Numerical Validation of Compensated Algorithms with Stochastic Arithmetic

Abstract : Compensated algorithms consist in computing the rounding error of individual operations and then adding them later on to the computed result. This makes it possible to increase the accuracy of the computed result efficiently. Computing the rounding error of an individual operation is possible through the use of a so-called error-free transformation. In this article, we show that it is possible to validate the result of compensated algorithms using stochastic arithmetic. We study compensated algorithms for summation, dot product and polynomial evaluation. We prove that the use of the random rounding mode inherent to stochastic arithmetic does not change the accuracy of compensated methods. This is due to the fact that error-free transformations are no more exact but still sufficiently accurate to improve the numerical quality of results.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Fabienne Jezequel <>
Soumis le : vendredi 16 septembre 2016 - 16:10:36
Dernière modification le : lundi 19 septembre 2016 - 09:36:32
Document(s) archivé(s) le : samedi 17 décembre 2016 - 14:59:51


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01367769, version 1



Stef Graillat, F Jézéquel †1, R Picot. Numerical Validation of Compensated Algorithms with Stochastic Arithmetic. 2016. <hal-01367769>



Consultations de
la notice


Téléchargements du document