] that the number of visible points increases
with R. This method was originally designed for point models with noise levels much lower
than in an SfM reconstruction, which imposes us toRsearefully. To choos®, we isolate
each planar patch and run visibility tests from a fronto-parallel viewpoint for incre&sing
Noise-free points lying on a plane should all be visible; this is not the case here. We choo:
R as the smallest value such that at least 90% of the points are visible.

It is worth noting that we can tolerate a few mislabelling as pose estimation is performe:
with RANSAC. The gain from this step is contextual, depending on the presence of occlu
sions in the scene. It may, however, be signi cant. For instance, ipdh@ataset, the size of
the model goes from 16000 descriptors to 13800 when using this visibility constrain, see
Figure 5. All of these discarded descriptors would incorporate spurious data in the model.
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Figure 5: Sample images of ve datasets and the reconstructed 3D point clouds. From
to right: poster (17 images)book (53 images)pot (21 images)tower (21 images) andAB
(300 images).

4 Experimental results

The experiments show that a model enriched with the proposed synthesis method leax
more accurate poses, and even gives accurate poses when pose estimation simply fails
out synthesis. In addition the time needed for pose computation is reduced. The exf
mental setup consists in estimating the pose of a query view independent from the cons
tion views, the model being built with VisualSfM [29]. The query view is typically chosel
far away from the construction views. Poses are computed from the model using appr
mate nearest neighbour matching of the descriptors [21], followed by RANSAC ltering ¢
the query/model correspondences, the pose being eventually estimated by Direct PnF
RANSAC stopping criterion is based on an online estimation of the inlier ratio as propos
in[8],

Datasets go from a small object to a full building. The size of the scenes is limited
a few objects or buildings, which is a realistic assumption even in city-scale environme
if a rough localization is available (through GPS for instandegster is a simple planar
scene.Pot andbook are small object-centred scenes from [Bwer is a relatively simple
outdoor scene from [2] that essentially consists in two planar fac@désis a larger outdoor
scene from [1]. This model is signi cantly larger (4800 points and 32800 descriptors,
reconstructed from 300 images). On this latter dataset, the query views come from Go
Street View, the acquisition conditions (camera, weather, viewpoint) are thus signi can
different from the one of the construction views. In this experiment, the intrinsic came
parameters are estimated using the method described in [26]. Figure 5 displays sal
images of the datasets (approximately 1,000 pixels wide) and the associated models.

As an illustration, Figure 6 shows 100 runs of the pose estimation for the representa
pot andtower datasets. We can see that pose estimation is signi cantly improved by pat
synthesis. Table 1 gives computing time (obtained on an Intel i7 quad core 2.7 GHz with
Gb memory). In all these experiments, the computing time for adding descriptors throt
patch synthesis was smaller than the reconstruction time, in spite that our implementatio
patch synthesis is a Matlab code, while SfM is a compiled software. Note that both steps
be done of ine, when building the scene model.

While the enriched models are signi cantly larger than the initial ones (for instance,
grows from 32000 descriptors to 13000 descriptors ipot), the pose estimation is not pro-
portionaly longer. Table 1 shows that in our experiments the computation times for match
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Figure 6: Pose computations on thet andtower datasets. From left to right: the con-
struction viewpoints, the query viewpoint, 100 tentative pose estimations without syntheti
patches, 100 tentative pose estimations with synthetic patches.

are only a few seconds longer when using an enriched model, with a Matlab implementatio
The reason is that the SIFT descriptors coming from synthesized patches make the inlier |
tio to increase, and consequently the number of RANSAC iterations to decrease. In all ot
experiments, the tentative correspondences obtained using the enriched model has alwa
higher inlier ratio than the ones from the initial model, this difference ranging from a 7%
increase irCAB to a 37% increase iposter.

We evaluate the accuracy of the estimated poses visually in Figure 6, and numerically |
Table 2. To measure pose accuracy we rely on the reprojection error of 3D scene edgesin
query view, which can be seen in Figure 7. These edges have been obtained by manually
tracting them in the construction views and reconstructing them using multi-view stereo. Th
accuracy gain ranges from slight to considerable improvements, depending on the relati
poses of the query and construction views. In Figure 7, we can see that the reprojected ed
are almost superposed when using patch synthesis, which shows the improved accuracy
the pose. In case of strong viewpoint changes between the query and construction vie
(as inposter andtower), pose estimation simply fails without patch synthesis. Additional
information is available in the supplementary Véewpoint_changes.pdf

5 Conclusion

In this paper we proposed a method to add descriptors to a SfM model using patch synthes
in order to facilitate pose estimation from viewpoints not covered by construction views
This method is not speci ¢ to the scene and is still tractable for scenes as large as building
Compared to an exhaustive approach as ASIFT [20], the computational burden is limite
thanks to two ingredients. First, we add carefully selected virtual viewpoints with respect t
the geometry of the scene. Second, we only transform parts of images that can yield use
SIFT descriptors. Experiments show that the proposed algorithms facilitate point matchin
by reducing the outlier rate, and dramatically increase pose accuracy.
A continuation to this proof-of-concept study could be within tracking initialization in
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poster book pot tower CAB
SfM time 6min 11min | 15min | 5min 18min
synthesis time| 3min 6min 10min | 4min 9min
SfM model

# of descriptors| 47643 | 225207 | 32568 | 7774 | 324360
matching time | 2.53s | 3.15s | 2.65s | 1.48s 7.55s
pose time 35.2 15.64s | 10.17s| 35.16s| 8.29s
enriched model
# of descriptors| 664848 | 887216 134484 | 85949 | 1523298
matching time | 5.51s | 4.60s | 4.38s | 3.72s | 13.76s
pose time 0.06s | 0.80s | 0.44s | 0.38s 1.30s

Table 1: Computing times for synthesis and for the different steps of pose estimation. Mat
ing times are slightly higher when using an enriched model but pose estimation is subs
tially faster because of the higher inlier ratio in the tentative correspondences.

poster book pot tower CAB
SfM model 1175 1.72| 3.47 2.31| 19.79 26.70| 32.92 50.27 | 26.94 17.23
enriched model 1.21 0.97 | 2.32 1.26 | 4.39 4.50 6.72 3.27 | 15.53 13.72

Table 2: Average pixel reprojection error of 3D scene edges in the query view, plus/mir
the standard deviation. The large errorsgoster andtower correspond to situation where
the RANSAC/PnP step did not actually converge to a reasonable pose, as shown in Figu

augmented reality applications. It would also be interesting to use the information from
available views when synthesizing patches, using, e.g., super-resolution. We also inter
reduce the enriched model size, using a more compact representation in the same spi
the visual vocabularies proposed in [11] or [12].
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