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Variational principles are developed for the dynamics of a fluid under initial stress in an arbitrary
potential field and disturbed from equilibrium. They are formulated in terms of the fluid displace-
ment. Two distinct principles are obtained which are mathematically equivalent but differ funda-
mentally from the physical viewpoint. The difference results from expressing the potential energy
in terms of buoyancy forces or strain energy. A very general stability criterion is obtained. An im-
portant new feature is the inclusion of surface integrals in the potential energy. The simplified princi-
ple for the case of a liquid is interpreted by means of an analog model. Lagrangian equations and
methods of normal coordinates for the evaluation of transient propagation are applicable along
with general theorems on the equivalence of group velocity and energy flux. As an illustration the

case of a constant gravity field is discussed.

I. INTRODUCTION

N a previous paper fluid displacement equations
were derived for the dynamics of a fluid per-

turbed from equilibrium.' The body force acting
on the fluid is represented by a completely general
potential field.

The existence of a variational principle for these
equations is inferred from the variational principle
derived by the writer for the theory of elasticity
under initial stress.® The derivation from this more
general viewpoint is the object of the paper imme-
diately following this one.

In the present paper variational principles are
derived directly from the dynamical equations
governing the fluid displacements. It was found'
that these equations are of two fundamentally dif-
ferent types which we have called the modified and
the unmodified equations. Correspondingly there
are two different types of variational principles
which we refer to as the modified and the unmodi-
fied principle. ,

The modified principle is derived in Sec. II. The
potential energy is expressed in terms of the work
done against the bouyancy forces. It is the sum of a
volume integral extended to the fluid and a surface
integral at the free surface. A condition of static
stability is readily derived from this principle. It
yields a generalization of the well-known stability
criterion of a gas in a constant gravity field. A
surface stability condition is found to be related to
the “Taylor instability.” A simplified principle for
a liquid is also derived. It is found to be expressed

1 M. A. Biot, Phys. Fluids 6, 621 (1963). Multiple forms
of the equations and the corresponding variational principles
were originally derived by the writer in an Air Force Office
of Scientific Research Report “Generalized Theory of In-
ternal Gravity Waves’’ (1962).

2 M. A. Biot, Phil. Mag. 27, 468, 1939.

in terms of the potential energy of the analog model
which was discussed in the previous paper.

The unmodified principle is derived in Sec. III.
In this principle the potential energy is expressed
in terms of the product of the stress by the volume
change of the fluid. Because of the state of initial
stress we must include the second-order terms in
the volume change. The form of this variational

- principle is essentially the same as derived from the

theory of elasticity in terms of the strain energy.
An interesting feature of this principle is that in
addition to a volume integral extended to the fluid
the potential energy must include a surface integral
extended to the rigid boundary of the fluid and
depending essentially on the curvature of this
boundary.

That the modified and unmodified principles are
equivalent is demonstrated in Sec. IV.

The total potential energy may be expressed in
alternate forms corresponding to these two principles.
In any case, the general variational formulation leads
to Hamilton’s principle and opens the way to the
use of generalized coordinates and Lagrangian equa-
tions as in the classical problem of oscillations of a
conservative system with potential and kinetic
energies.

As a consequence the method of normal co-
ordinates’ developed for the treatment of propaga-
tion of pulses and transients becomes readily ap-
plicable to acoustic-gravity waves.

It is also pointed out as another consequence of
the same results that in waveguide propagation there
is equivalence between group velocity and energy
flux as already shown by the writer for the more
general case of an elastic solid under initial stress.*

3 M. A. Biot and I. Tolstoy, J. Acoust. Soc. Am. 29, 381

(1957).
¢ M. A. Biot, Phys. Rev. 105, 1129 (1957).
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ACOUSTIC-GRAVITY WAVES

The variational principles for the particular case
of a constant gravity field are discussed in Sec. 5.

II. MODIFIED VARIATIONAL PRINCIPLE

A “modified form” of the dynamical equations for
a fluid under initial stress were derived as'
ds’

o, PXe T

(i}
apt = Pa.', (21)
with

s’ = s+ pu;X;, (2.2)

where p is the initial density distribution; X; =
—oU/dx; is the body force field derived from a
potential U; u; is the fluid displacement; s is the
incremental stress of a fluid particle; a; is the ac-
celeration of a fluid particle; and ¢ = du,/dz; is
the volume dilatation. It is easy to obtain directly
a variational principle for these equations. The in-
variant to be considered is

=f/:[T<%se+peu,-X,~+§ ,-(;9:1_

where the integral is extended to a volume 7 of the
fluid. In accordance with the definition of s,' we
must insert s = Ae.

That expression (2.3) leads to the correct vari-
ational principle may be guessed from inspection of
the integrand. We notice that it contains a term
Ixe® representing the elastic energy while the re-
maining terms represent the work done by the
buoyancy forces.

This is readily verified by evaluating the variation
of expression (2.3) due to virtual displacements éu..
In this evaluation we take into account the following
important property:

Lyx, 2 ) _ 1( 3
26(X oz, M) = g\ X g,
Because the fluid is initially in equilibrium in a body
force field derived from a potential we may write'
X:,' ap/axl = X,; ap/ax,. (2.5)

With this result and after integration by parts the
variation of ‘W, becomes

: ,-) dr, (2.3)

-+ X; )u du;. (2.4

w, = [[ 6+ uXn, su,da
A

- (- -

The surface integral extends to the boundary A of
the volume 7, and n; denotes the components of
the outward unit vector normal to the boundary.

dp )
5 ax‘ 6u,' dT. (2.6)
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We recognize the left-hand side of Eqs. (2.1) to be
the same as the integrand in the volume integral
of expression (2.6). As a consequence if the dynamical
equations (2.1) are verified throughout the volume 7,
then the following variational equation is also
verified.

5W7 + fff pa; 6“, dT

= [[ 6+ puXon b aa. @1
A

This is a variational principle which must be verified
for virtual displacements u, arbitrary in the volume
and at the boundary. Because it is a direct conse-
quence of Eqgs. (2.1), we shall refer to it as the
modifled variational principle. The value of W, may
be written in a simpler form which brings out more
clearly its physical significance. The vectors X;
and dp/dz; are perpendicular to the equipotential
surfaces. Their algebraic projections on this normal
direction are denoted by X and 8p/dn. The normal
component of u; is denoted by u,. With these defi-
nitions we write expression (2.3) as

w, = [[] (%m? + peuX + %x%gﬁ) dr.

In this form the physical significance of the terms
in the integrand is self evident.

(2.8)

Potential Energy of the Free Surface

The variational principle (2.7) may be given a
simpler form by transforming the surface integral
on the right-hand side. We show that by introducing
a constraint for the displacement at the solid bound-
ary it reduces to a surface integral over the free
surface which may then be incorporated in the total
potential energy of the system.

We shall assume that on a solid boundary the
displacements satisfy the following constraint:

nu; = 0, n; du; = 0. 2.9

These equations express the condition that the
displacement u; and its variation éu; are tangent
to the boundary surface at the initial point. This is
because n; is the normal direction of the boundary
at the point z; and not at the displaced point
£ = x; + u,. It is important to note this exact
meaning since for a curved surface it violates the
actual physical boundary condition with a second-
order discrepancy. Of course, conditions (2.9) are
also verified at boundaries when the displacement is
required to vanish. We denote by B the solid bound-
ary where conditions (2.9) are imposed and denote
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by F the free boundary where both the initial stress
S and the incremental stress s must vanish, i.e.,

S=s=0. (2.10)

Because of conditions (2.9) and (2.10), the surface
integral in the variational principle (2.7) becomes

f fA (s + pu, X,)m; du; dA

= ff ou; X m; du; dA. (2.11)
F

The domain of integration in this expression extends
only to the free surface F. A further simplification
arises from the condition of initial equilibrium of
the fluid which implies that the free surface is an
equipotential surface. Introducing X, the normal
component of the body force, and u,, the normal
component of the surface displacement into Eq.
(2.11) we obtain

f f (6 + pu,X e dus dA = —6W,,  (2.12)

with

we = =3 [[ oXelda. 2.13)
F

Note that the value of X is positive along the out-
ward normal.

By inserting expression (2.12) into the variational
principle (2.7) it becomes

oW +wo) + [[[ o udr =0 @19

The total potential energy ® in this case is repre-
sented as the sum of two terms

® =W, + Ws. (2.15)

One term W, corresponds to the potential energy
stored in the volume r. The other term “Ws is con-
tributed only by the deformation of the free surface.

Stability

Static stability requires that the potential energy
(2.15) be positive definite. Hence W, and W, must
be also positive definite. According to expression
(2.13) Wy will be positive definite if

X<0 (2.16)

at the free surface. This inequality means that the
body force must be directed inward at the free
surface.

Referring to the value (2.8) for W, we note that

BIOT

the integrand is a quadratie form in the two variables
¢ and u,. It will be positive definite if

AX(9p/3n) — (pX)* > 0. 2.17)

If we choose the normal to be oriented in the di-
rection of the body force (X > 0) condition (2.17)
becomes

(8/8n)(log p) > pX/N. (2.18)

This criterion generalizes to the case of an arbitrary
body force potential the well-known stability
condition for a gas in a constant gravity field.

Analog Model and the Variational Principle for
Internal Gravity Waves in a Liquid

For an incompressible fluid we put e = 0 in the
value (2.8) of W,. It is simplified to

_L([ g,
W, = fo[Xanundr.

This result could also be derived immediately by
considering the analog model introduced and dis-
cussion in the previous paper.! The value (2.19) of
W, is obviously the potential energy stored in the
elastic restoring foreces of the analog model inside
the fluid. Similarly W is the potential energy of the
surface restoring forces of the analog, model. The
stability of the equilibrium clearly depends on the
sign of X dp/on in the fluid. If the body force and
the density gradient are oriented everywhere in
the same direction, W, is positive definite. The same
is true for W5 if the body force acts inward at the
free surface. In this case the fluid is in stable equilib-
rium. It is possible to find examples where this con-
dition is not fulfilled if the body force is produced
by an acceleration field. In particular this is seen
to be the explanation of the so-called “Taylor
instability.”

If the fluid is composed of a number of homo-
geneous layers with density discontinuities the po-
tential energy is replaced by a sum of surface in-
tegrals. The normal gradient dp/dn is replaced by
the density discontinuity and the surface integral
represents the potential energy of the restoring forces
applied to the discontinuity surfaces in the analog
model.

(2.19)

III. UNMODIFIED VARIATIONAL PRINCIPLE

Another form of dynamical equations for a fluid
under initial stress derived in the previous paper
is written

ds a8  ou,; 98 FU
___+e._________ -
ox;

U; = pa,;.
ox, 9z, 0z, ' ow oz, 7 P

3.1)
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They were referred to as the unmodified equations.
The initial stress field in the fluid is denoted by S.
A variational principle for these equations is derived
as follows. We put

= f[ e + ® + pAUY dr,  (3.2)
with
ou; ou;
®R = —%S(e2 ~ ——’——1)
ox,; dz; (3.3)
1 U
AU = 2 9z; oz, il

It is seen that if Eqs. (3.1) are verified the following
variational relation is also valid:

5(?,—{—[[] pa; du; dr
=ffA|:(s+Se)n,-—SgZ::n

The surface A denotes the boundary of the volume
of fluid and 7, is the outward unit normal to this
boundary.

The variational equation (3.4) corresponds to the
dynamical equations (3.1). We shall therefore refer
to it as the unmodified variational principle. 1t will
be shown® that in this form it is a particular case of
a more general variational principle of the theory
of elasticity of an initially stressed continuum.

We note an interesting physical interpretation of
the quantity ®. It is the product of the initial stress
S by a factor which represents the second-order
volume increment as can be shown by expanding
the Jacobian.

The surface integral on the right-hand side of
Eq. (3.4) may be simplified by assuming displace-
ments u; tangent to the solid boundary at the initial
point. Hence at the solid boundary we must satisfy
the constraints (2.9). On the other hand, at the free
surface s = S = 0. Under these conditions the
surface integral in the variational principle (3.4)
becomes

ffA [@ + Sens — sgz

,] su;dA.  (3.4)

n,-:| du; dA

ou;

(3.5

The surface integral is now restricted to the rigid
boundary B.

s M. A. Biot, Phys. Fluids 6, 778 (1963).
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Potential Energy of a Curved Rigid Boundary

As in the previous case, it is possible to incorpo-
rate the surface integral into an over-all potential
energy of the fluid. We will show that the surface
integral (3.5) may be expressed as an exact dif-
ferential by taking into account the boundary con-
straints (2.9). Consider a function F(x,x,x;) such
that the rigid boundary is defined by the equation

F(x,x,xs) = 0. (3.6)
Putting

- [T, e

the unit normal vector is written

n, = ¢ OF/dx,. (3.8)

The 4= sign is chosen to correspond to the ocutward
direction of n,. Inserting this expression of =, into
the constraints (2.9) we find that the relation

¢(0F [3z;)u; = 0 3.9)

must be verified on the rigid boundary. Equation
(3.9) also implies

8F/3z) u; = 0

on the same boundary.

If we consider ¢(3F/0z;)u; as a function of the
coordinates, Eq. (3.9) further implies that its
gradient is normal to the rigid boundary. In view of
the second condition (2.9), this is expressed by the

(3.10)

relation
d
6u, (¢~ ,) =0 (3.11)
or
d¢ oF FF
ou (ax oz, i u ¢ o, z,
oF 6u> _
+ o oz, 3z.) 0. (3.12)
By Eqgs. (3.8) and (3.10), this simplifies to
du; _ . _¥F
n; oz, ou; = —¢ 3z, 07, U; Uy, (3.13)

The right-hand side of this equation is now an exact
differential, i.e.,
2

dz; or

u,»u,.> , (3.14)

and the surface integral (3.5) becomes
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—ff S%n,— du; dA
g ox;

— 1 62F TN
~ 15 f fB S Gar g s A4

We may now introduce a surface potential energy
of the rigid boundary.

®s = —3 stqb

3.15

&F
37, 07 wa; dA. (3.16)

By using relations (3.5) and (3.15) the variational
principle (3.4) is written in the form

5@, + ®s) + fff pa; Susdr = 0. (3.17)
Hence we have again represented the total potential
energy @ as the sum of two terms

® = @ + ®s, (3.18)

where ®, is the potential energy stored in the volume
while @3 is the surface energy stored at the curved
boundary. The reason for the contribution @5 to
the total potential energy is due to the fact that
the boundary displacement is assumed to be tangent
to the boundary. As already mentioned above, this
will violate the actual boundary constraint except
if it is a plane surface. The discrepancy is of the
second order and the initial normal stress con-
tributes a second-order energy term represented by
®5. It is seen from Eq. (3.16) that ¢ = 0 F
is a linear function of the coordinates, ie., if the
rigid boundary is a plane surface.

It can be verified that the surface integral in the
variational equation (3.4) can also be made to vanish
if the displaced point is forced to remain on the
rigid boundary. However, this would introduce a
ponlinear boundary coundition.

IV. EQUIVALENCE OF THE TWO VARIATIONAL
PRINCIPLES

In the preceding sections we have derived two
essentially different forms of the variational prin-
ciple. The modified form (2.7) corresponds to the
dynamical equations (2.1). The unmodified form
(3.4) corresponds to the dynamical equations (3.1).

That these two principles are rigorously equi-
valent may be shown as follows.

Consider the identity

3 2 (52 5, _@.(@_& o)
dz; (Se bu) — az; (S oz, bus ) + 3z, \az; o,
_ 3&9&)

GS 1 (2
= 3, dew) TS A 5 5,

BIOT

2
L1 %8

2 37, oz, S

4.1
In this identity S is an arbitrary function of the
coordinates and 6u; an arbitrary variation. If we
identify S with the initial stress in the fluid we may
use the initial equilibrium conditions, ie.,

s _

azx;
S _
oz, ox; ' oz, ox,

_PXH
4.2
FU 5 8

2

By introducing these expressions into the identity
(4.1) it becomes

3 . 8
6_.”6—,- (pXu; du) — 8Y = 3z, (Se du,)

5] L, .
Bz (S 3z, 5’#‘) @ + p AU).  (4.3)
We have put
Y = pXae + 3X,(9p/0x)u;,  (4.4)

while ® and AU are expressions (3.3). If we add

(8/8x)(s du;) — 1 8(se) — pa, du; (4.5)

to both sides of Eq. (4.3) and integrate throughout
the volume 7 of the fluid, it becomes

ffA (s + pXun; du; dA

- W, - ‘/‘ff,m" Su; = fj; [(s—{- Sem,
n,] su, dA — @, — fffr pa; Su;. (4.6

Putting one side or the other of this equation
equal to zero yields one of the two variational prin-
ciples (2.7) or (3.4). Hence they are equivalent.

Note a fundamental difference in the potential
energy for these two principles. In the modified
form as shown by the expression of W, the state
of initial stress is taken into account through the
body force X, alone. On the other hand, in the un-
modified form the potential energy contains the
initial stress S itself and a term AU which depends
on the variation of the body force field. The latter
term does not appear in the modified equations.

-8

du;
ox;

V. LAGRANGIAN EQUATIONS AND HAMILTON'S
PRINCIPLE

The variational principles are written as a single
equation
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o0 + [[[ pai ou,dr = 0. (5.1)
When the potential energy @ is expressed by Eq.
(2.15) this yields the modified variational principle
(2.14). When the value (3.18) is used for ® we ob-
tain the unmodified variational principle (3.17).

In any case, ® is a homogeneous quadratic func-
tion of the displacements expressed in various ways.
When there is no Coriolis term we may introduce

the n.l‘/ananl;
T - fff pu U d7 .
2 Wy

The variational principle (5.1) then becomes

8@ + p°T) = 0,

(5.2)

(5.3)
where
p = d/dt (5.4)

is a time differential operator treated as an alge-
braic quantity. By introducing the kinetic energy

SH

afodt(ﬂ—-(P)=0,

(5.5)
and writing
(5.6)

the variational equation becomes a particular case
of Hamilton’s principle.

Lagrange’s equations with generalized coordinates
¢: are obtained from these principles by expressing
the displacements as linear combinations of fixed
configuration fields U;;(z.z,z3), i.e.,

U; = U‘l'iqf‘ (5.7)
Substituting in the expression for ® and T we find
® = 30:;9:4;, T = 3mi;q.q;. (5.8

The variational principle (5.3) yields the Lagrangian
equations

a®/dq; + p* 0T /3¢, = 0. (5.9)

They are the same as the classical equations for
the mechanics of a conservative system. The natural
oscillations are normal coordinates.

Formulation of Wave Propagation by
Normal Coordinates

The natural oscillations derived from the La-
grangian equations (5.9) are normal coordinates of
the fluid medium. As shown earlier,® these normal
coordinates may be used in a new method of evaluat-
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ing the transient propagation in the medium under
pulse excitation. The method becomes readily ap-
plicable for acoustic-gravity and internal gravity
waves by inserting in the Lagrangian equations the
value of the potential energy ® derived above. The
important point here is the fact that this potential
energy must include the surface integral represented
by the terms Wz or ®5.

Equivalence of Group Velocity and Energy
Transport

The variational principle for the theory of elas-
ticity under initial stress was used by the writer
to derive general theorems on the equivalence of
group velocity and energy flux for any type of wave-
guide system.’ The theorem was also derived for
electromagnetic waveguides. The theorem is valid
of course for a fluid under initial stress by con-
sidering that it is the limiting case of a solid when
we assume that all elastic moduli vanish exeept
the bulk modulus. It may also be derived directly
in the present case. The proof depends essentially
on the possibility of expressing the dynamical equa-
tions in the variational-Lagrangian form (5.3) and
follows exactly the procedure of reference 4.

VI. CONSTANT GRAVITY FIELD

We shall consider the case of a uniform gravity
field of acceleration g. With a vertical z axis directed
positively upward, the body force field is represented
by the components

The modified variational principle (2.14) and (5.3) is

5W, + Wp) + p* 6T = 0, 6.2)
where
W, = fff (l)\ez — pgew — 1 @wz)dr
B \z pg 29 dz s
we = bg [[ ow*d4, 6.3)
F

= éfff o’ + v* + w’) dr

(u, v, w, are displacements). An extensive discussion
of the properties of acoustic-gravity waves based on
the writers fluid-displacement equations is given by
Tolstoy in a simultaneous paper.’ He also shows
for the particular case of a constant gravity field
how the dynamical equations may be derived from
a Lagrangian density.

oI Tolstoy, Rev. Mod. Phys. 35, 207 (1963).
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The variational principle (6.2) yields directly the
differential equations (5.2) of reference 1 for the
case of a constant gravity.

In particular consider a liquid of constant depth h.
Putting ¢ = 0 the value of W, becomes

d
w, = —%gffj;d—:wzd‘r.

Consider a wave sinusoidal along 2 with plane
motion in the zy plane. The displacements are ex-
pressed as

6.4)

_ 4
= cos kx,

w = kfsin kz,

v=0.

(6.5)

The time factor exp ({wt) is omitted and we put
p = iw. These displacements satisfy the constraint
of incompressibility with an arbitrary function f(z).

BIOT

The variational principle (6.2) becomes

5[ [ L — D de / ' p(%) dz]
- 6<g—§£—2)"h =90 (6.6)

with

2 _ _L1dp = <.
w, = —¢ o dz V = A (6.7)
The variational prineiple (6.6) yields for the un-
known f the Sturm-Liouville equation and the
boundary condition already derived for this prob-
lem as shown by Eqgs. (5.8) and (5.10) of reference 1.
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General equations for acoustic-gravity waves in a fluid are derived as a particular case of the theory
of elasticity of initially stressed continua. The differential equations for the fluid dynamics and the
corresponding variational principles are obtained from the more general results for the elastic solid
established earlier by the writer. The transition from solid to fluid is illustrated for the special case
of a constant gravity field. The dynamics of a fluid under initial stress is thus brought within the
scope of the theory of elasticity providing a unified treatment of wave propagation in composite

fluid-solid systems.

I. INTRODUCTION

YNAMICAL equations and corresponding vari-
ational principles for acoustic-gravity waves
have been derived and discussed in two preceding
papers'® in terms of the fluid displacement field.
It is now shown that these results constitute a par-
ticular case of the theory of elasticity of an initially
stressed continuum.?'*
There are many advantages in considering the
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problem of acoustic gravity waves in a fluid from
this viewpoint. As we have seen, use of the dis-
placement field leads directly to the expression of
the potential energy and to the corresponding vari-
ational principles. In addition, a unified theory
renders possible the treatment of propagation in
coupled fluids and solids as a single system.

In Sec. IT the general equations for the dynamics
of an elastic solid under initial stress are briefly
recalled.’ By inserting isotropic components of stress
in these equations we obtain the unmodified equa-~
tions for acoustic-gravity waves which were pre-
viously derived.’



