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Enumeration formulæ in neutral sets

Francesco Dolce1 and Dominique Perrin1

Université Paris Est, LIGM

Abstract. We present several enumeration results holding in sets of
words called neutral and which satisfy restrictive conditions on the set of
possible extensions of nonempty words. These formulae concern return
words and bifix codes. They generalize formulae previously known for
Sturmian sets or more generally for tree sets. We also give a geometric
example of this class of sets, namely the natural coding of some interval
exchange transformations.

Keywords: Neutral Sets, Bifix Codes, Interval Exchanges.

1 Introduction

Sets of words of linear complexity play an important role in combinatorics on
words and symbolic dynamics. This family of sets includes Sturmian sets, interval
exchange sets and primitive morphic sets, that is, sets of factors of fixed points
of primitive morphisms.

We study here a family of sets of linear complexity, called neutral sets. They
are defined by a property of a graph E(x) associated to each word x, called its
extension graph and which expresses the possible extensions of x on both sides
by a letter of the alphabet A. A set S is neutral if the Euler characteristic of the
graph of any nonempty word is equal to 1, as for a tree. The Euler characteristic
of the graph E(ε) is called the characteristic of S and is denoted χ(S). These
sets were first considered in [1] and in [5]. The factor complexity of a neutral set
S on k letters is for n 6= 1

pn = n(k − χ(S)) + χ(S). (1)

We prove here several results concerning neutral sets. The first one (Theo-
rem 2) is a formula giving the cardinality of a finite S-maximal bifix code X of
S-degree n in a recurrent neutral set S on k letters as

Card(X) = n(k − χ(S)) + χ(S). (2)

The remarkable feature is that, for fixed S, the cardinality of X depends only
on its S-degree. In the particular case where X is the set of all words of S of
length n, we recover Equation (1). Formula (2) generalizes the formula proved
in [2] for Sturmian sets and in [7] for neutral sets of characteristic 1.

The second one concerns return words. The set of right first return words to
a word x in a factorial set S, denoted RS(x), is an important notion. It is the



set of words u such that xu is in S and ends with x for the first time. In several
families of sets of linear complexity, the set of first return words to x is known
to be of fixed cardinality independent of x. This was proved for Sturmian words
in [13], for interval exchange sets in [16] (see also [11]) and for neutral sets of
characteristic zero in [1].

We first prove here (Theorem 3) that the set CRS(X) of complete first return
words to a bifix codeX in a uniformly recurrent neutral set S on k letters satisfies
Card(CRS(X)) = Card(X) + k− χ(S). The remarkable feature here is that, for
fixed S, the cardinality of CRS(X) depends only on Card(X). WhenX is reduced
to one element x, we have CRS(x) = xRS(x) and we recover the result of [1].
When X = S∩An, then CRS(X) = S∩An+1. This implies pn+1 = pn+k−χ(S)
and also gives Equation (1) by induction on n. The proofs of these formulæ use
a probability distribution naturally defined on a neutral set.

A third result concerns the decoding of a neutral set by a bifix code. We
prove that the decoding of any recurrent neutral set S by an S-maximal bifix
code is a neutral set. This property is proved for uniformly recurrent tree sets
in [8].

We finally prove a result which allows one to obtain a large family of neutral
sets of geometric origin, namely using interval exchange transformations. More
precisely, we prove that the natural coding of an interval exchange transforma-
tion without connections of length ≥ 1 is a neutral set. This extends a result
in [6] concerning interval exchange without connections as well as a result of [9]
concerning linear involutions without connection.

Acknowledgement. This work was supported by grants from Région Île-de-France
and ANR project Eqinocs.

2 Extension graphs

Let A be a finite alphabet. We denote by A∗ the set of all words on A. We denote
by ε or 1 the empty word. A factor of a word x is a word v such that x = uvw. If
both u and w are nonempty, we say that x is an internal factor. A set of words
on the alphabet A is said to be factorial if it contains the factors of its elements
as well as the alphabet A.

Let S be a factorial set on the alphabet A. For w ∈ S, we denote LS(w) =
{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S}, ES(w) = {(a, b) ∈ A × A |
awb ∈ S}, and further ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =
Card(ES(w)).

We omit the subscript S when it is clear from the context. A word w is right-
extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if e(w) > 0. A
factorial set S is called right-extendable (resp. left-extendable, resp. biextendable)
if every word in S is right-extendable (resp. left-extendable, resp. biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2.
It is called bispecial if it is both left-special and right-special. For w ∈ S, we
denote

mS(w) = eS(w) − ℓS(w)− rS(w) + 1.
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A word w is called neutral if mS(w) = 0. We say that a set S is neutral if it
is factorial and every nonempty word w ∈ S is neutral. The characteristic of S
is the integer χ(S) = 1−mS(ε).

Thus, a neutral set of characteristic 1 is such that all words (including the
empty word) are neutral. This is what is called a neutral set in [5].

The following example of a neutral set is from [5].

Example 1. Let A = {a, b, c, d} and let σ be the morphism from A∗ into itself
defined by σ : a 7→ ab, b 7→ cda, c 7→ cd, d 7→ abc. Let S be the set of factors
of the infinite word x = σω(a). One has S ∩A2 = {ab, ac, bc, ca, cd, da} and thus
m(ε) = −1. It is shown in [5] that every nonempty word is neutral. Thus S is
neutral of characteristic 2.

A set of words S 6= {ε} is recurrent if it is factorial and for any u,w ∈ S, there
is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be uniformly
recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u is a factor
of any word of S of length n. A uniformly recurrent set is recurrent.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is [12, Proposition 3.5] (see also [10, Theorem 4.5.4]).

Proposition 1. Let S be a factorial set on the alphabet A. One has bn =
∑

w∈S∩An m(w) and sn =
∑

w∈S∩An(r(w) − 1) for all n ≥ 0.

One deduces easily from Proposition 1 the following result which shows that
a neutral set has linear complexity.

Proposition 2. The factor complexity of a neutral set on k letters is given by
p0 = 1 and pn = n(k − χ(S)) + χ(S) for every n ≥ 1.

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w)
as an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote 1 ⊗ L(w) and R(w) ⊗ 1 the copies of L(w)
and R(w) used to define the set of vertices of E(w). We note that since E(w)
has ℓ(w) + r(w) vertices and e(w) edges, the number 1 − mS(w) is the Euler
characteristic of the graph E(w).

A biextendable set S is called a tree set of characteristic c if for any nonempty
w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the definition
of tree set in [5] corresponds to a tree set of characteristic 1). Note that a tree
set of characteristic c is a neutral set of characteristic c.

Example 2. Let S be the neutral set of Example 1. The graph E(ε) is represented
in Figure 1. It is acyclic with two connected components. It is shown in [5] that
the extension graph of any nonempty word is a tree. Thus S is a tree set of
characteristic 2.
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Fig. 1. The two trees forming the graph E(ε). Vertices correspond to letters, while
edges correspond to words of length 2 in S.

Let S be a factorial set. For x ∈ S, we define

ρS(x) = eS(x) − ℓS(x), λS(x) = eS(x) − rS(x).

Thus, when x is neutral, ρS(x) = rS(x)−1 and λS(x) = ℓS(x)−1. The following
result shows that in a biextendable neutral set, ρS is a left probability distri-
bution on S (and λS is a right probability), except for the value on ε which is
ρ(ε) = e(ε)− ℓ(ε) = m(ε) + r(ε) − 1 = Card(A) − χ(S) and can be different of
1 (see [2] for the definition of a right or left probability distribution). We omit
the subscript S when it is clear from the context.

Proposition 3. Let S be a biextendable neutral set. Then for any x ∈ S, one
has λS(x), ρS(x) ≥ 0 and

∑

a∈L(x)

ρS(ax) = ρS(x),
∑

a∈R(x)

λS(xa) = λS(x).

Proof. Since S is biextendable, we have ℓ(x), r(x) ≤ e(x). Thus λ(x), ρ(x) ≥ 0.
Next,

∑

a∈L(x) ρ(ax) =
∑

a∈L(x)(r(ax) − 1) = e(x)− ℓ(x) = ρ(x). The proof for
λ is symmetric.

If ρ(ε) = 0, then ρ(x) = 0 for all x ∈ S. Otherwise, ρ′(x) = ρ(x)/ρ(ε) is a
left probability distribution. A symmetric result holds for λ.

3 Bifix codes

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifix code is a
set which is both a prefix code and a suffix code (see [3] for a more detailed
introduction). Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is
S-maximal if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S.
Since S is recurrent, a finite S-maximal bifix code is also an S-maximal prefix
code (see [2, Theorem 4.2.2]). For example, for any n ≥ 1, the set X = S ∩ An

is an S-maximal bifix code.
Given a set X , we denote ρ(X) =

∑

x∈X ρ(x). We prove the following result.
It accounts for the fact that, in a Sturmian set S, any finite S-maximal suffix
code contains exactly one right-special word [2, Proposition 5.1.5].

Proposition 4. Let S be a neutral set and let X be a finite S-maximal suffix
code. Then ρ(X) = Card(A)− χ(S).
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Proof. If ρ(ε) = 0, then χ(S) = Card(A) and thus the formula holds. Other-
wise, ρ′ is a left probability distribution (as seen at the end of Section 2), and
the formula holds by a well-known property of suffix codes (see [2, Proposition
3.3.4]).

Example 3. Let S be the neutral set of characteristic 2 of Example 1. The set
X = {a, ac, b, bc, d} is an S-maximal suffix code (its reversal is the S̃-maximal
prefix code X̃ = {a, b, ca, cb, d}). The values of ρ onX are represented in Figure 2
on the left. One has ρ(X) = ρ(a) + ρ(bc) = 2, in agreement with Proposition 4.
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Fig. 2. An S-maximal suffix code (left) and an S-maximal bifix code represented as a
prefix code (center) and as a suffix code (right).

Let X be a bifix code. Let Q be the set of words without any suffix in X and
let P be the set of words without any prefix in X . A parse of a word w with
respect to a bifix code X is a triple (q, x, p) ∈ Q ×X∗ × P such that w = qxp.
We denote by dX(w) the number of parses of a word w with respect to X . The
S-degree of X , denoted dX(S) is the maximal number of parses with respect to
X of a word of S. For example, the set X = S ∩ An has S-degree n.

Example 4. Let S be the neutral set of characteristic 2 of Example 1. The set
X = {ab, acd, bca, bcd, c, da} is an S-maximal bifix code of S-degree 2 (see Fig-
ure 2 on the center and the right).

Let S be a recurrent set and let X be a finite bifix code. By [2, Theorem
4.2.8], X is S-maximal if and only if its S-degree is finite. Moreover, in this case,
a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal factor
of a word of X . The following is [2, Theorem 4.3.7].

Theorem 1. Let S be a recurrent set and let X be a finite S-maximal bifix code
of S-degree n. The set of nonempty proper prefixes of X is a disjoint union of
n− 1 S-maximal suffix codes.

Example 5. Let S and X be as in Example 4. The set of nonempty proper
prefixes of X is the S-maximal suffix code represented on the left of Figure 2.

The following statement is closely related with a similar statement concerning
the average length of a bifix code, but which requires an invariant probability
distribution (see [2, Corollary 4.3.8]).
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Proposition 5. Let S be a recurrent neutral set and let X be a finite S-maximal
bifix code of S-degree n. The set P of proper prefixes of X satisfies ρS(P ) =
n(Card(A) − χ(S)).

Proof. By Theorem 1, we have P \ {ε} = ∪n−1
i=1 Yi, where the Yi are S-maximal

suffix codes. By Proposition 4, we have ρ(Yi) = Card(A)−χ(S) and thus ρ(P ) =
ρ(ε) + (n− 1)(Card(A)− χ(S)) = n(Card(A) − χ(S)).

4 Cardinality Theorem for bifix codes

The following theorem is a generalization of [7, Theorem 3.6] where it is proved
for a neutral set of characteristic 1. We consider a recurrent set S, and we
implicitly assume that all words of S are on the alphabet A.

Theorem 2. Let S be a neutral recurrent set. For any finite S-maximal bifix
code X of S-degree n, one has

Card(X) = n(Card(A)− χ(S)) + χ(S).

Note that we recover, as a particular case of Theorem 2 applied to the set X of
words of length n in S, the fact that for a set S satisfying the hypotheses of the
theorem, the factor complexity is p0 = 1 and pn = n(Card(A) − χ(S)) + χ(S).
Note that Theorem 2 has a converse (see [4]).

Proof (of Theorem 2). Since X is a finite S-maximal bifix code, it is an S-
maximal prefix code (see Section 3). By a well-known property of trees, this
implies that Card(X) = 1+

∑

p∈P (r(p)−1) where P is the set of proper prefixes
of X . Since ρ(p) = r(p)− 1 for p non empty and ρ(ε) = m(ε)+ r(ε)− 1, we have

Card(X) = 1 +
∑

p∈P

(r(p) − 1) = 1 +
∑

p∈P

ρ(p)−m(ε)

= ρ(P ) + χ(S) = n(Card(A)− χ(S)) + χ(S)

since ρ(P ) = n(Card(A)− χ(S)) by Proposition 5.

Example 6. Let S be the neutral set of Example 1 and let X be the S-maximal
bifix code of Example 4. We have Card(X) = 2(4 − 2) + 2 = 6 according to
Theorem 2.

5 Cardinality Theorem for return words

Let S be a factorial set of words. For a set X ⊂ S of nonempty words, a complete
first return word to X is a word of S which has a proper prefix in X , a proper
suffix inX and no internal factor inX . We denote by CRS(X) the set of complete
first return words to X . The set CRS(X) is a bifix code. If S is uniformly
recurrent, CRS(X) is finite for any finite set X . For x ∈ S, we denote CRS(x)
instead of CRS({x}).
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Theorem 3. Let S be a uniformly recurrent neutral set. For any bifix code X ⊂
S, we have

Card(CRS(X)) = Card(X) + Card(A)− χ(S).

Proof. Let P be the set of proper prefixes of CRS(X). For q ∈ P , we denote
α(q) = Card{a ∈ A | qa ∈ P ∪ CRS(X)} − 1 and α(P ) =

∑

q∈P α(p).
Since CRS(X) is a finite nonempty prefix code, we have, by a well-known

property of trees, Card(CRS(X)) = 1 + α(P ).
Let P ′ be the set of words in P which are proper prefixes of X and let Y =

P \P ′. Since P ′ is the set of proper prefixes of X , we have α(P ) = Card(X)− 1.
Since S is recurrent, any word of S with a prefix in X is comparable for the

prefix order with a word of CRS(X). This implies that for any q ∈ Y and any
b ∈ RS(q), one has qb ∈ P ∪ CRS(X). Consequently, we have α(q) = ρS(q) for
any q ∈ Y . Thus we have shown that

Card(CRS(X)) = 1 + α(P ′) + ρ(Y ) = Card(X) + ρ(Y ).

Let us show that Y is an S-maximal suffix code. This will imply our conclusion
by Proposition 4. Suppose that q, uq ∈ Y with u nonempty. Since q is in Y , it
has a proper prefix in X . But this implies that uq has an internal factor in X ,
a contradiction. Thus Y is a suffix code. Consider w ∈ S. Since S is recurrent,
there is some u and x ∈ X such that xuw ∈ S. Let y be the shortest suffix
of xuw which has a proper prefix in X . Then y ∈ Y . This shows that Y is an
S-maximal suffix code.

Let S be a factorial set. A right first return word to x in S is a word w
such that xw is a word of S which ends with x and has no internal factor
equal to x (thus xw is a complete first return word to x). We denote by RS(x)
the set of right first return words to x in S. Since CRS(x) = xRS(x), the
sets CRS(x) and RS(x) have the same number of elements. Thus we have the
following consequence of Theorem 3.

Corollary 1. Let S be a uniformly recurrent neutral set. For any x ∈ S, the set
RS(x) has Card(A)− χ(S) + 1 elements.

Example 7. Consider again the neutral set S of Example 1. We have RS(a) =
{bca, bcda, cad}.

6 Bifix decoding

Let S be a factorial set and let X be a finite S-maximal bifix code. A coding
morphism for X is a morphism f : B∗ → A∗ which maps bijectively an alphabet
B onto X . The set f−1(S) is called a maximal bifix decoding of S.

Theorem 4. Any maximal bifix decoding of a recurrent neutral set is a neutral
set with the same characteristic.

7



Let S be a factorial set. For two sets of words X,Y and a word w ∈ S, we
denote LX

S (w) = {x ∈ X | xw ∈ S}, RY
S (w) = {y ∈ Y | wy ∈ S}, EX,Y

S (w) =
{(x, y) ∈ X × Y | xwy ∈ S}, and further

eX,Y
S (w) = Card(EX,Y

S (w)), ℓXS (w) = Card(LX
S (w)), rYS (w) = Card(RY

S (w)).

Finally, for a word w, we denote mX,Y
S (w) = eX,Y

S (w)− ℓXS (w)− rYS (w)+1. Note

that EA,A
S (w) = ES(w), m

A,A
S (w) = mS(w), and so on.

Proposition 6. Let S be a neutral set, let X be a finite S-maximal suffix code
and let Y be a finite S-maximal prefix code. Then mX,Y

S (w) = mS(w) for every
w ∈ S.

Proof. We use an induction on the sum of the lengths of the words in X and in
Y .

If X,Y contain only words of length 1, since X (resp. Y ) is an S-maximal
suffix (resp. prefix) code, we have X = Y = A and there is nothing to prove.

Assume next that one of them, say Y , contains words of length at least 2. Let
p be a nonempty proper prefix of Y of maximal length. Set Y ′ = (Y \ pA) ∪ p.
If wp /∈ S, then mX,Y (w) = mX,Y ′

(w) and the conclusion follows by induction
hypothesis. Thus we may assume that wp ∈ S. Then

mX,Y (w) −mX,Y ′

(w) = eX,A(wp) − ℓX(wp) − rA(wp) + 1 = mX,A(wp).

By induction hypothesis, we havemX,Y ′

(w) = m(w) and mX,A(wp) = 0, whence
the conclusion.

Proof (of Theorem 4). Let S be a recurrent neutral set and let f : B∗ → A∗ be
a coding morphism for a finite S-maximal bifix code X . Set U = f−1(S). Let

v ∈ U \ {ε} and let w = f(v). Then mU (v) = mX,X
S (w). Since S is recurrent, X

is an S-maximal suffix code and prefix code. Thus, by Proposition 6, mU (v) =
mS(w), which implies our conclusion.

The following example shows that the maximal decoding of a uniformly re-
current neutral set need not be recurrent.

Example 8. Let S be the set of factors of the infinite word (ab)ω. The set X =
{ab, ba} is a bifix code of S-degree 2. Let f : u 7→ ab, v 7→ ba. The set f−1(S) is
the set of factors of uω ∪ vω and it is not recurrent.

7 Neutral sets and interval exchanges

Let I =]ℓ, r[ be a nonempty open interval of the real line and A a finite ordered
alphabet. For two intervals ∆,Γ , we denote ∆ < Γ if x < y for any x ∈ ∆ and
y ∈ Γ . A partition (Ia)a∈A of I (minus Card(A)− 1 points) in open intervals is
ordered if a < b implies Ia < Ib.

8



We consider now two total orders <1 and <2 on A and two partitions (Ia)a∈A

and (Ja)a∈A of I in open intervals ordered respectively by <1 and <2 and such
that for every a, Ia and Ja have the same length λa. Let γa =

∑

b<1a
λb and

δa =
∑

b<2a
λa.

An interval exchange transformation (with flips) relative to (Ia)a∈A and
(Ja)a∈A is a map T : I → I such that for every a ∈ A, its restriction to Ia
is either a translation or a symmetry from Ia to Ja (see for example [6] and [15]
for interval exchanges with flips).

Observe that γa is the left boundary of Ia and that δa is the left boundary
of Ja. If Card(A) = s, we say that T is an s-interval exchange transformation.

Example 9. Let A = {a, b, c}. Consider the rotation of angle α with α irrational
as a 3-transformation relative to the partition (Ia)a∈A of the interval ]0, 1[, where
Ia =]0, 1−2α[, Ib =]1−2α, 1−α[ and Ic =]1−α, 1[, while Jc =]0, α[, Ja =]α, 1−α[
and Jb =]1− α, 1[ (see Figure 3). Then, for each letter a, the restriction to Ia is
a translation to Ja. Note that one has a <1 b <1 c and c <2 a <2 b.

0 1− 2α 1− α 1

a b c

0 α 1− α 1

c a b

Fig. 3. A 3-interval exchange transformation.

For a word w = b0b1 · · · bm let Iw be the set

Iw = Ib0 ∩ T−1 (Ib1) ∩ · · · ∩ T−m (Ibm) .

Set Jw = T |w| (Iw). We set by convention Iε = Jε =]ℓ, r[. Note that each Iw is
an open interval and so is each Jw (see [6]).

Let T be an interval exchange transformation on I =]ℓ, r[. For a given z ∈ I,
the natural coding of T relative to z is the infinite word ΣT (z) = a0a1 · · · on
the alphabet A defined by an = a if T n(z) ∈ Ia. We denote by L(T ) the set of
factors of the natural codings of T . We also say that L(T ) is the natural coding
of T . Note that, for every w ∈ L(T ), the interval Iw is the set of points z such
that ΣT (z) starts with w, while the interval Jw is the set of points z such that
ΣT

(

T−|w|(z)
)

starts with w. Moreover, it is easy to prove that a word u is in
L(T ) if and only if Iu 6= ∅ (and thus if and only if Ju 6= ∅).

Example 10. Let T be the interval exchange transformation of Example 9. The
first element of L(T ) are represented in Figure 4 (right-special words are colored).

A connection of an interval exchange transformation T is a triple (x, y, n)
where x is a singularity of T−1, y is a singularity of T , n ≥ 0 and T n(x) = y.
We also say that (x, y, n) is a connection of length n ending in y. When n = 0,
we say that x = y is a connection.

9
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Fig. 4. The words of length ≤ 3 of L(T ).

Interval exchange transformations without connections, also called regular in-
terval exchange transformations, are well studied (see, for example, [14] and [6]).
The natural coding of a linear involutions without connection (see [9]) is es-
sentially the coding of an interval exchange transformation with exactly one
connection of length 0 ending in the midpoint of the interval.

Example 11. Let T be the transformation of Example 9. The point γc is a con-
nection of length 0. This connection is represented with a dotted line in Figure 3.

Let T be an interval exchange transformation with exactly c connections all
of length 0. Denote γk0

= ℓ and γk1
, . . . , γkc

the c connections of T . For every
0 ≤ i < c the interval ]γki

, γki+1
[ is called a component of I.

Example 12. Consider again the transformation T of Example 9. The two com-
ponents of ]0, 1[ are the two intervals ]0, 1− α[ and ]1− α, 1[.

In the next statement we generalize a result of [5] and show that the natural
coding of an interval exchange is acyclic.

Theorem 5. Let T be an interval exchange transformation with exactly c con-
nections, all of length 0. Then L(T ) is neutral of characteristic c+ 1.

Lemma 1. Let T be an interval exchange transformation. For every nonempty
word w and letter a ∈ A, one has

(i) a ∈ L(w) ⇐⇒ Iw ∩ Ja 6= ∅,
(ii) a ∈ R(w) ⇐⇒ Ia ∩ Jw 6= ∅.

Proof. A letter a is in the set L(w) if and only if aw ∈ L(T ). As we have seen
before, this is equivalent to Jaw 6= ∅. One has Jaw = T (Iaw) = T (Ia) ∩ Iw =
Ja ∩ Iw , whence point (i). Point (ii) is proved symmetrically.

We say that a path in a graph is reduced if it does not use twice consecutively
the same edge.

Lemma 2. Let T be an interval exchange transformation over I without con-
nection of length ≥ 1. Let w ∈ L(T ) and a, b ∈ L(w) (resp. a, b ∈ R(w)). Then
1⊗ a, 1⊗ b (resp. a⊗ 1, b⊗ 1) are in the same connected component of E(w) if
and only if Ja, Jb (resp. Ia, Ib) are in the same component of I.
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Proof. Let a ∈ L(w). Since the set L(T ) is biextendable, there exists a letter c
such that (1 ⊗ a, c⊗ 1) ∈ E(w). Using the same reasoning as that in Lemma 1,
one has Ja ∩ Iwc 6= ∅. Since Iwc ⊂ Iw , one has in particular Ja ∩ Iw 6= ∅. This
proves that Ja and Iw belong to the same component of I for every a ∈ L(w).

Conversely, suppose that a, b ∈ L(w) are such that Ja and Jb belong to the
same component of I. We may assume that a <2 b. Then, there is a reduced
path (1 ⊗ a1, b1 ⊗ 1, . . . , bn−1 ⊗ 1, 1 ⊗ an) in E(w) (see Figure 5) with a = a1,
b = an, a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn1

. Indeed, by hypothesis, we have
no connection of length ≥ 1. Thus, for every 1 ≤ i < n, one has Jai

∩ Iwbi 6= ∅
and Jai+1

∩ Iwbi 6= ∅. Therefore, a and b are in the same connected component
of E(w).

The symmetrical statement is proved similarly.

We can now prove the main result of this section.

Proof (of Theorem 5). Let us first prove that for any w ∈ L(T ), the graph E(w)
is acyclic. Assume that (1 ⊗ a1, b1 ⊗ 1, . . . , 1 ⊗ an, bn ⊗ 1) is a reduced path in
E(w) with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). Suppose that n ≥ 2 and
that a1 <2 a2. Then one has a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn (see
Figure 5). Thus one cannot have an edge (a1, bn) in the graph E(w).

· · ·

Iwb1
Iwb2

Iwbn−1 Iwbn

Ja1
Ja2

Jan−1
Jan

Fig. 5. A path from a1 to an in E(w).

Let us now prove that the extension graph of the empty word is a union of
c + 1 trees. Let a, b ∈ A. If Ja and Jb are in the same component of I, then
1 ⊗ a, 1 ⊗ b are in the same connected component of E(ε) by Lemma 2. Thus
E(ε) is a union of c+ 1 trees.

Finally, if w ∈ L(T ) is a nonempty word and a, b ∈ L(w), then Ja and Jb
are in the same component of I, by Lemma 1, and thus a and b are in the same
connected component of E(w) by Lemma 2. Thus E(w) is a tree.

The previous proof shows actually a stronger result: the set L(T ) is a tree
set of characteristic c + 1. This result generalizes the corresponding result for
regular interval exchange in [5].

Example 13. Let T be the interval exchange transformation of Example 9. In
Figure 6 are represented the extension graphs of the empty word (left) and of
the letters a (center) and b (right).
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E(ε)

a

c

b

a

b c

E(a)

a b

E(b)

a

c

c

Fig. 6. Some extension graphs.
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