J. Chesneaux and J. Vignes, Sur la robustesse de la méthode CESTAC. Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.855-860, 1988.

J. Chesneaux and J. Vignes, Les fondements de l'arithmétique stochastique, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.1435-1440, 1992.

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242, 1971.
DOI : 10.1007/BF01397083

S. Graillat, Accurate simple zeros of polynomials in floating point arithmetic, Computers & Mathematics with Applications, vol.56, issue.4, pp.1114-1120, 2008.
DOI : 10.1016/j.camwa.2008.02.027

URL : https://hal.archives-ouvertes.fr/hal-00186254

S. Graillat, Accurate Floating-Point Product and Exponentiation, IEEE Transactions on Computers, vol.58, issue.7, pp.994-1000, 2009.
DOI : 10.1109/TC.2008.215

URL : https://hal.archives-ouvertes.fr/hal-00164607

S. Graillat, F. Jézéquel, and R. Picot, Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic, Electronic Notes in Theoretical Computer Science, vol.317, pp.55-69, 2015.
DOI : 10.1016/j.entcs.2015.10.007

URL : https://hal.archives-ouvertes.fr/hal-01230860

S. Graillat, . Ph, N. Langlois, and . Louvet, Algorithms for accurate, validated and fast polynomial evaluation, Special issue on State of the Art in Self-Validating Numerical Computations, pp.2-3191, 2009.
DOI : 10.1007/BF03186531

URL : https://hal.archives-ouvertes.fr/hal-00285603

S. Graillat, N. Louvet, and P. Langlois, Compensated Horner scheme, Research Report, vol.04, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01300860

N. J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), 2002.
DOI : 10.1137/1.9780898718027

F. Jézéquel and J. Chesneaux, CADNA: a library for estimating round-off error propagation, Computer Physics Communications, vol.178, issue.12, pp.933-955, 2008.
DOI : 10.1016/j.cpc.2008.02.003

H. Jiang, S. Graillat, and R. Barrio, Accurate and Fast Evaluation of Elementary Symmetric Functions, 2013 IEEE 21st Symposium on Computer Arithmetic, pp.183-190, 2013.
DOI : 10.1109/ARITH.2013.18

URL : https://hal.archives-ouvertes.fr/hal-01216600

H. Jiang, S. Graillat, C. Hu, S. Lia, X. Liao et al., Accurate evaluation of the k-th derivative of a polynomial, J. Comput. Appl. Math, vol.191, pp.28-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01146529

D. E. Knuth, The Art of Computer Programming Seminumerical Algorithms, 1997.

N. Louvet, Algorithmes compensés en arithmétique flottante : précision, validation, performances, 2007.

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefèvre et al., Handbook of Floating-Point Arithmetic, Birkhäuser, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

D. M. Priest, On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations, 1992.

G. W. Stewart, Introduction to matrix computations, 1973.

J. Vignes, Zéro mathématique et zéro informatique Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, also: La Vie des Sciences, pp.997-1000, 1986.

J. Vignes, A stochastic arithmetic for reliable scientific computation, Mathematics and Computers in Simulation, vol.35, issue.3, pp.233-261, 1993.
DOI : 10.1016/0378-4754(93)90003-D

J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Numerical Software, Numerical Algorithms, vol.37, issue.1-4, pp.377-390, 2004.
DOI : 10.1023/B:NUMA.0000049483.75679.ce

URL : https://hal.archives-ouvertes.fr/hal-01146498