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Interfacial forces exceed gravitational forces on a scale small relative to the capillary
length - two millimeters in the case of an air-water interface - and therefore dom-
inate the physics of sub-millimetric systems. They are of paramount importance
for various biological taxa and engineering processes where the motion of a liquid
meniscus induces a viscous frictional force that exhibits a sublinear dependence in
the meniscus velocity, i.e. a power law with an exponent smaller than one. In-
terested in the fundamental implications of this dependence, we use a liquid-foam
sloshing system as a prototype to exacerbate the effect of sublinear friction on the
macroscopic mechanics of multi-phase flows. In contrast to classical theory, we
uncover the existence of a finite-time singularity in our system yielding the arrest
of the fluid’s oscillations. We propose a minimal theoretical framework to capture
this effect, thereby amending the paradigmatic damped harmonic oscillator model.
Our results suggest that, although often not considered at the macroscale, sublinear
capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

I. INTRODUCTION

No one who has glimpsed at Hokusai’s iconic wave paintings can fail to notice the truth-
ful yet stylized rendering of the singular nature of such multi-scale flows. On a theoretical
point of view, overturning, breaking and atomization are supported by nonlinear terms in
the equations prescribing the waves’ dynamics at large amplitude, so that finding their exact
solution is often arduous. Nonlinearities, however, usually become of negligible relative im-
portance for sufficiently low amplitudes of motion, thereby enabling perturbative linearized
approaches1. These theoretical linear problems are easier to solve than their nonlinear
counterparts and have been extremely successful at predicting the stability, characteristic
frequencies and growth rates of a wide range of physical systems arising in natural and in-
dustrial settings, a classic example of which is the sloshing of fluid in a container2. In such
a case, the excess of gravitational potential energy associated to the deformation of the free
surface is progressively relaxed when periodically turned into kinetic energy and damped by
viscous forces2,3. In the small amplitude regime, the fundamental sloshing frequency for a
cylindrical container is known to be ω0 =

√
1.84 g/R where g is the acceleration of gravity

and R the container radius2. The classical contributions to the viscous damping rate, σ,
have been identified as the dissipation in the oscillating boundary layers near the container
walls and the free surface, and the bulk dissipation3. Those dissipative forces have different
scalings with respect to the governing parameters (radius R, viscosity µ, density ρ, gravity
g), but all depend linearly on the free surface velocity2,3.

Here, we study the effect of a small modification to this classical problem, as we place
a thin layer of foam on a volume of water (see Fig. 1), and explore the dramatic change
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FIG. 1. (A) Experimental setup: a cylindrical container is tilted by an angle ψ to initiate the
sloshing of a volume of water surmounted by foam. The foam layer of thickness h� H and h� R
comprises bubbles of typical radius d. (B) Shown is the spatio-temporal view of the water-foam
contact line X(t) captured in a typical experiment.

in its mechanistic properties. It has been recently shown4 that sloshing in a rectangular
basin could be strongly damped by the addition of a shallow foam layer at the top. While
foam is a complex media with visco-elasto-plastic rheological properties5, this significant
attenuation was attributed to friction between the foam and the wall, which dominates
the dissipation in the foam bulk4. In this work, we focus our attention on the nonlinear
nature of the dissipation occurring in the foam layer. This source of dissipation emanates
from the relative displacement of the liquid channels separating the foam bubbles, known
as Plateau borders5. The motion of these multiple air-liquid interfaces along the container
results in a frictional force that scales nonlinearly with their sliding velocity. Indeed, this
force scales like Ca2/3, where Ca is the capillary number based on the sliding velocity5–7.
Owing to their sublinearity (the exponent on the velocity is smaller than one), these fric-
tional terms are found to dominate all linear contributions for small enough values of Ca,
which naturally arise for small amplitudes of motion. Therefore, unlike nonlinearities with
exponents greater than one, they cannot be neglected, thereby ruining all linear theoretical
approaches. Unlike the picture of a linearly damped oscillator classically used in textbooks
to model sloshing, we show experimentally and theoretically that the sloshing of the liquid
phase does not relax exponentially. The damping rate in fact increases catastrophically at
small amplitude and yields a finite-time arrest of the fluid’s motion.

II. EXPERIMENTS

The setup consists of a cylindrical Plexiglas container of internal radius R = 37.05 mm
that is sealed to an aluminum plate connected itself to a hinge. The container is filled
with a column of water of height H which is surmounted by a foam layer of thickness
h, see Figure 1A. The foam is produced when injecting a commercial hand soap (Hypron
SA) through a nozzle with a grid with pore size 0.2 mm and has typical bubbles diameter
d = 0.25 mm. The foam’s liquid fraction is measured to be 25% once poured on top of the
water column (evaluated using the weight of a volume of foam). This large value relative
to dry foams, is due to capillary forces yielding an intake of water effectively enlarging the
foam Plateau borders5. In the following, the liquid fraction across the foam layer, whose
thickness ranges from h = 2.5 mm to 6.5 mm, is assumed uniform. Using an oscillating
drop tensiometer (Tracker, Teclis), we measured the surface tension, γ = 31.5 mN/m, of
the soap solution. Its viscoelastic surface dilatational modulus, quantifying the relative
variation of surface tension upon dilatation and compression, is found below resolution
(0.1 mN/m), showing that the interface can be considered as mobile7 and that free shear
boundary conditions apply.

Experiments are initiated by tilting the container of an angle ψ and then releasing it, see
Fig. 1A. The dynamics following the impact is recorded with a high-speed camera (Phantom
Micro M310) operating at 300 Hz. In order to investigate the waves dynamics at small scales,
we coupled a Nikon 50 mm lens with an optical bellows obtaining a resolution of 2·10−2 mm



3

0
0

0.005

0.01

0.015

0.02

0.025

0.03

Foam height
1 2 3 4 5 6 700 50 100 150 200 250 300

−4

−3

−2

−1

A.

350

water

linear model
foam h=2.5mm
SLM (α=0.01)
foam h=3.3mm
SLM (α=0.013)
foam h=4mm
SLM (α=0.016)

SLM (α=0.023)
foam h=5mm

foam h=6.5mm
SLM (α=0.030)  

0.035B.

0

1

FIG. 2. (A) Logarithmic decrement, D = ln(Xn/X0), of the sloshing amplitude for foam thicknesses
ranging across values h = 0, 2.5, 3.3, 4, 5, 6.5 mm. Symbols indicate measurements, while continuous
lines represent the envelope solutions of the sublinear model (SLM), with a single fitting parameter
α (see a(t) in eq. 5) . (B) Shown is the dependance of the friction force exerted by the foam layer,
Ff , through the friction coefficient α as found in experiments. Ff increases linearly with the foam
thickness h, i.e. with the number of layers of oscillating bubbles.

per pixel on the water-foam interface displacement. After a short transient regime, the flow
response was found to exhibit a single mode of oscillation (see Fig. 1B). The frequency of

oscillations, 3.50 Hz, matches the theoretical inviscid prediction ω0 =
√

1.84g/R within 1%.
This result was expected for h = 0 as the deep water condition H > 2R is satisfied and
the container size is well above the capillary length1, i.e. γ/ρgR2 � 1. This frequency is
found unchanged when adding foam (0 < h < 6.5 mm), as already observed in previous
experiments4 and discussed in section III B.

The attenuation of the gravity waves is investigated by recording the motion X(t) of the
water-foam interface at the azimuth corresponding to the largest wave oscillation. Using
the function ’orthogonal view’ in ImageJ, we follow the evolution of a pixel line over time,
thereby reconstituting the oscillatory motion X(t) of the contact line at a given location,
see Fig. 1B. The natural logarithm D = ln(Xn/X0) of the ratio between the amplitude of
the nth peak, Xn, and the amplitude of the first peak, systematically chosen to X0 = 5 mm,
is used as an instantaneous measure of the growth rate. For the case h = 0 (no foam), we
recover the classical result of a constant damping rate. The logarithmic decrement is linear
in time for most of the dynamics, D ∝ −σω0t, as indicated in Fig. 2A (see section IV for
a rationalization of the shaded area). We found σ = 0.0098, which exceeds the theoretical
expression3 of the viscous damping rate by a factor 2. This result is in line with other
experimental measurements in the literature8 and is commonly attributed to the advancing
and receding of the dynamic contact line2. As soon as a thin foam layer is added in the
system, D is no longer linear, as shown in Fig. 2A for values of h ranging from 2.5 mm to
6.5 mm. We find D to be concave down and negatively correlated to h. In other words, the
damping rate is greater with foam as evidenced by previous experiments4 but also evidently
increases as the amplitude of oscillations decreases. In particular this result translates into
the fact that the interface does not relax exponentially at a given rate, but instead its decay
is progressively hastened. This novel observation suggests the existence of a mechanism
submitting smaller oscillations to a stronger damping, that we aim to rationalize.

III. A NONLINEAR FLUID OSCILLATOR

A. Equivalent mechanical system

From this point onward, we restrict ourselves to thin layers of foam and we assume
the entire layer of height h is oscillating along with the liquid phase. We model the total
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FIG. 3. A sketch of our reduced model for sloshing. The effects of foam are accounted by the
sublinear term Ff ∝ Ẋ|Ẋ|−1/3. This term amends the classical damped oscillator model where the

inertial term is balanced by the restoring force, Fg ∝ X, and the viscous damping, Fw ∝ Ẋ.

oscillating mass as πR2(ρλ+ρfh), where λ ∼ R is the penetration length of the wave1 and ρ
and ρf denote the density of water and foam, respectively. Given the physical parameters of
the problem we place ourselves in the limit ρfh� ρλ, i.e. we neglect foam’s inertia relative
to the one of water. Similarly, the restoring gravitational force acting on this volume of
fluid may be estimated considering solely the liquid phase: Fg ∼ ρgπR2X, where X is
the amplitude of the water-foam interface and g the acceleration of gravity. In absence of
foam, according to the seminal work of Case & Parkinson3, three main dissipation sources
exist, they acting: (i) at the free surface, (ii) in the fluid bulk and (iii) in the Stokes
boundary layer close to the wall. The last contribution has been shown to dominate the
other ones3. Denoting by µ and ν the water dynamic and kinematic viscosities, and by Ẋ
the oscillation speed, we model the viscous dissipation as a single force Fw ∼ 2πRλµẊ/δ,

where δ ∼
√
ν/ω0 is the Stokes layer thickness3.

We now turn to model the force Ff associated with capillary effects in the foam layer.
Let us consider a single wall Plateau border, i.e. the edge separating neighboring bubbles
at the wall, sliding along the container vertical wall with velocity Ẋ. Damping of its motion
originates from the transition region between the wetting film at the wall and the moving
wall Plateau border5. The matching between the outer meniscus and the transition zone,
involving a balance between viscous and capillary forces, defines the friction force per unit
length of a wall Plateau border scaling as γCa2/3, where Ca = µẊ/γ is the capillary number
and γ denotes the surface tension5. The total length of surface Plateau borders is given by
their typical length, d, times the number of Plateau borders in contact with the container
that scales as 2πRh/d2. Thus, the friction force acting at the wall in the foam layer reads

Ff ∼
h

d
Rγ1/3µ2/3Ẋ|Ẋ|−1/3, (1)

where the absolute value is introduced to conveniently treat negative speeds. This result is
reminiscent to the force acting on a plate pulled out of a bath6,9 and is valid for a mobile
interface, i.e. an interface where a free shear boundary condition applies. This point has
been verified for the foam used in our experiments (see section II).

Using the estimation for the volume of fluid effectively oscillating and the forces acting
on it, we write Newton’s 2nd law:

πR2(ρλ)Ẍ = Fg + Fw + Ff . (2)

Equation (2) constitutes a nonlinear oscillator where inertia is resisted by the restoring force
of gravity and the two dissipative terms, Fw and Ff (see the equivalent mechanical system

depicted in Figure 3). We note that Fw varies linearly with Ẋ, while Ff has a sublinear

dependence on the interface velocity Ẋ. As a consequence, Ff is expected to dominate the

dynamics when Ẋ is sufficiently small. After a renormalization by the inertial term, eq. (2)
yields

Ẍ + ω2
0X = −2σω0Ẋ − αω4/3

0 R1/3Ẋ|Ẋ|−1/3, (3)
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where ω0 is the angular frequency scaling as ω0 ∼
√
g/R, and σ is the viscous damping

coefficient which is proportional to σ ∼
√
ν/(R3/4g1/4). These scaling arguments are in line

with the theoretical results obtained using first principles1,3. The last term on the right hand

side is the nonlinear damping associated with the foam layer, where the prefactor ω
4/3
0 R1/3

results from the renormalization, and α is the dimensionless coefficient of sublinear damping,
which scales as α ∼ hd−1γ1/3µ2/3ρ−1R−5/3g−2/3.

B. Asymptotic solution and comparison to experiments

In the limit of negligible capillary effects, α = 0, equation (3) reduces to a linearly damped
harmonic oscillator. This equation is traditionally used to model the free-surface oscillations
of a liquid in a tank2, with solution:

X(t) = X0e
−ω0σt cos(

√
1− σ2ω0t), (4)

where X0 is the initial amplitude. This expression is consistent with the experimental data
reported in Fig. 2 for h = 0 (no foam).

With foam and thus α 6= 0, eq. (3) does not have a closed-form analytical solution.
However, an asymptotic solution can be obtained by using the method of multiple scales
as detailed in Nayfeh10. In the limit of small damping, σ, α � 1, the solution of eq. (3)
is asymptotic to X(t) ∼ a(t) cos(ω0t), where the sinusoidal term is the solution of the
undamped oscillator (σ = α = 0 as in the leading order problem in the asymptotic scheme).
The slow varying envelope a(t) is determined at the next order by imposing a compatibility
condition that involves only the right hand side terms in eq. (3) oscillating at the natural
frequency of the system ω0. X(t) reads:

X(t) =

[
X

1/3
0 − α

σ
cR1/3

(
eω0σt/3 − 1

)]3
e−σω0t︸ ︷︷ ︸

a(t)

cos(ω0t). (5)

See supplemental material11 at [URL] for a detailed derivation of the asymptotic solution
and the definition of the constant c that is the Fourier coefficient of the Fourier component
of Ẋ|Ẋ|−1/3 synchronized to the natural frequency of the system ω0. Note that the fre-

quency shift
√

1− σ2 in eq. (4), is not present in the asymptotic solution (5) as it belongs
to a higher order.

The asymptotic solution (5) to the sublinear model (SLM), is now compared and fitted to
our experimental results. In Figure 2(b) the coefficients ω0 and σ are set to their reference
values obtained experimentally in the h = 0 limit (ω0 = 22.00 rad/s, σ = 9.8 · 10−3). The
sublinear coefficient α is thus the only unknown parameter of the model. Here, α is deter-
mined independently for each of the h 6= 0 cases by fitting the logarithmic decrement with
equation (5). We find that our model captures the concave aspect of the linear decrement
measured from experiments. Additionally, the larger the film thickness, the stronger the
nonlinear damping coefficient. More precisely, our data in Fig. 2B shows that the damping
coefficient α increases linearly with the foam thickness h, further validating the proposed
physical picture: in the range of thin foam layers investigated, the foam acts as collection of
Plateau borders, which all equally contribute to the effective dissipative force. The number
of contact lines, earlier estimated as the foam thickness to bubble diameter ratio h/d, is
thus the relevant scale to evaluate α.

C. Sublinear friction and its finite-time arrest

Assured that the reduced model (3) and its solution (5) are a quantitative representa-
tion of the sloshing dynamics with foam, we turn to examine the mechanistic impact of
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FIG. 4. (A) Numerical nonlinear solution of eq. (3) for h = 4 mm (black line), together with its
envelope obtained by asymptotic analysis (orange line). The vertical red line indicates the finite-
time of arrest t∗. The blue line represents the envelope of the linear model solution starting from
the same initial condition. (B) Time of arrest as a function of the foam height h for a single initial
condition (from eq.(6) with α(h) reported in Fig. 2B). Symbols correspond to the values deduced
from the experiments.

the sublinear damping introduced in our model. In Fig. 4A we report the sublinear model
(SLM) envelope a(t) in the particular, yet representative, case h = 4 mm. Its concave down
behavior contrasts with the classical exponential relaxation adopted by previous works4,
indicated by the blue line. This effect is due to an increase of the relative importance
of sublinear friction forces compared to the inertial and restoring terms as the amplitude
of oscillation decreases. The dominance of interfacial effects is induced by their sublinear
dependance in the oscillating velocity. In fact, they diverge in the limit of vanishing oscil-
lations, yielding a finite-time singularity. For the sake of the validation of our asymptotic
solution (5), we report also in Fig. 4A the numerical solution of eq. (3) obtained using a
third order Runge-Kutta scheme.

Upon examination of the behavior of eq. (5) at very small amplitudes, we find the am-
plitude of sloshing to be exactly nil for time t = t∗, where t∗ is the time of arrest. This
behavior contrasts the classical linear theory giving rise to an exponential decay for which
t∗ =∞. In our model, t∗ is finite and using eq. (5), we can derive its analytical expression:

t∗ =
3

σω0
ln

[
1 + c−1 σ

α(h)

(
X0

R

)1/3
]
. (6)

In Fig. 4B we show the variation of t∗ with h and report the values corresponding to our
experiments (as deduced from the fit of our experimental data using the SLM). The time
of arrest t∗ diverges in the limit where h = 0, as expected since this case corresponds to
an exponential relaxation in our theoretical framework (see eq. (4)). A small foam layer
(h = 2.5 mm) is sufficient to bring this time to a finite and relatively small value (t∗ ' 12 s).
Other values of t∗ corresponding to larger values of h are of the same order (the smallest is
5 s) and decrease if the foam thickness h increases.

IV. CONCLUSIONS

In our experiments we found that adding foam to a liquid dramatically damps its os-
cillatory motion but hardly affects its sloshing frequency. Without foam, sloshing is well
approximated by a linearly damped harmonic oscillator relaxing exponentially with charac-
teristic time tµ = 1/(σω0), thereby predicting an arrest of motion for t∗ =∞. In contrast,
owing to its cellular structure, foam introduces sublinear capillary forces, which, in turn,
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lead to a finite-time arrest of the fluid’s motion. Equation (6) provides the expression for
the time of arrest t∗, highlighting the importance of the ratio between the viscous damping
σ ∼ ν1/2g−1/4R−3/4 and the sublinear damping α ∼ hd−1γ1/3µ2/3R−5/3g−2/3ρ−1 coeffi-
cients. The time of arrest t∗ is negatively correlated to α/σ and diverges when this ratio
is small (corresponding to a linearly damped oscillator). Specifically, an increase in h, an
increase in γ or a decrease in d, all yield a decrease in t∗. The scaling argument for the
sublinear coefficient α is in good agreement with the experimental measurements for various
foam height h, see section III B. On the other hand, its dependence on the fluid density,
ρ, its viscosity, µ, and surface tension, γ, along with the dependence on the container size,
R, and the foam bubble diameter, d, can in principle be probed experimentally by using
different fluids, container size and foams and it is a future perspective of this work.

Note that this expression is only valid for small but finite foam layers. Sloshing with a
large amount of foam may lead to the situation where only a fraction of the total volume
of foam is effectively in motion. The upper part of the foam layer remains still, hence does
not participate to the sublinear damping examined in this work. We therefore anticipate
that α(h) does not remain linear for arbitrarily large values of h, but instead saturates, in
turn giving rise to a plateau for t∗ in the limit of large foam thicknesses.

Similarly, the case d = 0 and h = 0 is ill-defined in our model. For these values,
corresponding to a simple liquid-air interface, a liquid meniscus forms at the container
walls. During sloshing, this advancing and receding contact line will generate a small, yet
nonlinear, friction force5, which affects the damping rate measured in the experiments2,8.
Evidence of these effects is apparent at very small amplitude as highlighted by the shaded
area in Fig. 2A for pure water. Although the accuracy of the measurements does not
allow for a systematic analysis at this stage, this observation suggests that our work could
generalize to a single moving contact line. Accounting for those effects – without foam to
exacerbate them – requires a realistic contact line model2, with features such as contact
angle hysteresis and the variations of contact angle with the contact line velocity.

Finally, we note that finite-time arrests are commonly observed in mechanical systems
involving solid friction as a consequence of Coulomb’s law, but have not frequently been
reported in fluidic systems. Their importance in practical situations such as Euler’s disk
has been the subject of investigations in recent years12. Here, we have demonstrated that
the effect of pure fluid dissipation in sub-millimetric menisci at a contact line is sufficient
to bring a body of fluid to rest in finite time albeit the fluid’s volume is significantly larger
than that of the meniscus.
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