A Class of Random Field Memory Models for Mortality Forecasting

Abstract : This article proposes a parsimonious alternative approach for modeling the stochastic dynamics of mortality rates. Instead of the commonly used factor-based decomposition framework , we consider modeling mortality improvements using a random field specification with a given causal structure. Such a class of models introduces dependencies among adjacent cohorts aiming at capturing, among others, the cohort effects and cross generations correlations. It also describes the conditional heteroskedasticity of mortality. The proposed model is a generalization of the now widely used AR-ARCH models for random processes. For such class of models, we propose an estimation procedure for the parameters. Formally, we use the quasi-maximum likelihood estimator (QMLE) and show its statistical consistency and the asymptotic normality of the estimated parameters. The framework being general, we investigate and illustrate a simple variant, called the three-level memory model, in order to fully understand and assess the effectiveness of the approach for modeling mortality dynamics.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01367308
Contributeur : Yahia Salhi <>
Soumis le : jeudi 15 septembre 2016 - 20:44:30
Dernière modification le : vendredi 30 juin 2017 - 01:05:05
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 16:17:57

Fichier

ARARCH_RF.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01367308, version 1

Citation

Paul Doukhan, Denys Pommeret, Joseph Rynkiewicz, Yahia Salhi. A Class of Random Field Memory Models for Mortality Forecasting. 2016. 〈hal-01367308〉

Partager

Métriques

Consultations de la notice

281

Téléchargements de fichiers

118