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A unified formulation to assess multilayered theories
for piezoelectric plates

D. Ballhause, M. D�Ottavio, B. Kröplin, E. Carrera
1. Introduction

Because of their self-monitoring and self-adaptive

capability, so-called advanced intelligent structures have

attracted considerable research over the past few years.
* Corresponding author. Tel.: +39 11 5646836; fax: +39 11

5646899.

E-mail addresses: ballhause@isd.uni-stuttgart.de (D. Ball-

hause), erasmo.carrera@polito.it (E. Carrera).
These structures have some distinct advantages over

conventional actively controlled structures. Since intelli-

gent structures are characterized by distributed actua-

tion and sensing systems, more accurate response

monitoring and control are possible. Some of the most

significant work has concentrated on the development

and implementation of actuators and sensors made of

piezoelectric materials. Since Curie brothers [1], it is

known that there are two basic phenomena �direct and
converse effects�, characteristic of piezoelectric materials,
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which permit them to be used as sensors and actuators.

Although piezoelectricity has a long history, its use in

actuation and control of light flexible structures for

aerospace applications is relatively new. Overview pa-

pers are those by Rao and Sunar [2], Chopra [3], Tani

et al. [4], and Sunar and Rao [5]. In most of these appli-

cations, the piezoelectric materials are used as sensor/

actuator layers by embedding them in a multilayered

structure which is often made by advanced anisotropic

composite materials.

As pointed out by the already mentioned overview

papers, the most important problems arising in the de-

sign of intelligent structures embedding piezo-layers

are manufacturing, electro-mechanical modeling, opti-

mization and control. Among these, the attention is

herein focused on plate theories for the electro-mechan-

ical modeling of flat, intelligent structures. The accurate

description of mechanical and electrical fields in the lay-

ers is, in fact, essential in order to both perform a real-

istic simulation of direct/converse effect and prevent

failure mechanisms of the structure.

The main issue of multilayered piezoelectric construc-

tions is related to the possibility of exhibiting different

mechanical–electrical properties in the thickness direc-

tion. In addition, anisotropic multilayered composites of-

ten exhibit both higher transverse shear and transverse

normal flexibilities, with respect to in-plane deformabi-

lity, than traditional isotropic one-layered ones. As a con-

sequence, plate theories which are based on the extension

of so-called Kirchhoff (or Classical Lamination Theory,

CLT) and Reissner–Mindlin (or First order Shear Defor-

mation Theory, FSDT) hypotheses can be ineffective to

trace static and dynamic response of piezoelectric plates.

Higher transverse deformabilty demands the inclusion

of transverse shear and normal stresses which are dis-

carded in classical analyses. Furthermore, transverse dis-

continuous mechanical properties cause displacement

fields u = (ux,uy,uz) which can exhibit a rapid change of

their slopes in the thickness direction in correspondence

to each layer interface. This is known as the Zig-Zag

(ZZ) effect. Nevertheless, equilibrium reasons require

Interlaminar Continuity (IC) for transverse stresses rn =

(rxz,ryz,rzz). A discussion on theories addressing ZZ

and IC has been recently provided by Carrera [6]. As far

as electrical variables are concerned, it should be noticed

that in order to include a correct description of electrical

stiffnesses, the electric field should have at least a linear

distribution in thickness direction of the piezo-layers.

As a consequence, at least a parabolic assumption for

the electric potential into the layers is required.

Many refined plate theories have been proposed and

extended to the electro-mechanical fields. A few exam-

ples are mentioned in the following text. Applications

of CLT and FSDT to piezoelectric plates were given

by Tiersten, [7] and Mindlin [8]. As example of a refined

theory the work by Yang and Yu [9] is mentioned. The
electric fields generated by stresses, e.g. electrical stiff-

ness, were not considered in these three works. The

electro-mechanical coupling was indeed retained in fol-

lowing articles. Mitchell and Reddy [10] introduced a

layer-wise (LW) description for the electric potential,

while an equivalent single layer (ESL) description was

retained for displacements. According to Reddy [11], it

is intended that the number of displacement variables

is kept independent of the number of constitutive layers

in the ESL models, while the same variables are indepen-

dent in each layer for LW cases. Refined ESL models

have been discussed by Benjeddou [12]. ESL formula-

tion taking into account ZZ and IC have been discussed

by Touratier and Ossadzow-David [13]. A more com-

plete discussion of the several contributions on electro-

mechanical models of multilayered plates embedding

piezo-layers, has been covered by recent exhaustive

state-of-the-art articles. Interested readers are addressed

to the review papers by Saravanos and Heyliger [14] and

by Benjeddou [15].

However, most of the articles proposing refined the-

ories for piezoelectric plates restricted the numerical

comparison to classical plate theories, such as CLT

and FSDT, and to available 3D solutions. Only in some

cases other refined theories were included in the verifica-

tion of the new method. Such a restriction does not per-

mit to give a complete overview and assessment of

available theories. The present work aims to contribute

to this matter by enlarging the number of the theories

available for a single problem: about thirteen theories

are, in fact, implemented and compared for different test

cases. The most accurate ones coincide with a layer-wise

theory based on a fourth order expansion in each layer

(LD4). Such a theory leads to a quasi-3D description

of mechanical and electrical fields in the layers. The less

accurate one coincides with CLT. Eleven further formu-

lations with accuracies lying between LD4 and CLT are

proposed and compared. These theories are able to cov-

er many of the aspects characterizing 2D axiomatic the-

ories for multilayered plates, such as ZZ, transverse

shear deformation, transverse shear strains effects and

to compare LW and ESL description.

In order to meet the mentioned proposals this paper

reconsiders recent findings by Carrera [16–19]. In these

papers a �unified formulation� was proposed, basing on

applications of the Principle of Virtual Displacement

(PVD) and Reissner� Mixed Variational Theorem

(RMVT) to mechanical problems. This unified formula-

tion permits to derive governing equations in terms of

a few fundamental nuclei whose expressions do not

change by varying the assumptions made for the dis-

placement variables in the layer thickness. In this work,

these methods are extended to electro-mechanical static

and dynamic analyses of multilayered plates embedding

piezo-layers. Developments have been restricted to PVD

applications. Layer-wise and equivalent single layer



models with linear up to fourth-order expansion in the

plate thickness (z-direction) have been implemented.

Zig-zag effects are described by means of the Murakami

zig-zag function [20]. Transverse normal strain effects

have also been considered. As far as the electrical poten-

tial is concerned, attention has been restricted to a

layer-wise description. Results are given for the case of

orthotropic layers and simply supported plates loaded

by harmonic distributions of mechanical and electrical

loadings. Numerical results are given for both free vibra-

tion and static response. Verification is made with re-

spect to available 3D solutions and an assessment of

various plates theories is finally given.
2. Preliminary

A multilayered flat plate consisting of NL layers,

which can be piezoelectric or purely elastic is examined.

The laminae are considered homogeneous and perfectly

bonded with each other. The notation and the Cartesian

coordinate system x,y,z referred to the middle surface

can be seen in Fig. 1. The plate has the length a, width

b and height h. The index k is used for the layer number.

The local thickness coordinate of the layer is zk, the non-

dimensional correspondent is fk = (2zk/hk). The linear

elastic range of the materials and the physical limits of

the piezoelectric layer, like Curie temperature and depo-

larization potential, are not exceeded by any deforma-

tions or loadings. The stresses and strains are

represented in engineering notation with the indices 11,

22, 33, 13, 23, and 12. The stiffness coefficients eCij refer

to these with i, j = 1 . . .6. The directions of the piezoelec-
tric material are named in the standard manner with 1–

3, axis 3 being the polarization direction of the material.

The polarization axis is assumed parallel to the thickness

direction z of the plate. To establish a uniform model-

ing, all layers in the laminate are assumed to be piezo-

electric, where for purely elastic layers the piezoelectric

coefficients are set to zero.
k=1

k=2

k=N L

k=N -1L

k

x,y

z ,k kz

W

Wk
x ,yk kz0k

h

z

h

Fig. 1. Geometry and notations of multilayered plate.
2.1. Constitutive equations

The coupling between the stresses and the electric

field in the k-layer is sustained by the direct and converse

piezoelectric effect and is represented, according to the

IEEE standard [21] with the following constitutive equa-

tions in array form:

rk ¼ eC k
�k � ek

T

Ek ð1Þ

eDk
¼ ek�k þ ekEk ð2Þ

Boldfaced letters are used for arrays, superscript T de-

notes transposition. The vectors r and � contain the

six stress and strain components, respectively. eDk
is

the dielectric displacement and Ek the electric field

strength with three direction components each

eDk
¼ eDk

1;
eDk

2;
eDk

3

h iT
Ek ¼ Ek

1;E
k
2;E

k
3

� �T ð3Þ

The [6 · 6] array eC k
contains the elastic, the [3 · 6] array

ek the piezoelectric and finally the [3 · 3] array ek the

dielectric coefficients of the k-th layer. For convenience

the stresses and strains are separated into in-plane and

transverse components, denoted respectively with p

and n as follows:

rk
p ¼ rk

11; r
k
22; r

k
12

� �T
rk
n ¼ rk

13; r
k
23; r

k
33

� �T ð4Þ

�kp ¼ �k11; �
k
22; �

k
12

� �T
�kn ¼ �k13; �

k
23; �

k
33

� �T ð5Þ

The array formulation Eq. (1) of the constitutive equa-

tions can then be rewritten as

rk
p ¼ eC k

pp�
k
p þ eC k

pn�
k
n � ek

T
p Ek

rk
n ¼ eC kT

pn�
k
p þ eC k

nn�
k
n � ek

T

n Ek

eDk
¼ ekp�

k
p þ ekn�

k
n þ ekEk

ð6Þ

The arrays of the elastic material properties for mono-

clinic material systems explicitly read

eC k

pp ¼

eCk

11
eCk

12
eCk

16

eCk

12
eCk

22
eCk

26

eCk

16
eCk

26
eCk

66

2
6664

3
7775 eC k

pn ¼

0 0 eCk

13

0 0 eCk

23

0 0 eCk

36

2
6664

3
7775

eC k

nn ¼

eCk

55
eCk

45 0

eCk

45
eCk

44 0

0 0 eCk

33

2
6664

3
7775

The arrays of the piezoelectric constants for monoclinic

material are

ekp ¼
0 0 0

0 0 0

ek31 ek32 ek36

2
64

3
75 ekn ¼

ek14 ek15 0

ek24 ek25 0

0 0 ek33

2
64

3
75



Fig. 2. Displacement assumptions of ESL and LW model.
The piezoelectric materials considered in this work are

all transversally isotropic to the 3-direction. Thus the

components e14, e25 and e36 become zero. The permittiv-

ity coefficients are combined to the array

e ¼
e11 e12 0

e21 e22 0

0 0 e33

2
64

3
75

Attention has been herein restricted to the case

e12 = e21 = 0 which corresponds to hexagonal crystal sys-

tems, see [21].

2.2. Geometric relations

The strains �kp and �kn are related to the displacements

uk ¼ ½ukx ; uky ; ukz �
T

according to the linear geometrical

relations

�kp ¼ Dpu
k �kn ¼ Dnu

k ð7Þ

The arrays Dp and Dn contain the differential opera-

tors. The definition of the electric field strength Ek

according to the Maxwell equations is given by

Ek ¼ DeU
k ð8Þ

The explicit form of the introduced linear differential

operators arrays read

Dp ¼
ox 0 0

0 oy 0

oy ox 0

2
64

3
75 Dn ¼

oz 0 ox

0 oz oy

0 0 oz

2
64

3
75

De ¼
�ox 0 0

0 �oy 0

0 0 �oz

2
64

3
75

wherein oa denotes partial derivation with respect to the

a-coordinate.
3. Unified formulation

The key point of the unified formulation is the usage

of generalized assumptions for the displacements u and,
in the piezoelectric case, also for the potential U. In the

following section, these assumptions are defined and the

possible theories are listed.

3.1. Assumptions for displacement

The generalized assumptions for the displacement

u = [ux,uy,uz]
T with the given number of expansion N

are

u ¼ F tut þ F rur þ F bub ¼ F sus

where s ¼ t; b; r and r ¼ 1; 2; . . . ;N ð9Þ

The displacement is separated into a set of thickness

functions Fs and the correspondent displacement vari-
ables us. This formulation incorporates a wide variety

of different theories with the same basic arrays for the

governing equations (fundamental nuclei). The two

basic concepts are layer-wise (LW) and equivalent single

layer (ESL) modeling. In the first case different displace-

ment variables are assumed for every layer, while in the

second case only one set of displacement variables for

the whole plate is defined. Fig. 2 shows from a qualita-

tive point of view the differences between LW and ESL

descriptions with linear (N = 1) or higher-order expan-

sions for a three layer problem For convenience the

two modelings (LW and ESL) have been in Fig. 2 de-

noted by LDN ed EDN, according to the acronyms that

will be clarified below.

3.1.1. ESL model with Taylor expansion

The equivalent single layer description requires an

assumption of the displacement for the whole plate.

Using Taylor expansions it can generally be written as

u ¼ zrur r ¼ 0; 1; 2; . . . ;N ð10Þ

Expressed in the form of the generalized assumption (9),

the subscript b denotes values related to the reference

surface X and the subscript t refers to the terms with

the highest order (N). The thickness functions thus are

the following Taylor expansions

F b ¼ 1; F t ¼ zN ; F r ¼ zr; r ¼ 1; 2; . . . ;N � 1

ð11Þ

In this work we consider linear (N = 1) up to fourth-

order (N = 4) models. These models are denoted as

EDN where N indicates the order of expansion. For in-

stance, for ED1 the explicit displacement assumptions

read



ux ¼ uxb þ zuxt
uy ¼ uyb þ zuyt
uz ¼ uzb þ zuzt

The variable uib represents the displacement of the

reference surface X and the variable uit is interpreted

as the rotation angle /i. In this respect, the First order

Shear Deformation Theory (FSDT) can be found by set-

ting uzt = /z = 0. Furthermore, results for the Classical

Laminate Theory (CLT) with the condition uxt = /x =

�uz,x and uyt = /y = �uz,y can be obtained by using

the shear correction factor v =1 within a typical pen-

alty technique.

3.1.2. Inclusion of ZZ-functions in ESLM

A refinement of the ESL formulation can be reached

by adding a function to the displacement assumption,

that imposes the zig-zag form (ZZ) of the displacement

distribution. According to Murakami [20], who first pre-

sented this idea, the displacement with imposed ZZ form

reads

u ¼ u0 þ ð�1ÞkfkuZ þ zrur; r ¼ 1; 2; . . . ;N ð12Þ

The zig-zag term, denoted with the subscript Z changes

sign for each layer k. In unified form this relation can be

represented, if the subscript t is referred to the ZZ func-

tion (ut = uZ). In this case, the thickness functions are

defined as

F b ¼ 1; F t ¼ ð�1Þkfk ; F r ¼ zr; r ¼ 1; 2; . . . ;N

ð13Þ

These ESLM with ZZ functions are considered with lin-

ear, parabolic and cubic expansion, referred to as EDZ1,

EDZ2 and EDZ3. For example the explicit displacement

assumptions of EDZ1 take the form

ux ¼ ux0 þ z/x þ ð�1ÞkfkuxZ
uy ¼ uy0 þ z/y þ ð�1ÞkfkuyZ
uz ¼ uz0 þ z/z þ ð�1ÞkfkuzZ
The construction of EDZ1 is depicted in Fig. 3.

3.1.3. LW model with Legendre expansions

In case of layer-wise modeling, the displacement vari-

ables are assumed independently for each layer k. Thus a

statement in the unified form
EDZ1: +

z z z

ED1 ZZ EDZ1

=

Fig. 3. Displacement assumptions of EDZ1.
uk ¼ F tu
k
t þ F bu

k
b þ F ru

k
r ¼ F su

k
s

where s ¼ t; b; r; r ¼ 1; 2; . . . ;N and

k ¼ 1; 2; . . . ;NL ð14Þ

exists for every layer k. For LW models it is much more

convenient to use combinations of Legendre polynomi-

als as thickness functions. As they offer the possibility

to define ut and ub as top and bottom values of the dis-

placements of the layer, the interlaminar continuity can

easily be implemented in the assembly of the laminate.

The thickness functions Fs for the LW case are defined

as

F b ¼ ðP 0 þ P 1Þ=2; F t ¼ ðP 0 � P 1Þ=2;
F r ¼ Pr � P r�2 with r ¼ 1; 2; . . . ;N ð15Þ

in which Pj = Pj(fk) is the Legendre polynomial of jth or-
der defined over the layer thickness fk with �1 6 fk 6 1.

The LW models range as well from linear up to fourth-

order (LD1, LD2, LD3 and LD4). The employed poly-

nomials are in the following explicitly given:

P 0 ¼ 1; P 1 ¼ fk ; P 2 ¼ ð3f2k � 1Þ=2;

P 3 ¼ ð5f3k � 3fkÞ=2; P 4 ¼ ð35f4k � 30f2k þ 3Þ=8

As the top and bottom values of the displacements have

been chosen as unknown variables, the interlaminar

compatibility can be imposed by

ukt ¼ u
ðkþ1Þ
b ; k ¼ 1; . . . ;NL � 1 ð16Þ
3.2. Assumptions for potential

The modeling of the potential U will be restricted to

layer-wise formulation. As hybrid problems containing

piezoelectric and pure elastic layers are considered, the

differences of the electric properties of each layer can

be very significant. ESL assumptions thus do not seem

appropriate to cover these high gradients. In contrast

to the displacement u, the potential U is a scalar. To ob-

tain typical 3 · 3 matrices for the fundamental nuclei, it
is useful for computational reasons that will be clarified

later, to introduce the potential as a vector Uk = [Uk,Uk,

Uk]T. Each component has the same value, the scalar

potential U. With this assumption the layer-wise

assumptions for the potential can be written in accor-

dance to Eq. (14) as

Uk ¼ F tU
k
t þ F bU

k
b þ F rU

k
r ¼ F sU

k
s

where s ¼ t; b; r; r ¼ 1; 2; . . . ;N

and k ¼ 1; 2; . . . ;NL ð17Þ

The same thickness functions are used as in the layer-

wise displacement case, stated in Eq. (15). The interlam-

inar compatibility conditions of the potential can thus

be imposed by



Uk
t ¼ Uðkþ1Þ

b ; k ¼ 1; . . . ;NL � 1 ð18Þ

For convenience the expansion N of the potential is as-

sumed to be the same as the expansion of the displace-

ment assumption, no matter if the latter is chosen to

be ESL or LW.
4. Governing equations

The unified formulation of the differential equations

and boundary conditions governing the coupled

mechanical–electrical behavior of hybrid piezoelectric

mechanic plates are derived in this section, using the

principle of virtual displacements (PVD). The derivation

is performed at layer-level, followed by the assembly of

the arrays for the laminate. In the third part a Navier-

type closed-form solution is presented.

4.1. Governing equations for a single layer

The PVD for a piezoelectric layer k in array formula-

tion can be stated asZ
Xk

Z
Ak

d�k
T

p rk
p þ d�k

T

n rk
n � dET eDn o

dXk dz

¼ �
Z

Xk

Z
Ak

qkdu
kT€ukdXk dzþ dW e ð19Þ

The external virtual work is represented as dWe. The

geometrical relations (7) and (8) and the constitutive

equations (6) are introduced and displacement and

potential are expressed with the assumptions (9) and

(17).Z
Xk

Z
Ak

Dpdu
k
s

� �T
F s

eC k

ppDpþ eC k

pnDn

� �
F su

k
s �ek

T

p DeF sU
k
s

h in

þðDndu
k
sÞ

TF s
eC k

npDpþ eC k

nnDn

� �
F su

k
s �ek

T

n DeF sU
k
s

h i
�ðDedU

k
sÞ

TF s ekpDpþeknDn

� �
F su

k
s þ ekDeF sU

k
s

h io
dXkdz

¼�
Z

Xk

Z
Ak

duk
T

s F sqkF s€u
k
sdXkdzþdW e ð20Þ

Dn and De contain the differential operators in both the

in-plane and the transverse direction. In order to

perform integration-by-parts in the domain Xk, these

operators are conveniently splitted into their in-plane

(subscript X) and transverse (subscript z) components:

Dn ¼ DnX þDnz ð21Þ

De ¼ DeX þDez ð22Þ

The integration-by-parts in Xk can be carried out

according to the following array scheme:
Z
Xk

ðDndu
kÞTuk dXk ¼ �

Z
Xk

duk
T

DT
n u

k dXk

þ
Z

Ck

duk
T

Inu
k dCk

where n ¼ p; nX; eX ð23Þ

with

I p ¼
1 0 0

0 1 0

1 1 0

2
4

3
5; InX ¼

0 0 1

0 0 1

0 0 0

2
4

3
5

and

I eX ¼
�1 0 0

0 �1 0

0 0 0

2
4

3
5 ð24Þ

The integration yields following expressionZ
Xk

Z
Ak

duk
T

s �DT
p F s ð eC k

ppDp þ eC k

pnðDnX þDnzÞÞF su
k
s

�hn
�ek

T

p ðDeX þDezÞF sU
k
s

�
þ ðDT

nz �DT
nXÞF s ð eC k

npDp þ eC k

nnðDnX þDnzÞÞF su
k
s

�
�ek

T

n ðDeX þDezÞF sU
k
s

�i
� dUkT

s ðDT
ez �DT

eXÞF s ðekpDp þ eknðDnX þDnzÞÞF su
k
s

�h
þekðDeX þDezÞF sU

k
s

�io
dXk dz

þ
Z

Ck

Z
Ak

duk
T

s ITp F s ð eC k

ppDp þ eC k

pnðDnX þDnzÞÞF su
k
s

�hn
�ek

T

p ðDeX þDezÞF sU
k
s

�
þ ITnXF s ð eC k

npDp þ eC k

nnðDnX þDnzÞÞF su
k
s

�
�ek

T

n ðDeX þDezÞF sU
k
s

�i
� dUkT

s ITeXF sððekpDp þ eknðDnX þDnzÞÞF su
k
s

h
þekðDeX þDezÞF sU

k
s Þ
io

dCk dz

¼ �
Z

Xk

Z
Ak

duk
T

s F sqkF s€u
k
s dXk dzþ dW e ð25Þ

From this equation, the coupled electro-mechanical sys-

tem of governing equations can be obtained. The varia-

tions of displacement duk and potential dUk are

independent and can be therefore formulated in two

separate equations

duks : K kss
uu u

k
s þ K kss

ue Uk
s ¼ �Mkss€uks þ pkms ð26Þ

dUk
s : K kss

eu u
k
s þ K kss

ee Uk
s ¼ pkes ð27Þ

with the boundary conditions

uks ¼ �uks or Pkss
uu u

k
s þ Pkss

ue Uk
s ¼ Pkss

uu �u
k
s þ Pkss

ue
�U

k
s

Uk
s ¼ �U

k
s or Pkss

eu u
k
s þ Pkss

ee Uk
s ¼ Pkss

eu �u
k
s þ Pkss

ee
�U

k
s

ð28Þ



K k ttt = t

r bs= t

r

b

K k tt K k tr K k tb

K k rbK k rrK k rt

K k bbK k brK k bt

K k st
:

Fig. 4. Basic scheme of layer arrays K kss
ij (i, j = u,e).

k=N L

k=N -1L

t br br

t

r

b

r

b

b =tk k -1

Fig. 5. LW assembly of laminate arrays K ss
ij (i, j = u,e).
The unified formulation introduces the following

fundamental nuclei

K kss
uu ¼

Z
Ak

�DT
p C k

ppF sF sDpþC k
pnF sF sDnXþC k

pnF sDnzF s

� �n
�DT

nX C k
npF sF sDpþC k

nnF sF sDnXþC k
nnF sDnzF s

� �
þDT

nzF s C k
npF sDpþC k

nnF sDnXþC k
nnDnzF s

� �o
dz

ð29Þ

K kss
ue ¼

Z
Ak

DT
p ek

T

p F sDezF s þ ek
T

p F sF sDeX

� �n
þDT

nX ek
T

n F sDezF s þ ek
T

n F sF sDeX

� �
�DT

nzF s ek
T

n DezF s þ ek
T

n F sDeX

� �o
dz ð30Þ

K kss
eu ¼

Z
Ak

DT
eX ekpF sF sDp þ eknF sDnzF s þ eknF sF sDnX

� �n
�DT

ezF s ekpF sDp þ eknDnzF s þ eknF sDnX

� �o
dz ð31Þ

K kss
ee ¼

Z
Ak

DT
eX ekF sDezF s þ ekF sF sDeX

� ��
�DT

ezF s ekDezF s þ ekF sDeX

� ��
dz ð32Þ

The matrices for the boundary terms read

Pkss
uu ¼

Z
Ak

IpðC k
ppF sF sDpþC k

pnF sF sDnX þC k
pnF sDnzF sÞ

n

þInXðC k
npF sF sDpþC k

nnF sF sDnX þC k
nnF sDnzF sÞ

o
dz

ð33Þ

Pkss
ue ¼

Z
Ak

�I p ek
T

p F sDezF s þ ek
T

p F sF sDeX

� �n

�InX ek
T

n F sDezF s þ ek
T

n F sF sDeX

� �o
dz ð34Þ

Pkss
eu ¼

Z
Ak

� ITeX ekpF sF sDpþeknF sDnzF sþeknF sF sDnX

� �n o
dz

ð35Þ

Pkss
ee ¼

Z
Ak

� ITeX ekF sDezF s þ ekF sF sDeX

� �� �
dz ð36Þ

and the mass matrix can be calculated as

Mkss ¼
Z
Ak

fqkF sF sIgdz ð37Þ

The explicit form of the fundamental nuclei for mono-

clinic material properties is stated in Appendix A.1.

4.2. Assembly of laminate arrays

In the previous section the fundamental matrices for

piezoelectric layers have been derived. They are build
according to the scheme displayed in Fig. 4, where the

indices s and s give the positions t, r and b as defined

for the generalized assumptions. In case of displace-

ments, each subpart tt, tr etc. consist of the three compo-

nents ux, uy and uz. The scalar electric potential has been

artificially expanded to a [3 · 1] vector, thus leading to a
[3 · 3] fundamental nucleus analogous to the displace-

ments. During assembly, the terms related to the poten-

tial can be contracted back to their scalar nature. While

K kss
uu has the dimension [3 · 3], K kss

ue and K kss
eu become

[3 · 1] and [1 · 3] arrays, respectively, and K kss
ee is

reduced to a [1 · 1] matrix.

4.2.1. LW assembly

If the displacement is assumed layer-wise, the layer

arrays K kss
ij with (ij) = (uu), (ue), (eu) and (ee), are com-

bined to the laminate matrices K ss
ij according to the

scheme in Fig. 5. The interface conditions for the dis-

placements and the potential Eqs. (16) and (18) are

imposed by superposing the related subparts as demon-

strated in the figure.

4.2.2. ESL assembly

In case of ESL modeling only one set of displace-

ments u exists. Thus the layer arrays K kss
uu are all super-

posed on this displacement. The potential is still

modeled LW, so that for K kss
ue and K kss

eu only the displace-

ments and the top and bottom potentials at each layer
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Fig. 7. Problem I, geometry and boundary conditions.
interface are superposed. At last K kss
ee is assembled as in

the pure LW case. This assembly procedure is depicted

in Fig. 6.

4.3. Closed-form solution

Closed-form solution to the problem given by Eqs.

(26)–(28) can be found, if some restrictions are applied.

The considered plate must be simply-supported which

implies the following boundary conditions on the

displacements:

ukxðx; y; zÞ ¼ 0 at y ¼ 0; b

ukyðx; y; zÞ ¼ 0 at x ¼ 0; a

ukz ðx; y; zÞ ¼ 0 at x ¼ 0; a y ¼ 0; b

ð38Þ

In addition each layer is orthotropic in the laminate refe-

rence system, i.e. the components eC16; eC26; eC36 and eC45

vanish. In this case, the following Navier-type assump-

tions can be made

ukxs; p
k
mxs

� �
¼ ûkxs; p̂

k
mxs

� �
cosðaxÞ sinðbyÞeixmnt�

ukys; p
k
mys

�
¼

�
ûkys; p̂

k
mys

�
sinðaxÞ cosðbyÞeixmnt

ukzs; p
k
mzs

� �
¼ ûkzs; p̂

k
mzs

� �
sinðaxÞ sinðbyÞeixmnt

ð39Þ

and

Uk
s ; p

k
es

� �
¼ Û

k

s ; p̂
k
es

� �
sinðaxÞ sinðbyÞeixmnt ð40Þ

with the abbreviations

a ¼ mp
a

and b ¼ np
b

ð41Þ

The factors m and n are the number of waves in x- and

y-direction while a and b are the length and width of the
plate. Introducing these assumptions in the system of

governing equations and carrying out the differentia-

tions, the fundamental nuclei for closed-form solution

K̂
kss

uu ; K̂
kss

ue ; K̂
kss

eu and K̂
kss

ee can be found. It turns out that

K̂
kss

eu ¼ K̂
kssT

ue . Explicit forms of these arrays can be taken

from Appendix A.2. The assembly of the laminate ar-

rays works in the same manner as described above. Thus

the linear system for closed-form solution states

K̂uuûþ K̂ueÛ ¼ x2
mnMûþ p̂m ð42Þ

K̂
T

ueûþ K̂ eeÛ ¼ p̂e ð43Þ

The dynamic free vibration frequencies of this problem

can be found by solving the eigenvalue problem

K̂uu � K̂ue K̂ ee

� ��1
K̂

T

ue

� �
� x2

mnM

����
���� ¼ 0 ð44Þ

Static responses to mechanical and electrical loadings p̂m
and p̂e can be calculated if the loadings are in the form of

Eqs. (39) and (40). Boundary conditions on the potential

Û can be imposed on the top and bottom surface and at

the layer interfaces; in all cases, Û is continuous along z.
5. Numerical results

Three different problems have been addressed. The

first is a dynamic analysis and the second and third con-

sider the static response of a plate on two different load-

ing and boundary condition configurations. For all three

problems 3D exact solutions are available, which are

used for the verification of the presented model.

5.1. Definition of problems

5.1.1. Problem I

In this testcase a square plate with the length and

width a and the thickness h is considered, see Fig. 7. It

consists of five layers which are assumed to be perfectly

bonded to each other. The top and bottom layers are

made of piezoelectric materials with the thickness



Table 1

Elastic, piezoelectric and dielectric properties of used materials

Property PZT-4 Gr/EP

E1 [GPa] 81.3 132.38

E2 [GPa] 81.3 10.756

E3 [GPa] 64.5 10.756

m12 [–] 0.329 0.24

m13 [–] 0.432 0.24

m23 [–] 0.432 0.49

G44 [GPa] 25.6 3.606

G55 [GPa] 25.6 5.6537

G66 [GPa] 30.6 5.6537

e15 [C/m
2] 12.72 0

e24 [C/m
2] 12.72 0

e31 [C/m
2] �5.20 0

e32 [C/m
2] �5.20 0

e33 [C/m
2] 15.08 0

~�11=�0 [–] 1475 3.5

~�22=�0 [–] 1475 3.0

~�33=�0 [–] 1300 3.0

x
y

z

h

a

p x y pz z( , )= sin sin( ) ( )^

Φt= 0

Φb = 0a

πx πy
a a

Fig. 8. Problem II, geometry, boundary conditions and loading

configuration.
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a
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Fig. 9. Problem III, geometry, boundary conditions and

loading configuration.
hkp ¼ 0:1h each, the three structural layers of equal thick-
ness have the configuration [0/90/0]. The materials are

PZT-4 for the piezoelectric and Gr/Ep for the structural

layers. The corresponding material properties can be

taken from Table 1. The top and bottom surfaces are

assumed to be traction-free and electrically grounded,

which imposes the electric potential to be zero (Ut =

Ub = 0). The free vibration frequencies for one wave in

each direction (m = n = 1) are calculated in means of

the frequency parameter c = x/100. Four thickness

ratios a/h = 2, 4, 10 and 50 are considered. A 3D exact

solution is available from Heyliger and Saravanos [22]

for the cases a/h = 4 and 50. Further numerical results

for these cases can be taken from Benjeddou [15] and

Touratier and Ossadzow-David [13].

5.1.2. Problem II

The configuration for Problem II and III consists of a

simply supported square plate with the side length a and

the thickness h. It is build of four layers, two layers of

fiber reinforced material as a structural core on top

and bottom of which the two piezoelectric layers are

bonded. The core layers have the thickness hc = 0.4h

each and the fiber direction is in [0/90] configuration.
Table 2

Verification—Problem I, frequency parameters c = x/100 of exact sol

a/h Mode 1 Mode 2 Mo

4 Exact 57074.5 191301 250

LD4 57074.0 191301 250

50 Exact 618.118 15681.6 21

LD4 618.104 15681.6 21
The thickness of each piezoelectric layer is hp = 0.1h.

The materials are PZT-4 and Gr/Ep with the same prop-

erties as used for Problem I (Table 1). The analytic solu-

tion is calculated for one wave in each direction

(m = n = 1). Four different thickness ratios a/h = 2, 4,

10 and 100 are considered.

For Problem II, a mechanical loading of p̂z ¼ 1 is ap-

plied on the top surface of the plate. The top and bottom

surfaces are electrically grounded and thus have the po-

tential Ut = Ub = 0. The configuration of Problem II is

shown in Fig. 8. 3D exact solution to Problems II and

III for a/h = 4 were presented by Heyliger [23].

5.1.3. Problem III

The plate of Problem III is the same as for Problem II

and again a closed-form solution is determined for

m = n = 1. Only the boundary conditions and loading

configurations are changed as shown in Fig. 9. The
ution and LD4

de 3 Mode 4 Mode 5 Mode 6

769 274941 362492 381036

768 274940 362489 381036

492.8 209704 210522 378104

492.6 209704 210522 378104



Table 3

Verification—Problem II, thickness distribution of U, rxx and eD of exact solution and LD4

z U · 103 rxx
eD

Exact LD4 Exact LD4 Exact LD4

0.500 0.0000 0.000 6.5643 6.5642 160.58 160.59

0.475 0.0189 0.189 5.8201 5.8200 149.35 149.35

0.450 0.0358 0.352 5.0855 5.0855 117.23 117.23

0.425 0.0488 0.488 4.3595 4.3595 66.568 66.567

0.400 0.0598 0.598 3.6408 3.6408 �0.3382 �0.3348
0.400 0.0598 0.598 2.8855 2.8858 �0.3382 �0.3384
0.300 0.0589 0.590 1.4499 1.4496 �0.1276 �0.1277
0.200 0.0589 0.589 0.2879 0.2880 0.0813 0.0813

0.100 0.0596 0.593 �0.7817 �0.7814 0.2913 0.2914

0.000 0.0611 0.611 �1.9266 �1.9266 0.5052 0.5053

0.000 0.0611 0.611 0.0991 0.0991 0.5052 0.5053

�0.100 0.0634 0.634 �0.0149 �0.0150 0.7259 0.7260

�0.200 0.0665 0.666 �0.1280 �0.1281 0.9563 0.9565

�0.300 0.0706 0.706 �0.2426 �0.2427 1.1995 1.1997

�0.400 0.0756 0.756 �0.3616 �0.3617 1.4587 1.4589

�0.400 0.0756 0.756 �4.2348 �4.2348 1.4587 1.4559

�0.425 0.0602 0.602 �4.8806 �4.8806 �58.352 �58.351
�0.450 0.0425 0.425 �5.5337 �5.5337 �103.66 �103.67
�0.475 0.0224 0.225 �6.1951 �6.1950 �132.40 �132.41
�0.500 0.0000 0.000 �6.8658 �6.8658 �142.46 �142.46

Table 4

Verification—Problem III, thickness distribution of ux,rxx and U of exact solution and LD4

z ux · 1012 rxx U

Exact LD4 Exact LD4 Exact LD4

0.500 �32.764 �32.765 111.81 111.80 1.0000 1.0000

0.475 �23.349 �23.350 63.736 63.738 0.9971 0.9972

0.450 �13.973 �13.974 15.833 15.839 0.9950 0.9951

0.425 �4.6174 �4.6179 �32.001 �31.992 0.9936 0.9936

0.400 4.7356 4.7353 �79.865 �79.852 0.9929 0.9929

0.400 4.7356 4.7353 �51.681 �51.680 0.9929 0.9929

0.300 2.9808 2.9802 �33.135 �33.127 0.8415 0.8416

0.200 1.7346 1.7346 �19.840 �19.840 0.7014 0.7015

0.100 0.8008 0.8014 �9.7737 �9.7780 0.5707 0.5708

0.000 0.0295 0.0297 �1.3905 �1.3953 0.4476 0.4477

0.000 0.0295 0.0297 �1.3089 �1.3099 0.4476 0.4477

�0.100 �0.4404 �0.4401 �0.5782 �0.5778 0.3305 0.3306

�0.200 �0.8815 �0.8812 0.1348 0.1343 0.2179 0.2179

�0.300 �1.3206 �1.3202 0.8463 0.8465 0.1081 0.1082

�0.400 �1.7839 �1.7835 1.5723 1.5708 �0.0010 �0.0010
�0.400 �1.7839 �1.7835 14.529 14.524 �0.0010 �0.0010
�0.425 �2.0470 �2.0465 178.01 17.793 �0.0009 �0.0010
�0.450 �2.3140 �2.3134 210.98 21.090 �0.0008 �0.0008
�0.475 �2.5856 �2.5850 244.28 24.418 �0.0004 �0.0004
�0.500 �2.8625 �2.8618 277.95 27.784 0.0000 0.0000
top and bottom surfaces are now traction free and a po-

tential of Ût ¼ 1 is imposed on the top surface of the

plate. The bottom surface remains grounded and thus

has the potential Ub = 0.
5.2. Verification

To verify the presented model and to assess its accu-

racy a comparison with results from the 3D exact
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Fig. 10. Verification—Problem II, thickness distribution of selected variables: (a) displacement u · 1011, (b) potential U · 103, (c) in-
plane stress rxx, (d) in-plane stress rxy, (e) normal stress rzz, (f) dielectric displacement eDz � 1011.
solution is presented. Attention is restricted to the LD4

plate theory which is supposed to lead to the best

description (see also next section). The exact solution

for Problem I taken from Heyliger and Saravanos [22]

is available for the thickness ratios a/h = 4 and 50. Table

2 shows the results for the frequency parameter c = x/
100 for the first six modes of the exact solution and

LD4 model of the unified formulation. The differences

between the two solutions is extremely small.

For Problems II and III the 3D exact solution for the

thickness ratio a/h = 4 was calculated by Heyliger [23].

In Table 3 the results for the thickness distribution of

the potential U, the in-plane stress rxx and the normal

dielectric displacement eDz of the exact solution and
LD4 are confronted. Table 4 contains the in-plane dis-

placement ux, the in-plane stress rxx and the potential

U for Problem III. With two exceptions the results

match with high accuracy. The first discrepancy occurs

for the potential U in Table 3, where all results differ ex-

actly with the factor ten. As all other results of Problem

II depending partly on the potential are calculated con-

sistently by the two models this discrepancy could not be

more than a printing error. The second difference can be

observed for the stresses rxx for Problem III (Table 4).

Also here exactly factor ten occurs for the results in

the bottom layer (�0.5 6 z 6 0.4). In the Figs. 10 and

11 the thickness distributions of some selected variables

are printed together with the results from the exact
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Fig. 11. Verification—Problem III, thickness distribution of selected variables: (a) displacement u · 1011, (b) potential U, (c) in-plane
stress rxx, (d) in-plane stress rxy, (e) normal stress rzz, (f) dielectric displacement eDz � 109.
solution. In the two cases of discrepancies, the latter is

corrected by the factor ten.

It can be concluded, that LD4 leads to a quasi-3D

description of the dynamic and static response of multi-

layered plates embedding piezoelectric layers. LD4

therefore could be used as reference solutions in those

cases in which 3D solutions are not available.

5.3. Assessment of models

5.3.1. Problem I

Table 5 shows an overview of the frequency parame-

ter results for all the considered theories for the thick-
ness ratios a/h = 4 and 50, Table 6 for the ratios a/h =

2 and 10. In the first Table the results from the exact

solution and the additional models of Benjeddou [12]

and of Touratier and Ossadzow-David [13] are also

listed. As expected the LDN models yield the best re-

sults. The ESL models with imposed zig-zag form

EDZN lead in the most cases to a slight improvement

compared to the EDN models. The thickness distribu-

tions related to the three first modes from LD4, ED4

and ED1 are plotted in Fig. 12 for the thickness ratio

a/h = 4. Comparing the plots with the results in Table

5 it can be observed how a lower order of expansion

leads to a decreasing accuracy of the description.



Table 5

Problem I, frequency parameters c = x/100 for a/h = 4 and a/h = 50

a/h = 4 a/h = 50

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Exact 57074.5 191301 250769 618.118 15681.6 21492.8

Touratier – 194903 251763 – 15592.3 –

Benjeddou 58216.1 196018 268650 618.435 15684.0 21499.4

LD4 57074.0 191301 250768 618.104 15681.6 21492.6

LD3 57074.0 191301 250768 618.104 15681.6 21492.6

LD2 57081.9 191311 250786 618.105 15681.6 21492.6

LD1 57252.5 194840 255646 619.022 15683.4 21494.4

ED4 58713.8 194592 254740 618.464 15693.5 21497.8

ED3 58818.6 195825 259586 618.550 15694.2 21500.1

ED2 69413.7 195860 261780 620.229 15694.9 21505.2

ED1 74105.9 196021 266337 689.867 15695.0 21507.4

EDZ3 57656.7 195711 259570 618.382 15687.1 21496.5

EDZ2 60605.5 195722 260861 619.046 15693.6 21496.5

EDZ1 63204.7 195965 266196 688.082 15693.6 21498.5

FSDT 74106.0 198465 286795 689.867 15877.2 22943.9

CLT 103031 198465 286795 692.254 15877.2 22943.9

Table 6

Problem I, frequency parameters c = x/100 for a/h = 2 and a/h = 10

a/h = 2 a/h = 10

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

LD4 136604 335749 366474 13526.4 78109.0 106609

LD3 136604 335756 366488 13526.4 78109.0 106609

LD2 136649 336016 366872 13526.8 78109.1 106609

LD1 137146 353823 393079 13559.0 78341.8 106852

ED4 143323 350268 390911 13655.1 78367.5 106834

ED3 144132 356910 398560 13660.0 78454.3 107125

ED2 179344 388934 482764 14446.5 78455.5 107125

ED1 186674 390737 510310 15886.5 78465.0 107395

EDZ3 138549 355557 398557 13584.0 78417.2 107113

EDZ2 146518 377442 416670 13858.1 78445.1 107118

EDZ1 148881 389638 443702 15080.1 78456.9 107372

FSDT 186674 396928 500510 15886.5 79386.2 114719

CLT 364185 396928 573563 17066.5 79386.2 114719
The two additional models lie in the range of the

higher order ESL and the lower order LW models,

depending on the thickness ratio and the mode.

5.3.1.1. Influence of order of expansion. In Table 7 the

influence of the order of expansion N on the first mode

of LDN and EDN models is summarized. For each

model the number of degrees of freedom (NDOF) and

the error to the exact solution (LD4) is given. For the

LDN models an increase from N = 2 to 4 has nearly

no effect, because even LD2 yields only marginal errors.
Thus the doubling of the NDOF from LD2 to LD4 is

not very necessary. For the ED models in contrast, N

is more relevant. The thick plate case requires at least

third order and the thin plate case at least quadratic

expansion to obtain good results. Comparing the higher

order EDN with the lower order LDN models it can be

noted, that for the given problem the latter yield better

results although the implied NDOF is nearly the same.

5.3.1.2. Influence of piezoelectric effect. The influence of

the piezoelectric coupling effects on the free vibration of
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Fig. 12. Problem I, free vibration modes 1–3 of LD4, ED4 and ED1, a/h = 4.
the considered plate is examined in Table 8. The results

are calculated with the presented LD4 model, for the

mechanic case neglecting the piezoelectric coupling

terms and thus considering only the elastic properties

of the piezoelectric layers (LD4m). The coupling effect

can be interpreted as an additional stiffness of the plate,

which shows an increasing influence on the vibrational
behaviour with decreasing thickness of the considered

plate.

5.3.2. Problem II—sensor configuration

Some selected results for the static calculation of

Problem II are given in Table 9. The Problem II exam-

ines the response of a piezoelectric plate to a mechanical



Table 9

Problem II, selected results for w, rxx, rxz, U and eDz

a/h

2 4 10 100

w · 1011 at z = 0 LD4 4.9113 30.029 582.06 4675300

LD1 4.8087 29.852 579.26 4647300

ED4 4.5047 28.591 573.25 4673900

ED1 2.8575 18.488 423.29 3668700

EDZ1 2.9117 20.153 498.04 4435100

FSDT 2.8575 18.488 423.29 3668700

CLT 0.58607 9.3884 364.43 2593400

rxx at z = h/2 LD4 3.2207 6.5642 32.771 3142.1

LD1 3.5181 6.9995 34.256 3266.9

ED4 2.4339 5.6978 31.785 3126.4

ED1 2.0034 6.4471 37.374 3682.7

EDZ1 2.0831 5.8424 32.946 3232.8

FSDT 1.4836 5.9023 36.832 3682.1

CLT 1.4722 5.8977 36.632 2606.9

rxz at z = 0 LD4 0.26995 0.68720 1.8540 18.832

U · 103 at z = 0 LD4 0.9103 6.1084 44.471 4580.2

LD1 0.8597 6.0303 44.175 4552.7

ED4 0.94157 6.1274 44.402 4568.9

ED1 0.78657 2.6580 15.044 1470.3

EDZ1 1.3901 6.3499 41.379 4171.8

FSDT 0.78657 2.6580 15.044 1470.3

CLT 0.38494 2.1095 14.366 1040.5

eDz � 109 at z = h/2 LD4 0.0256 0.0161 0.0139 0.0136

LD1 �0.0662 �0.0880 �0.2853 �23.838
ED4 0.0489 0.0353 0.0327 0.0324

ED1 0.0834 0.0464 �0.1163 �18.729
EDZ1 0.1496 0.1397 0.1372 0.1367

FSDT 0.0615 0.0401 �0.1174 �18.729
CLT �0.0088 �0.0314 �0.1883 �13.311

Table 7

Problem I, influence of order of expansion N on first frequency parameter c of LDN- and EDN-models

a/h N LDN EDN

NDOF c1 D [%] NDOF c1 D [%]

4 4 84 57074.0 36 58713.8 2.87

3 64 57074.0 0.000 28 58818.6 3.06

2 44 57081.9 0.014 20 69413.7 21.6

1 24 57252.5 0.313 12 74105.9 29.84

50 4 84 618.104 36 618.464 0.06

3 64 618.104 0.000 28 618.550 0.07

2 44 618.105 0.000 20 620.229 0.34

1 24 619.022 0.149 12 689.867 11.61

Table 8

Problem I, influence of piezoelectric effect on first frequency parameters c1

a/h

2 4 10 50

LD4 136604 57074.0 13526.4 618.104

LD4m 134551 55514.8 12905.6 584.085

D [%] 1.50 2.73 4.59 5.50
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Fig. 13. Problem II, potential U · 103 vs. z/h for a/h = 4 and a/h = 100.

Table 10

Problem III, selected results for w, rxx, rxz, U and eDz

a/h

2 4 10 100

w · 1011 at z = 0 LD4 �1.7475 �1.4707 �1.3697 �1.3493
LD1 �2.1030 �1.5962 �1.4297 �1.3971
ED4 �4.4320 �3.5676 �3.2840 �3.2284
ED1 �13.923 �14.107 �14.159 �14.171
EDZ1 �13.583 �13.679 �13.706 �13.711
FSDT �13.923 �14.107 �14.159 �14.169
CLT 0.1863 �0.1919 0.1916 0.1364

rxx at z = h/2 LD4 3.8162 1.1180 0.1680 �0.0246
LD1 12.425 3.3433 0.5256 �0.0210
ED4 8.5792 2.389 0.3687 �0.0269
ED1 �4.206 �1.117 �0.1953 �0.0219
EDZ1 1.2438 0.4308 0.0589 �0.0194
FSDT �0.8194 �0.2129 �0.0422 �0.0015
CLT �0.7329 �0.1931 �0.0394 �0.0102

rxz at z = 0 LD4 �0.0864 �0.0239 �0.0020 0.0000

U at z = 0 LD4 0.3330 0.4477 0.4910 0.4999

LD1 0.3242 0.4468 0.4910 0.4999

ED4 0.3343 0.4481 0.4911 0.4999

ED1 0.3219 0.4461 0.4908 0.4999

EDZ1 0.3335 0.4478 0.4910 0.4999

FSDT 0.3219 0.4461 0.4908 0.4999

CLT 0.3244 0.4470 0.4910 0.4999

eDz � 109 at z = h/2 LD4 �9.4085 �2.4184 �0.4168 �0.0370
LD1 �5.2964 �1.3814 �0.2504 �0.0354
ED4 �9.1127 �2.3523 �0.4068 �0.0369
ED1 �3.8089 �0.9669 �0.1819 �0.0347
EDZ1 �8.6524 �2.2360 �0.3879 �0.0367
FSDT �3.6667 �0.9566 �0.1816 �0.0347
CLT �3.2297 �0.8443 �0.1635 �0.0345
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Fig. 14. Problem III, displacement ux · 1011 and in-plane stress rxx vs. z/h for a/h = 4.
load on the top surface. In this case, the piezoelectric

layers act passively as sensors for the actual deformation

state of the structure. Thus, the main focus is put on the

ability of the different models to represent the resulting

electric field distribution, i.e. the potential values at the

interfaces between piezoelectric layers and the structure.

Fig. 13 shows thickness distributions of the potentials U
for the cases a/h = 4 and a/h = 100. Independently from

the thickness ratio, the low-order ESL theories fail to

predict correctly the potential distribution, the error is

in the range of 50%. The unsymmetric distribution in

the thick plate case due to the influence of normal stress

and shear can not be represented with CLT or FSDT. A

remarkable improvement of the results in the case of the

low order zig-zag theories (EDZ1) can be observed.

Acceptable results can be achieved using high order

ESL assumptions.

5.3.3. Problem III—actuator configuration

An overview of selected results for Problem III is gi-

ven in Table 10. In this case an applied potential on the

top surface of the plate is considered. In this configura-

tion the upper piezoelectric layer is used as an actuator

to impose a deformation on the whole plate. In all given

models, the potential is assumed layer-wise which leads

to a high accuracy of the electric variables. More inter-

esting for the actuator configuration in comparison to

the previous sensor case is the quality of the mechanical

results. In Fig. 14 the thickness distributions of the

in-plane displacement ux and stress rxx for a/h = 4 are

plotted. The actuation through the potential on the pie-

zoelectric layer is a strongly localized effect. The dis-
placement shows a high gradient in this area and a

sharp edge at the upper layer interface. It can be ob-

served, that the ESL models have difficulties to represent

this highly unsymmetric behavior. The two models ED4

and EDZ1 show a fairly good approximation in the pie-

zoelectric layers but defer in the lower part of the lami-

nate. The stresses, which are calculated dependently of

the displacements reflect the errors of the displacement

calculation. It can thus be concluded that ESL theories

are not sufficient for a reliable calculation of the

mechanical reaction to an electrical actuation.
6. Conclusion

The unified formulation for piezoelectric multilay-

ered plates was derived and a closed-form solution

found. It was demonstrated that the fourth order

layer-wise model LD4 leads to the exact solution. On

the base of this conclusion, the results of existing 3D

solutions for three different problems were extended to

additional thickness ratios. For all three problems a

broad range of data for the different modelings included

in the unified formulation is made available. Two issues

were observed in a first comparative analysis: (1) For

calculation of natural frequencies ESL models with

moderate order of expansion yield results with accept-

able accuracy. (2) The analysis of local responses that

depend on the coupling between the electrical and

mechanical systems requires a layer-wise description of

the displacement or at least the separated modeling of

the piezoelectric and the structural layers.



Appendix A. Arrays

A.1. Fundamental nuclei

Following abbreviations are used for the integrals in

thickness direction:

Ess ¼
Z
A
F sF s dz Eszs ¼

Z
A
ozF sF s dz

Essz ¼
Z
A
F sozF s dz Eszsz ¼

Z
A
ozF sozF s dz

Kkss
uu 11 ¼ �eCk

11oxx � 2eCk

16oxoy � eCk

66oyy

� �
Ess þ eCk

55Eszsz

Kkss
uu 12 ¼ �eCk

16oxx � eCk
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� �
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45Eszsz
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A.2. Closed-form solution

Fundamental nuclei for closed-form solution, re-

stricted to orthotropic material.
K̂
kss
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