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Abstract

In the framework of a sinus models family, a new three-noded mechanical beam finite element is designed for the analysis of laminated
beams. It is based on a sinus distribution with layer refinement. The transverse shear strain is obtained by using a cosine function avoid-
ing the use of shear correction factors. This kinematic accounts for the interlaminar continuity conditions on the interfaces between the
layers, and the boundary conditions on the upper and lower surfaces of the beam. A conforming FE approach is carried out using
Lagrange and Hermite interpolations. It is important to notice that the number of unknowns is independent from the number of layers.

Both static and vibration mechanical tests for thin and thick beams are presented in order to evaluate the capability of this new finite 
element to give accurate results with respect to elasticity or finite element reference solutions. Both convergence velocity and accuracy are 
discussed and this new finite element yields very satisfactory results at a low computational cost. In particular, the transverse stress com-
puted from constitutive relation is well estimated with regards to classical equivalent single layer models. Moreover, this family of sinus 
model is very efficient owing to the low number of unknowns.

Keywords: Multilayered beam; Finite element; Higher order transverse shear; Layer refinement; Legendre polynomials
1. Introduction

Composite and sandwich structures are widely used in
the industrial field due to their excellent mechanical prop-
erties. In this context, they can be submitted to severe con-
ditions. For composite design, accurate knowledge of
deflection and stresses is required to take into account
effects of transverse shear deformation due to the low ratio
of transverse shear modulus to axial modulus, or failure
due to delamination, . . . In fact, they can play an important
role on the behaviour of structures in services, which leads
to evaluate precisely their influence on stresses, particularly
on the interface of layers.

The aim of this paper is to construct a finite element to
analyze laminated beams in elasticity in relation to small
displacements, so as to obtain the accurate predictions
* Corresponding author. Fax: +33 1 47 09 52 24.
E-mail address: olivier.polit@u-paris10.fr (O. Polit).
for the distributions of simply supported laminated com-
posite beams subjected to transverse loading.

According to published research, various theories in
mechanics for composite or sandwich structures have been
developed. They can be classified as:

• the Equivalent Single Layer (ESL): the number of
unknowns is independent from the number of layers,
but the shear stress continuity on the interfaces of layers
are often violated. We can distinguish the classical lam-
inate theory [1] (it is based on the Euler–Bernoulli
hypothesis and leads to inaccurate results for composites
and moderately thick beams, because the transverse
shear is neglected), the first order shear deformation the-
ory, and higher order theories: [2–10] which analyse
stresses for beams and plates.

• the Discrete Layer theory or layer-wise approach
(DLT): this theory aims at overcoming the restriction
of the ESL about the discontinuity of in-plane displace-
ment on the interface layers [11–14] (FSDT), [15].

mailto:olivier.polit@u-paris10.fr


Fig. 1. The laminated beam and co-ordinate system.
In this framework, some authors have developed the zig-
zag model in order to improve the accuracy of results and
reduce the number of unknowns for multilayered compos-
ites. This model has the advantage of taking into account
the first derivative discontinuity of the in-plane displace-
ment in the transverse direction. This was first employed
by Murakami [16] with Reissner’s new mixed variational
principle to develop a plate theory. Then, it was also used
and improved by Reddy [17], Icardi [18], Di Sciuva [19],
Averill [20], Cho [21], Carrera [22], with different order
kinematics assumptions. For a review of zig-zag method,
see Carrera [23].

A multitude of analysis models for layered structures
and corresponding finite element formulations have been
developed over many years. An extensive assessment of dif-
ferent approaches has been made by Noor [24], Reddy [25]
and Carrera [26].

Thus, a family of finite elements for rectangular lam-
inated beam analysis is built, in order to have a low cost
tool, efficient and simple to use. In fact, our approach is
associated with the ESL theory. This element is totally
free of shear locking and is based on a refined shear
deformation theory [27] avoiding the use of shear correc-
tion factors for laminates. Our three elements are based
on the sinus model [28]. They are C0-continuous except
for the transverse displacement associated with bending
which is C1. It should be noted that all the interface
and boundary conditions are exactly satisfied for dis-
placements and stresses for two of these models. There-
fore, this approach takes into account physical
meaning. The sinus model is considered in the first place.
But the conditions of continuity are not imposed. Then,
the second element uses a Heaviside function to satisfy
these requirements. It has only the three usual indepen-
dent generalized displacements: two displacements and
one rotation. Finally, the third one is based on the dou-
ble superposition hypothesis from [29]. Three local func-
tions are added to the sinus model. It yields to only four
independent generalized displacements, i.e. only one
more than the two previous models.

In this article, first the mechanical formulation for the
different models is described. For each of these
approaches, the associated finite element is given. They
are illustrated by numerical tests which have been per-
formed upon various laminated beams. A parametric
study is given to show the effects of different parameters
such as length-to-thickness ratio and number of degrees
of freedom. The accuracy of computations are also eval-
uated by comparisons with an exact three-dimensional
theory for laminates in bending [15,30] and also two-
dimensional finite element computations using commer-
cial codes. We put the emphasis on the direct calculation
of the transverse shear stress by the constitutive relations.
The results of the present model can be compared with
the approach consisting in calculating transverse shear
stresses from the equilibrium equations as it is necessary
in [31–33,9,6,34]. In this framework, other approaches
are proposed to evaluate shear stresses accurately. Some
authors use a hybrid mixed finite element formulation
(cf. [35]). Finally, other numerical examples are presented
to demonstrate the effectiveness of the finite element mod-
els in dynamic analysis. Computations for thick and thin
beams of laminated composites and sandwich structures
are compared to exact 2D elasticity solutions and 2D
finite element computations.
2. Resolution of the mechanical problem

2.1. The governing equations for mechanics

Let us consider a beam occupying the domain
B ¼ ½0; L� � ½� h

2
6 z 6 h

2
� � ½� b

2
6 x2 6

b
2
� in a cartesian

coordinate (x1,x2,z). The beam has a rectangular uniform
cross section of height h, width b and is assumed to be
straight. The beam is made of NC layers of different line-
arly elastic materials. Each layer may be assumed to be
transversely isotropic in the beam axes. The x1 axis is taken
along the central line of the beam whereas x2 and z are the
two axes of symmetry of the cross section intersecting at
the centroı̈d, see Fig. 1. As shown in this figure, the x2 axis
is along the width of the beam. This work is based upon a
displacement approach for geometrically linear elastic
beams. The list of principal notation is given in Table 1.

2.1.1. Constitutive relation

Using matrix notations, the one dimensional constitu-
tive equations of an orthotropic material are given by

r11

r13

� �
¼ C11 0

0 C55

" #
e11

e13

� �
; i:e: ½r� ¼ ½C�½e� ð1Þ

where we denote: the stress tensor [r]; the strain tensor [e].
Furthermore, in Eq. (1), constitutive unidimensional laws
are given by the elastic stiffness tensor ½C�.

Taking into account the classic assumption
r22 = r33 = 0 (transverse normal stresses are negligible),
the longitudinal modulus is expressed from the three
dimensional constitutive laws by

C11 ¼ C11 � 2C2
12=ðC23 þ C33Þ ð2Þ

where Cij are orthotropic three-dimensional elastic moduli.
We also have C55 ¼ C55.



Table 1
Principal notations

Table of principal notation

[r] Stress tensor
[e] Strain tensor
Cij 3D elastic stiffness modulus
Cij 1D elastic stiffness modulus
½Ke

uu� Elementary stiffness matrix
½Me

uu� Elementary mass matrix
½Eu�, ½Es� Generalized displacement vector
[N], [B] Interpolation functions vector and derivatives

vector
[qe] Degrees of freedom elementary vector
~u Displacement vector
L Length of the beam
b Width of the beam
h Height of the beam
NC Number of layers
N Number of elements
t Time
S Length to thickness ratio
ak Continuity coefficient for the Sin-c model
ðdk

i ;b
k
i Þi¼1;2;3 Continuity coefficients for the SinRef-c model

Sin Sinus model without continuity requirements
Sin-c Sinus model with continuity requirements
SinRef-c Refined sinus model with continuity

requirements
2.1.2. The weak form of the boundary value problem

Using the above matrix notations and for admissible
virtual displacement ~u� 2 U �, the variational principle is
given by

Find ~u 2 U (space of admissible displacements) such as

�
Z
B

½eð~u�Þ�T½rð~uÞ�dBþ
Z
B

½u��T½f �dB

þ
Z

oBF

½u��T½F �doB ¼
Z
B

q½u��T½€u�dB 8~u� 2 U � ð3Þ

where [f] and [F] are the prescribed body and surface forces
applied on oBF . eð~u�Þ is the virtual strain, and q is the mass
density.

Eq. (3) is a classical starting point for finite element
approximations.

2.2. The displacement field for laminated beams

Based on the sinus function (see [36]), a family of models
is presented. In the following, we can distinguish:

• the sinus model (denoted Sin) without continuity of the
transverse shear stress on the interface between the
layers and also free conditions,

• the sinus model (denoted Sin-c) which takes into
account the continuity conditions between layers of
the laminate for both displacements and transverse
shear stress, and the free conditions on the upper and
lower surfaces owing to the heaviside function,

• the refined sinus model (denoted SinRef-c) where the
refinement is added in each layer.
These three models are based on various works on beams,
plates and shells, cf. Refs. [27,28,36–38].

2.2.1. Kinematic for laminated/sandwich beams: the sinus

model

The kinematics of the sinus model is reminded as follows
(with w 0 = ow/ox1):

u1ðx1; x2; z; tÞ ¼ uðx1; tÞ � zwðx1; tÞ0

þf ðzÞðx3ðx1; tÞ þ wðx1; tÞ0Þ
u3ðx1; x2; z; tÞ ¼ wðx1; tÞ

8><
>: ð4Þ

where t is the time. In the context of the sinus model, we
have:

f ðzÞ ¼ h
p

sin
pz
h

ð5Þ

and this function will represent the transverse shear strain
distribution due to bending by its derivative.

In the classic approach, w is bending deflection follow-
ing the z direction. u is associated with the uniform exten-
sion of the cross section of the beam along the central line.
And, x3 is the shear bending rotation around the z axis.

From Eq. (4), classical beam models can be deduced:

• Navier Bernoulli

f ðzÞ ¼ 0

• Timoshenko

f ðzÞ ¼ z

• sinus model

f ðzÞ ¼ h
p

sin
pz
h

Hence, it is obvious that lateral boundary conditions are
satisfied in bending and it is not necessary to introduce
transverse shear correction factors.
2.2.2. Kinematic for laminated/sandwich beams: the sinus

model with a heaviside function

Here, the sinus model is presented with the Heaviside
function which allows to impose the continuity of the trans-
verse shear stress on the interface between two layers, and the
free conditions on the upper and lower surfaces. The
displacement field is assumed to be of the particular form:

u1ðx1; x2; z; tÞ ¼ uðx1; tÞ þ zvðx1; tÞ þ gðzÞv2ðx1; tÞ
þf ðzÞðx3ðx1; tÞ þ wðx1; tÞ0Þ

þ
PðNCÞ�1

k¼1

vc
kðx1; tÞðz� zkÞHðz� zkÞ

u3ðx1; x2; z; tÞ ¼ wðx1; tÞ

8>>>>><
>>>>>:

ð6Þ

where H is the Heaviside function defined by

Hðz� zkÞ ¼ 1 if z P zk

Hðz� zkÞ ¼ 0 if not

�
ð7Þ



and

gðzÞ ¼ h
p

cos
pz
h

� �
The coordinate system is precised on Fig. 2.

From this displacement field, continuity conditions and
boundary conditions yield to the following expression:

u1ðx1; x2; z; tÞ ¼ uðx1; tÞ � zwðx1; tÞ0 þ f ðzÞðx3ðx1; tÞ þ wðx1; tÞ0Þ

þ
PðNCÞ�1

k¼1

ak � 1
2
zþ 1

2
gðzÞ þ ðz� zkÞHðz� zkÞ

� �
�ðx3ðx1; tÞ þ wðx1; tÞ0Þ

u3ðx1; x2; z; tÞ ¼ wðx1; tÞ

8>>>>>><
>>>>>>:

ð8Þ
where ak are the continuity coefficients deduced from the
physical relations, they depend on the shear modulus.
The calculation of these coefficients are detailed in Section
A. They are deduced from a linear system.

It should be noticed that the number of generalized dis-
placements is reduced to 3, and is independent from the
number of layers.

2.2.3. Kinematic for laminated/sandwich beams: the refined

sinus model

This part is based on both

• various works on beams, plates and shells, cf. Refs.
[27,36–38] concerning the refined theory,

• the so-called 1,2-3 double-superposition theory devel-
oped by Li and Liu [29].

It also follows works about local–global approach studied
in [39,40].

Hence, in our approach, the displacement field is
assumed to be of the following particular form:

u1ðx1; x2; z; tÞ ¼ uðx1; tÞ � zwðx1; tÞ0 þ f ðzÞðx3ðx1; tÞ þ wðx1; tÞ0Þ

þ
PNC

k¼1

ð�uðkÞlocðx1; z; tÞ þ ûðkÞlocðx1; z; tÞÞ

�ðHðz� zkÞ � Hðz� zkþ1ÞÞ
u3ðx1; x2; z; tÞ ¼ wðx1; tÞ

8>>>>><
>>>>>:

ð9Þ

where H is the Heaviside function and
Fig. 2. coordinate system of laminated beam.
fk ¼ akz� bk; ak ¼
2

zkþ1 � zk
; bk ¼

zkþ1 þ zk

zkþ1 � zk
:

The local functions �uðkÞloc and ûðkÞloc based on the Legendre
polynomial can be written as

�uðkÞlocðx1; z; tÞ ¼ fkuk
31ðx1; tÞ þ � 1

2
þ 3f2

k
2

� �
uk

32ðx1; tÞ

ûðkÞlocðx1; z; tÞ ¼ � 3fk
2
þ 5f3

k
2

� �
uk

33ðx1; tÞ

8><
>: ð10Þ

Remark. These Legendre polynomials have the interesting

following properties: if we note A1 = fk, A2 ¼ � 1
2þ

3f2
k

2 and

A3 ¼ � 3fk
2 þ

5f3
k

2

Z þ1

�1

Ai dfk ¼ 0; i¼ 1;2;3 and

Z þ1

�1

AiAj dfk ¼ 0; i 6¼ j

ð11Þ
At this stage, 3 · NC + 3 generalized displacements are
included in Eqs. (9) and (10). The following part is dedi-
cated to the obtention of relations between kinematic un-
knowns from:

• lateral boundary conditions,
• interlaminar continuity conditions (displacement, trans-

verse shear stress).As the previous model, it should be
noted that the physical meaning is kept.
2.2.4. Continuity conditions and free conditions for the

refined sinus model

From the displacement field Eq. (9), some continuity
conditions on displacements and interlaminar stress must
be imposed. For an interface layer k 2 {2, . . . ,NC}, we have:

• displacement continuity conditions as in [39] i.e.:

�uðkÞlocðx1; zk; tÞ ¼ �uðk�1Þ
loc ðx1; zk; tÞ; k ¼ 2; . . . ;NC ð12Þ

ûðkÞlocðx1; zk; tÞ ¼ ûðk�1Þ
loc ðx1; zk; tÞ; k ¼ 2; . . . ;NC ð13Þ

• transverse shear stress continuity between two adjacent
layers:

rðkÞ13 ðx1; zþk Þ ¼ rðk�1Þ
13 ðx1; z�k Þ; k ¼ 2; . . . ;NC ð14Þ

So, 3 * NC � 3 conditions are imposed, which allow to
reduce the number of unknowns to six generalized
displacements.

Free conditions of the transverse shear stress on the upper
and lower surfaces must also be verified. So, we have:

rð1Þ13 x1; z ¼ �
h
2

	 

¼ 0 and rðNCÞ

13 x1; z ¼
h
2

	 

¼ 0 ð15Þ

Finally, the number of generalized displacements is re-
duced to 4, which is independent from the number of
layers.



2.2.5. Relation between the generalized displacements

Using the displacement notation introduced in Eq. (10),
the conditions Eqs. (12)–(15) can be written under the fol-
lowing form:

½A�fvg ¼ fbgu1
31ðx1; tÞ þ fcgðx3ðx1; tÞ þ wðx1; tÞ0Þ ð16Þ

where [A] is a (3 * NC � 1) · (3 * NC � 1) matrix,

fvgT ¼ fu1
32u1

33 � � � u
j
31uj

32uj
33 � � � uNC

31 uNC
32 uNC

33 g
T, a (3 * NC � 1)

vector, and {b}, {c} two (3 * NC � 1) vectors.
From the resolution of this linear system, relations

between uj
31ðj 6¼ 1Þ; uj

32; u
j
33; j ¼ 1; . . . ;NC and u1

31 can be
deduced. This relation can be written under the following
form:
½F sðzÞ� ¼
1 0 �zþ ðf ðzÞ þ SbðzÞÞ 0 ðf ðzÞ þ SbðzÞÞ 0 SdðzÞ
0 ðf ðzÞ;3 þ SbðzÞ;3Þ 0 ðf ðzÞ;3 þ SbðzÞ;3Þ 0 SdðzÞ;3 0

" #
ð22Þ
uj
31ðx1; tÞ ¼ bj

1ðx3ðx1; tÞ þ wðx1; tÞ0Þ
þdj

1u1
31ðx1; tÞ; j ¼ 1; . . . ;NC ðd1

1 ¼ 1; b1
1 ¼ 0Þ

uj
32ðx1; tÞ ¼ bj

2ðx3ðx1; tÞ þ wðx1; tÞ0Þ
þdj

2u1
31ðx1; tÞ; j ¼ 1; . . . ;NC

uj
33ðx1; tÞ ¼ bj

3ðx3ðx1; tÞ þ wðx1; tÞ0Þ
þdj

3u1
31ðx1; tÞ; j ¼ 1; . . . ;NC

8>>>>>>>>><
>>>>>>>>>:

ð17Þ
where dj

1, dj
2, dj

3, and bj
1, bj

2, bj
3 are the coefficients deduced

from Eq. (16).
Finally, the four unknowns become u, w, x3, and u1

31.

2.2.6. Expression of strains

Matrix notations can be easily defined using a general-
ized displacement vector as

½u�T ¼ ½F uðzÞ�½Eu�

with ½Eu�T ¼ u ..
.

w w;1
..
.

x3
..
.

u1
31

h i ð18Þ

and [Fu(z)] is depending on the normal coordinate z. Its
expression is given below:

½F uðzÞ� ¼
1 0 F u13ðzÞ F u14ðzÞ F u15ðzÞ
0 1 0 0 0

� �
ð19Þ

where

F u13ðzÞ ¼ �zþ f ðzÞ þ SbðzÞ
F u14ðzÞ ¼ f ðzÞ þ SbðzÞ
F u15ðzÞ ¼ SdðzÞ
and

SbðzÞ ¼
XNC

k¼1

fkb
k
1 þ �1

2
þ 3f2

k

2

	 

bk

2 þ �3fk

2
þ 5f3

k

2

	 

bk

3

	 

DHðk; kþ 1Þ

SdðzÞ ¼
XNC

k¼1

fkd
k
1 þ �1

2
þ 3f2

k

2

	 

dk

2 þ � 3fk

2
þ 5f3

k

2

	 

dk

3

	 

DHðk; k þ 1Þ

with DH(k,k + 1) = H(z � zk) � H(z � zk+1).
The strains for the symmetric laminated beam element
are:

e11 ¼ u;1 � zw;11 þ ðf ðzÞ þ SbðzÞÞðw;11 þ x3;1Þ þ SdðzÞu1
31;1

c13 ¼ ðf ðzÞ;3 þ SbðzÞ;3Þðw;1 þ x3Þ þ SdðzÞ;3u1
31

ð20Þ
These expression can be described using a matrix nota-
tion:

½e� ¼ ½F sðzÞ�½Es� with

½Es�T ¼ u;1 ..
.

w;1 w;11
..
.

x3 x3;1
..
.

u1
31 u1

31;1

h i
ð21Þ
and [Fs(z)] is depending on the normal coordinate z. Its
expression is given below:

2.2.7. Matrix expression for the weak form

From the weak form of the boundary value problem Eq.
(3), and using Eqs. (21) and (22), an integration throughout
the cross-section is performed analytically in order to
obtain an unidimensional formulation. Therefore, the first
left term of Eq. (3) can be written under the following
form:Z

B

½eð~u�Þ�T½rð~uÞ�dB ¼
Z L

0

½E�s �
T½k�½Es�dx1 with

½k� ¼
Z

X
½F sðzÞ�T½C�½F sðzÞ�dX

ð23Þ

where ½C� is the constitutive unidimensional law given in
Section 2.1.1, and X represents the cross-section
½� h

2
6 z 6 h

2
� � ½� b

2
6 x2 6

b
2
�.

The same calculations for the right member of Eq. (3)
using Eqs. (18) and (19) give:Z

B

q½u��T½€u�dB ¼
Z L

0

½E�u�
T½m�½€Eu�dx1 with

½m� ¼
Z

X
q½F uðzÞ�T½F uðzÞ�dX

ð24Þ

In Eq. (23) and (24), the matrices [k] and [m] are the inte-
gration throughout the cross-section of the beam material
characteristics. The interest of the Legendre polynomials
choice can be emphasized in the calculation of the matrices
[k] and [m] owing to their properties of orthogonality (cf.
Eq. (11)).

2.3. The finite element approximation

This section is dedicated to the finite element approxi-
mation of the generalized displacement, see matrices ½Es�,
½E�s �, ½Eu�, and ½E�u�, Eqs. (21) and (18). It is briefly



material properties:
described, and the reader can obtain a detailed description
in [28].

2.3.1. The geometric approximation

Given the displacement field constructed above for sand-
wich and laminated beams, a corresponding finite element is
developed in order to analyze the behaviour of laminated
beam structures under combined loads. Let us consider the
eth element Lh

e of the mesh[Lh
e . This element has three nodes,

denoted by (gj)j=1,2,3, see Fig. 3. A point with coordinate x1

on the central line of the beam will be as follows:

x1ðnÞ ¼
X2

j¼1

NljðnÞxe
1ðgjÞ ð25Þ

where Nlj(n) are Lagrange linear interpolation functions and
xe

1ðgjÞ are Cartesian coordinates (measured along the x1 axis)
of the node gj of the element Lh

e . n is an isoparametric or
reduced coordinate and its variation domain is [�1,1].

2.3.2. Interpolation for the bending-traction beam element

The finite element approximations of the assumed dis-
placement field components are hereafter symbolically
written as uh

i ðx1; x2; zÞ where the superscript h refers to the
mesh [Lh

e .
From the kinematics (see Eq. (9)), the transverse dis-

placement wh must be C1-continuous; whereas the rotation
xh

3, the extension displacement uh and u1
31 can be only C0-

continuous. Therefore, the generalized displacement wh is
interpolated by the Hermite cubic functions Nhj(n).

According to the transverse shear locking phenomena,
the other shear bending generalized displacements, rotation
xh

3, are interpolated by Lagrange quadratic functions
denoted Nqj(n). This choice allows the same order of inter-
polation for both wh

;1 and xh
3 in the corresponding trans-

verse shear strain components due to bending, and
enables to avoid transverse shear locking using the field
compatibility approach, see [41].

Finally, traction uh and u1
31 are interpolated by Lagrange

quadratic functions.

2.3.3. Elementary matrices
In the previous section, all the finite element mechanical

approximations were defined, and elementary rigidity ½Ke
uu�

and mass ½Me
uu� matrices can be deduced from Eqs. (23) and

(24). It has the following expression:

½Ke
uu� ¼

Z
Le

½B�T½k�½B�dLe

½Me
uu� ¼

Z
Le

½N �T½m�½N �dLe

ð26Þ
Fig. 3. Description of the laminated beam finite element d.o.f.
where [B] and [N] are deduced expressing the generalized
displacement vectors, see Eqs. (21) and (18), from the
elementary vector of degrees of freedom (dof) denoted
[qe] by

½Es� ¼ ½B�½qe�; ½Eu� ¼ ½N �½qe� ð27Þ

The matrices [B] and [N] contain only the interpolation
functions, their derivatives and the jacobian components.
The same technique can be used defining the elementary
mechanical load vector, denoted ½Be

u�, but it is not detailed
here.

3. Results and discussions

In this section, several static and dynamic tests are pre-
sented validating our finite element and evaluating its
efficiency.

3.1. Static analysis

The aim of the present investigation is to study the effi-
ciency of this new element to analyze the flexural behaviour
of highly inhomogeneous sandwich and laminated beams
for static mechanical problems. The results are compared
with the sinus model (denoted Sin), the sinus model with
heaviside function denoted Sin-c (see Section 2.2.2), and
reference solution (exact solution [15] or commercial code
ANSYS). To evaluate the performance of the element in
bending, the considered cases are given in the three follow-
ing sections.

3.1.1. Properties of the finite element

Before proceeding to the detailed analysis, numerical
computations are carried out for the rank of the element
(spurious mode), convergence properties and the effect of
aspect ratio (shear locking).

The test is about simply supported symmetric composite
beams. It is detailed below:
geometry: composite cross-ply beam (0�/90�/0�) and length

to thickness ratio S = 20 ðS ¼ L
hÞ; half of the

beam is meshed. All layers have the same thick-
ness.

boundary conditions: simply supported beam subjected to
sinusoidal load q ¼ q0 sin px1

L .
EL ¼ 172:4 GPa; ET ¼ 6:895 GPa; GLT ¼ 3:448 GPa

GTT ¼ 1:379 GPa; mLT ¼ mTT ¼ 0:25

where L refers to the fiber direction, T refers to the nor-
mal direction. This element has a proper rank without
any spurious energy modes when exact integration is
applied to obtain all the stiffness matrices (see [28]).
There is also no need to use shear correction factors here,
as the transverse strain is represented by a cosine
function.



Table 2
�r13ð0; 0Þ, wm for different number of dofs: mesh convergence study – three layers (0�/90�/0�) – S = 20

N dof number wm ¼ 100wðL=2;0ÞET h3

q0L4 �r13ð0; 0Þ ¼ r13=q0

Error (%) Direct Error (%) Equil. Eq Error (%)

SinRef-c 1 8 0.6179 <0.1 9.2435 6 5.8123 33
2 16 0.6176 <0.1 9.0211 3 7.9590 9
4 32 0.6175 <0.1 9.0060 <3 8.5468 2
8 64 0.6175 <0.1 9.0052 <3 8.6973 <1

16 128 0.6175 <0.1 9.0051 <3 8.7352 <1

Sin-C 1 6 0.6177 <0.1 9.3497 7 5.8090 33
2 12 0.6174 <0.1 9.1163 4 7.9540 9
4 24 0.6173 <0.1 9.1002 4 8.5406 2
8 48 0.6173 <0.1 9.0995 4 8.6908 <1

16 96 0.6173 <0.1 9.0995 4 8.7286 <1

Sin 1 6 0.6048 2 6.3157 27 5.8417 33
2 12 0.6046 2 6.1529 29 8.0017 8.5
4 24 0.6045 2 6.1393 29 8.5927 1.7
8 48 0.6045 2 6.1386 29 8.7438 <1

16 96 0.6045 2 6.1386 29 8.7418 <1

Exact 0.6172 8.7490
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Fig. 4. variation of the non-dimensional maximum displacement
(wm = 100w(L/2,0)ETh3/(q0L4)) with respect to aspect ratio S – three
Table 2 gives the convergence of the family of sinus
models for the transverse displacement and the transverse
shear stress for S = 20. For this last component, two results
are available: (a) from the constitutive relation (denoted
direct); (b) using the equilibrium equation at the post-pro-
cessing level i.e. r13ðzÞ ¼ �

R z
�h=2

r11;1 dx3 (denoted Equil.
Eq). It must be noticed that the deflection is less sensitive
to the mesh than the shear stress and the convergence
velocity is very high. Based on progressive mesh refine-
ment, a N = 8 mesh is adequate to model the laminated
beam for a bending analysis. Moreover, the results
obtained are in good agreement with the reference values
with few elements. In particular, a N = 1 mesh gives excel-
lent result for the deflection. It should be noted that the
sinus model gives poor results for the transverse shear
stress calculated with the constitutive relation regardless
of the mesh.

Considering various values for aspect ratio,the normal-
ized displacement obtained at the middle of the simply sup-
ported composite beam is shown in Fig. 4 along with the
exact solution [42], and they are found to be in excellent
agreement. It is also inferred from Fig. 4 that the present
element is free from shear locking phenomenon as the ele-
ment is developed using a field compatibility approach.

3.1.2. Bending analysis of laminated composite beam

This test is about simply supported symmetric and anti-
symmetric composite beams from Reference [42]. It is
detailed below:
geometry: composite cross-ply beam (0�/90�/ 0�) and (0�/

90�) and length to thickness ratio from S = 4
to S = 40; half of the beam is meshed. All layers
have the same thickness.

boundary conditions: simply supported beam subjected to
sinusoidal load q ¼ q0 sin px1

L .

material properties:sa layers (0�/90�/0�); mesh N = 8; SinRef-c model.
me properties as in Section 3.1.1.
The two layers case (0�/90�) is first presented. The numer-
ical results for deflection, in-plane displacements, shear
stress, and in-plane stress are given in Tables 3–5 with
respect to span-to-thickness ratio: S = 4 (thick), S = 20
(moderately thick), S = 40 (thin). The % error with S for
the refined model, sinus model with continuity and sinus
model without continuity are also compared in these
tables. For the displacements, the refined sinus gives more
precise results than the sinus models (Sin and Sin-c). The
error is less than 0.1% for the deflection, and less than
5% for the in-plane displacement. Concerning the stresses,
the improvement is also significant. In particular, the val-
ues of transverse shear stresses calculated from the consti-
tutive relation are much better, and are in good agreement
with the exact solution (cf. Table 4), excepted for a thick
laminate. Again, the error for the Sin model is high.

The variation of normalized in-plane, inter-laminar
shear stresses and in-plane and transverse displacements
through the thickness (S = 4, S = 20 and S = 40) are



Table 3
�uð0; h=2Þ and �wðL=2; 0Þ for different values of S – two layers (0�/90�)

S �uð0; h=2Þ
SinRef-c Error (%) Sin-c Error (%) Sin Error (%) Exact

4 4.78 5 3.40 25 3.93 13.6 4.55
20 486.20 0.2 479.02 1 482.52 0.5 485.15
40 3858.7 <0.1 3843.9 0.3 3858.16 <0.1 3856.3

�wðL=2; 0Þ
4 4.6964 <0.1 4.1811 11 4.403 6.2 4.6950

20 2.7035 <0.1 2.6837 0.7 2.6981 0.1 2.7027
40 2.6400 <0.1 2.6350 0.2 2.6436 0.1 2.6398

Table 4
�r13ð0;�h=4Þ (maxi) for different values of S – two layers (0�/90�)

S �r13ð0;�h=4Þ
SinRef-c Sin-c Sin Exact

Direct Error (%) Equil. eq Error (%) Direct Error (%) Equil. eq Error (%) Direct Error (%) Equil. eq Error (%)

4 2.588 4 2.768 2 1.479 45 3.057 13 1.781 34 2.972 9.8 2.706
20 13.450 8 14.555 0.5 7.676 48 14.684 <0.1 9.114 38 14.602 0.1 14.620
40 26.940 8 29.165 0.5 15.372 48 29.197 0.4 18.243 38 29.180 0.4 29.324

Table 5
�r11ðL=2;�h=2Þ for different values of S – two layers (0�/90�)

S �r11ðL=2;�h=2Þ
SinRef-c Error (%) Sin-c Error (%) Sin Error (%) Exact

4 31.9 6 33.5 11 33.3 11 30.0
20 703.5 0.5 703.9 0.6 692.39 1 699.7
40 2803.1 0.3 2805.2 0.4 2751.7 1.4 2792.6
presented in Figs. 5–9 for further comparison. It is seen
from these figures that the new element performs quite
well for thick beams as well as thin beams. It should be
noted that the distribution of in-plane displacement and
stress is similar to the exact Pagano solution regardless
of the length to thickness ratio. The transverse shear
stress obtained using the equilibrium equation gives excel-
lent results, especially for the very thick beam S = 4 (see
Figs. 5 and 6 (left)). It must be noticed that for design
application, the variation of the transverse shear stress
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Fig. 5. Distribution of �r13 along the thickness – S = 4 (le
deduced from the constitutive relation yields satisfactory
distributions, without the computational cost at the
post-processing level.

Then, the three layers (0�/90�/0�) case is evaluated. The
results are summarized in Tables 6–8 and represented on
Figs. 10–14. Again, it should be noted that the refined sinus
model improves the accuracy of the results for both dis-
placements and stresses for thin and thick laminates. The
error is less than 1% for in-plane and transverse displace-
ments, and less than 3% for stresses, whatever the length
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ft) and S = 20 (right) – two layers (0�/90�)-SinRef-c.
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Fig. 8. Distribution of �u along the thickness – S = 4 (left) and S = 20 (right) – two layers (0�/90�)-SinRef-c.
to thickness ratio. The variation of the transverse shear
stress calculated from the constitutive relation gives also
excellent results.

3.1.3. Bending analysis of sandwich beam [43]

The three-point bending test is considered for a sand-
wich beam which has the following characteristics:
geometry: thickness h = 0.01 m; The beam possesses three

layers of the same thickness;
boundary conditions: simply supported beam under con-

centrated load at the middle of the
beam p = �100 N/m;
material properties: face: Ef = 6.9E10 Pa, mf = 0.3;
core: Ec,mc = 0.3;

mesh: half of the beam with N = 8;

Two examples are carried out:

case 1: L/h = 50 Ec = 0.001Ef;
case 2: L/h = 50 Ec = 0.1Ef;

Table 9 gives the deflection and stresses for the three differ-
ent models. The comparison with ANSYS results shows
that the two sinus models Sin-c and SinRef-c give accurate
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Fig. 9. Distribution of �u along the thickness – S = 40 – two layers
(0�/90�)-SinRef-c.
results for this example. The % error is less than 4% what-
ever the case is. On the other hand, the sinus model gives
poor results when the value of the ratio Ef

Ec
is very high.

3.2. Free-vibration test

Some examples of sandwich and laminated beams are
tested to evaluate these finite elements. The dynamic anal-
yses are carried out in the free vibration case. It concerns
simply supported beams with large range of length to thick-
Table 6
�wðL=2; 0Þ and �uð0; h=2Þ for different values of S – 3 layers (0�/90�/0�)

S �uð0; h=2Þ
SinRef-c Error (%) Sin-c

4 0.9422 0.3 1.0114
20 66.8640 <0.01 66.9920
40 518.08 <0.01 518.28

�wðL=2; 0Þ
4 2.9086 <1 2.7894

20 0.6175 <0.1 0.6173
40 0.5367 <0.01 0.5367

Table 8
�r11ðL=2; h=2Þ for different values of S – three layers (0�/90�/0�)

S �r11ðL=2; h=2Þ
SinRef-c Error (%) Sin-c

4 18.6 1 19.9
20 264.0 <0.5 264.6
40 1023.0 <0.5 1023.5

Table 7
�r13ð0; 0Þ for different values of S – 3 layers (0�/90�/0�)

S �r13ð0; 0Þ
SinRef-c Sin-c

Direct Error (%) Equil. eq Error (%) Direct Error (%) Eq

4 1.4213 <1 1.4236 <1 1.541 8 1
20 9.0052 2.9 8.6973 <1 9.099 4 8
40 18.184 3 17.539 <1 18.302 4 17
ness ratio. These examples are taken from [44,45,31]. The
results are compared to the ANSYS solution with a very
refined mesh.

3.2.1. Convergence study for the SinRef-c model [31]

First, a convergence study with respect to the mesh is
carried out. A symmetric three layers beam is considered
with an aspect ratio S = 10. It is detailed below:
geometry: composite cross-ply beam (0�/90�/ 0�) and length

to thickness ratio S = 10, three layers of equal
thickness.

boundary conditions: free vibration of a simply supported
beam.

material properties:

EL ¼ 181 GPa; ET ¼ 10:3 GPa; GLT ¼ 7:17 GPa

GTT ¼ 2:87 GPa; mLT ¼ 0:25; mTT ¼ 0:33

Table 10 shows the quick convergence, and a N = 8 mesh
seems to be sufficient to model the laminated composite
beam for a dynamic analysis.

The same study is carried out with the commercial code
ANSYS [46]. A very refined mesh is considered as a refer-
ence. The mesh of 1275 dofs is shown in Fig. 15.
Error (%) Sin Error (%) Exact

7 0.8914 5 0.9396
<0.2 66.202 1 66.8696
<0.1 517.64 <0.1 518.08

3 2.7258 5.5 2.8872
<0.01 0.6046 2 0.6173
<0.01 0.5344 0.4 0.5367

Error (%) Sin Error (%) Exact

5 19.7 5 18.8
0.5 262.0 0.5 263.2
0.4 1013.6 0.6 1019.8

Sin Exact

uil. eq Error (%) Direct Error (%) Equil. eq Error (%)

.321 7 1.161 19 1.5207 6 1.4318

.691 <1 6.138 29 8.743 <0.1 8.7490

.536 <1 12.299 30 17.563 0.4 17.634
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–5 0 5 10 15 20
–0.5

0

0.5

13
/q

0

 z
/h

exact

Equil. eq

const. relation

–20 –10 0 10 20
–0.5

0

0.5

11
/q

0

 z
/h

exact

SinRef–c

Fig. 11. Distribution of �r13S ¼ 40 (left) and �r11S ¼ 4 (right) along the thickness – three layers (0�/90�/0�) – SinRef-c.

300 200 100 0 100 200 300
0.5

0

0.5

11
/q

0

 z
/h

SinRef c

exact

1500 1000 500 0 500 1000 1500
0.5

0

0.5

11
/q

0

 z
/h

SinRef c

exact

Fig. 12. Distribution of �r11 along the thickness – S = 20 (left) and S = 40 (right) – three layers (0�/90�/0�)-SinRef-c.

1 0.5 0 0.5 1
0.5

0

0.5

 u

 z
/h

SinRef c

exact

80 60 40 20 0 20 40 60 80
0.5

0

0.5

 u

 z
/h

SinRef c

exact

Fig. 13. Distribution of �u along the thickness – S = 4 (left) and S = 20 (right) – three layers (0�/90�/0�)-SinRef-c.



Table 9
Deflection and stresses for the viscoelastic sandwich beam

Sin Sin-c SinRef-c ANSYS
(2D)

Case 1

v3(L/2,0) �4.72e�5 �7.31e�5 �7.25e�5 �7.32e�5
r13(L/4,0) �0.195e2 �0.676e4 �0.686e4 �6.79e3
r13(L/4,0)

EqEqu
�0.692e4 �0.682e4 �0.682e4

r11(L/4,e/2) �0.389e6 �0.397e6 �0.397e6 �3.98e5

Case 2

v3(L/2,0) �0.472e�4 �0.472e�4 �0.472e�4 �0.472e�4
r13(L/4,0) direct �0.701e4 �0.701e4 �0.721e4 �0.700e4
r13(L/4,0)

EqEqu
�0.698e4 �0.698e4 �0.698e4

r11(L/4,h/2) �0.388e6 �0.388e6 �0.388e6 �0.388e6
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Fig. 14. Distribution of �u along the thickness – S = 40 – three layers
(0�/90�/0�)-SinRef-c.
3.2.2. Symmetric laminated composite [44,45]

The example is issued from [44,45]. It deals with a sym-
metric laminated composite with the following characteris-
tics:
geometry: the beam studied has a length of L = 6.35 m, and

a thickness h = 0.2794 m (thin S � 22.7), and
h = 2.794 m (thick S � 2.2). It possesses three
layers at (90�/0�/90�), with thickness (0.25h/
0.5 h/0.25 h).

boundary conditions: simply supported beam.
material properties: the material used is boron epoxy

which has the following mechanical
properties:
Table 10
Mesh convergence study for the SinRef-c model-natural frequencies – three la

Frequencies (Hz)

N 2 Error (%) 4

38.17 0.4 38.0
115.79 4.5 111.1
211.53 12 190.2
– 276.2
345.29 1.7 366.0
391.44 2.6 390.0
E11 ¼ 241:5 GPa; E22 ¼ E33 ¼ 18:89 GPa;

G12 ¼ G13 ¼ 5:18 GPa G23 ¼ 3:45 GPa;

m12 ¼ m13 ¼ 0:24; m23 ¼ 0:25

q = 2015 kg/m3.
mesh: N = 8.
results: the mode shapes are precised as: bend, sh, t/c for

bending, shear and axial mode respectively.

Tables 11 and 12 present numerical values of frequencies
for the thin and thick beam. These results show the excel-
lent agreement with reference values for eight and seven
natural frequencies. Results of the SinRef-c model are bet-
ter than these of the Sin and Sin-c models, especially for the
thick beam. The maximal % error is 2.9, whereas the two
others have an error of 17% and 14% respectively. It should
be noted that the values of the natural frequencies are
always overestimated.

3.2.3. Free vibration of symmetric and anti-symmetric lay-up

[31]

In this section, two stacking sequences of laminated
composite are considered:
geometry: composite cross-ply beam (0�/90�/0�), (0�/90�)

and length to thickness ratio S = 5, S = 10,
S = 20.

boundary conditions: free vibration of a simply supported
beam.

material properties: same material properties as in Section
3.2.1.

results: the results are presented under a non-dimensional
natural frequency as follows:

�x ¼ xLSðq=Y 0Þ1=2 ð28Þ
with Y0 = 10.3 GPa, q = 1578 kg/m3. They are compared
with exact 2D reference solution from [31].The shape
modes for the thick symmetric beam are given in
Fig. 16.

It can be noticed that the natural frequencies given in Table
13 for the symmetric lay-up (0�/90�/0�) are in excellent
agreement with the reference solution. The errors are less
than 0.6%, excepted for extensional mode frequencies
(2%). The SinRef-c model improves results issued from
the Sin and Sin-c models.
yers (0�/90�/0�) – S = 10

Error (%) 8 Error (%)

7 0.1 38.06 0.1
1 0.3 110.93 0.1
9 0.7 189.21 0.1
4 2.6 269.40 0.1
6 4.1 351.78 0.1
7 2.2 389.98 2.2
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Fig. 16. Shape modes for the symmetric beam (0�/90�/0�) – S =
5-SinRef-c.
As for the anti-symmetric lay-up (0�/90�), the errors
given in Table 14 vary from 0.% to 1.8% for the SinRef-c
model. The improvement is really significant compared
with the two other models, especially for the very thick
beam.

3.2.4. Free vibration of sandwich beam [31]

The last example concerns a sandwich beam with the
following characteristics:
geometry: The 3-layer sandwich beam has graphite-epoxy

faces and a soft core with thickness 0.1 h/0.8 h/
0.1 h and length to thickness ratio S = 5,
S = 10, S = 20.

boundary conditions: free vibration of a simply supported
beam.

material properties: Face: E11 = 131.1 GPa, E22 = E33

= 6.9 GPa
Table 11
Natural frequencies – thr

Frequency (Hz) thin beam

Sin

Bend 14.97
Bend 57.85
Bend 123.55
Bend 206.18
Bend 300.71
Bend 403.60
Bend 512.67
sh 640.06

Table 12
Natural frequencies – thr

Frequency (Hz) thick bea

Sin

Bend 82.81
Bend 195.62
sh 277.98
Bend 319.36
Bend 460.18
Bend 515.41
Bend 621.47
G12 = 3.588 GPa, G13 = 3.088 GPa,
G23 = 2.3322 GPa,
m12 = m13 = 0.32, m23 = 0.49,
qf = 1000 kg/m3.
Core: E11 = 0.2208 MPa, E22 =
0.2001 MPa, E33 = 2760 MPa
G12 = 16.56 MPa, G13 = 545.1 MPa,
G23 = 455.4 MPa
ee layers (90�/0�/90�) – S � 22.7

Error (%) Sin-c Error (%) S

0.2 14.98 0.3
0.3 57.94 0.4
0.5 123.96 0.8 1
0.8 207.23 1.3 2
0.9 302.75 1.8 2
1.5 406.91 2.4 4
2. 517.43 3. 5
1.5 632.94 0.4 6

ee layers (90�/0�/90�) – S � 2.2

m

Error (%) Sin-c Error (%) S

0.7 83.66 1.
0.2 195.67 0.3 1
1.3 274.94 0.2 2
2.9 313.36 1. 3
8.4 442.07 4.1 4

17.4 501.47 14.2 4
15.6 585.51 8.9 5
m12 = 0.99, m13 = 0.00003,
m23 = 0.00003, qc = 70 kg/m3.
resented under a non-dimensional nat-
cy as follows:
�x ¼ xLSðqf=Y 0Þ1=2 ð29Þ
with Y0 = 6.9 GPa.

As for the sandwich beam, the Table 15 shows that the
refined sinus model yields accurate results in all cases.
The % error is about 3.

The three models are able to estimate accurately the nat-
ural frequencies of a sandwich beam. In our case, the Sin-c
model gives the best results, except for the last modes of the
thick case where the SinRef-c seems to be more precise (the
error about the eighth mode is significant).

All these different examples prove the efficiency of the
refined sinus model for free vibration analysis. Few ele-
ments are needed to obtain good results. Moreover, numer-
ical results of laminated composite and sandwich beam for
inRef-c Error (%) Ansys

14.97 0.2 14.93
57.80 0.2 57.67
23.33 0.3 122.90
05.65 0.5 204.50
99.77 0.8 297.23
02.29 1.2 397.28
11.15 1.7 502.19
34.37 0.6 630.25

inRef-c Error (%) Ansys

82.78 0.7 82.17
95.83 0.3 195.22
74.31 0. 274.31
11.73 0.5 310.07
28.96 1. 424.311
51.63 2.9 438.81
47.42 1.8 537.42



Table 13
Natural frequencies – (0�/90�/0�)

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) Ansys Exact 2D [31]

5 Bend 6.94 1.9 6.82 0.2 6.81 0.2 6.806 6.806
Bend 16.80 1.6 16.79 1.6 16.54 0.1 16.52 16.515
Bend 27.17 1.6 28.07 5. 26.73 0.04 26.72 26.688
Bend 38.51 3.1 41.35 10.7 37.32 0.02 37.33 37.255
sh 46.76 6.7 43.93 0.3 43.80 0.01 43.79
Bend 47.86 0.6 47.86 0.6 48.18 0.4 48.17 48.035
Bend 51.24 13.3 57.13 3.3 59.26 0.2 59.11 58.876

10 Bend 9.44 1. 9.34 0. 9.36 0.1 9.34 9.343
Bend 27.76 1.9 27.29 0.1 27.25 0.1 27.24 27.224
Bend 47.36 1.9 46.78 0.6 46.53 0.1 46.47 46.416
Bend 67.29 1.6 67.23 1.6 66.25 0.1 66.19 66.058
Bend 87.77 1.5 89.13 3.1 86.51 0.1 86.43 86.169
t/c 95.73 2. 95.73 2. 95.90 2.2 93.78
Bend – 113.04 5.4 107.38 0.1 107.20 106.75

20 Bend 10.67 0.2 10.64 0. 10.65 0.1 10.64 10.64
Bend 37.78 1. 37.39 0. 37.45 0.1 37.40 37.374
Bend 72.98 1.5 71.87 0. 71.94 0.1 71.85 71.744
Bend 111.23 1.9 109.35 0.1 109.30 0.1 109.15 108.89
Bend 150.57 2. 148.21 0.4 147.83 0.2 147.54 147.04
Bend 190.54 2.1 188.26 0.9 187.19 0.3 186.53 185.68
t/c 191.47 0.4 191.47 0.4 191.81 0.6 190.52

Table 14
Natural frequencies-anti-symmetric lay-up (0�/90�)

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) Ansys

5 Bend 4.83 1 4.87 2 4.78 0.2 4.77
Bend 15.19 4 15.60 6 14.71 0.6 14.61
Bend 27.30 7 28.64 12 25.87 1.8 25.40
tc 38.12 7 36.39 3 35.56 0.4 35.42
Bend 40.29 12 43.09 19 37.42 4 36.02
sh 54.15 11 50.29 3 48.52 0. 48.52

10 Bend 5.30 0.3 5.32 0.5 5.29 0.1 5.29
Bend 19.33 1 19.49 2 19.14 0.1 19.12
Bend 38.67 2 39.33 4 37.87 0.2 37.77
Bend 60.91 4 62.57 7 58.97 0.6 58.60
Bend 84.87 6 88.13 9 81.26 1 80.22
tc 90.06 2 88.92 0.5 88.65 0.2 88.44

20 Bend 5.45 <0.1 5.46 0.1 5.45 0.1 5.45
Bend 21.23 0.3 21.28 0.4 21.20 0.1 21.18
Bend 45.86 0.7 46.08 1 45.62 0.1 45.55
Bend 77.58 1 78.23 2 76.81 0.3 76.59
Bend 114.86 2 116.31 3 113.11 0.6 112.40
Bend 156.58 3 159.32 5 153.29 1 151.48
tc 188.63 0.4 188.09 0.1 188.26 0.2 187.89
various aspect ratios show the capability of this model. It
can also be noticed that the refined sinus model overesti-
mates frequencies compared to the reference solution.

4. Conclusion

In this article, a new numerical model, denoted SinRef-c,
has been presented and evaluated through different bench-
marks. This new FE has been described in the framework
of hierarchical sinus family. It is a three-node multilayered
(sandwich and laminated) beam finite element for static
and dynamic analysis. Based on sinus equivalent single layer
model, a third order kinematic per layer is added, improving
the bending description for thick beams. There is no need for
transverse shear correction factors and all the interface and
boundary conditions are exactly satisfied. So, this approach
has a strong physical meaning. Finally, the classical three
unknown functions (two displacements, one rotation) are



Table 15
Natural frequencies-sandwich beam

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) Ansys Exact 2D [31]

5 Bend 8.09 3.4 7.85 0.3 8.04 2.7 7.82 7.82
Bend 17.96 3.9 17.43 0.8 17.86 3.3 17.28 17.27
Bend 28.01 4. 27.42 1.8 27.88 3.5 26.93 26.90
sh 34.66 3.7 33.42 0. 34.22 2.4 33.40
Bend 38.62 4.3 38.27 3.4 38.35 3.6 37.01 36.93
Bend 50.06 5.2 50.32 5.8 49.31 3.6 47.55 47.39
t/c 62.59 7.8 60.52 4.3 60.68 4.5 58.02
Bend 73.74 26. 63.89 9.1 60.72 3.7 58.51 58.22

10 Bend 12.49 2.1 12.25 0.1 12.45 1.7 12.23 12.23
Bend 32.37 3.4 31.41 0.3 32.16 2.7 31.30 31.29
Bend 52.17 3.8 50.53 0.5 51.82 3.1 50.26 50.21
Bend 71.90 3.8 69.77 0.8 71.48 3.2 69.21 68.09
Bend 91.88 3.9 89.52 1.2 91.43 3.4 88.41 88.18
Bend 112.43 4. 110.11 1.9 111.91 3.5 108.02 107.61
t/c 121.04 0.8 121.04 0.8 121.36 1.1 120.03

20 Bend 15.50 0.8 15.39 0. 15.51 0.8 15.38 15.38
Bend 49.99 2. 49.04 0.1 49.82 1.7 48.98 48.94
Bend 89.53 2.8 87.18 0.2 89.03 2.3 87.01 86.90
Bend 169.56 3.6 164.26 0.4 168.41 2.9 163.58 163.12
Bend 209.45 3.8 202.88 0.6 208.08 3.1 201.64 200.87
t/c 242.08 0.2 242.06 0.2 242.73 0.4 241.61
used and only one more function is needed in this new model.
In fact, this finite element is simple and efficient for a low
cost, compared to layerwise approach or plane elasticity
model in commercial softwares.

Several numerical evaluations have proved that this
model has very good properties in the field of finite elements.
Convergence velocity is high for static and vibration analy-
sis and accurate results are obtained. Compared to the sinus
model (with and without continuity), this new finite element
improves numerical results. The thick (S = 4) two-layer
beam is the best example showing the efficiency of SinRef-
c. Moreover, we can stress the emphasis on the good distri-
bution of the stresses across the thickness even if they are
directly computed from the constitutive relation. Moreover,
maximum values of the transverse shear stress are calculated
precisely. Concerning the free vibration analysis, natural
frequencies are very well predicted.

In all these tests, the necessity to impose the continuity
conditions of the transverse shear stress between the layers
is obvious. In thick case tests (S = 4), refinement of the
bending part using only one more unknown function is suf-
ficient to achieve accurate results, considering the trans-
verse normal stress at zero. Multiphysics problems are
now investigated using this new model, and special atten-
tion is pointed towards the transverse normal stress effect.

Appendix A. Sinus model with continuity conditions

A.1. Displacement field

The beam displacement field in the (0,x1,z) plane is
defined as follows:
u1ðx1; zÞ ¼ uðx1Þ þ zvðx1Þ þ f ðzÞu2ðx1Þ þ gðzÞv2ðx1Þ

þ
PðNCÞ�1

i¼1

uc
i ðx1Þðz� ziþ1ÞHðz� ziþ1Þ

u3ðx1; zÞ ¼ wðx1Þ

8>>><
>>>:

ðA:1Þ

in which uðx1Þ; vðx1Þ; u2ðx1Þ; v2ðx1Þ; uc
i ðx1Þ;wðx1Þ are the un-

known functions. uc
i ðx1Þ is used in order to ensure the con-

tinuity conditions on the interface layers.
H is the Heaviside function, f(z) and g(z) are trigono-

metric functions defined by

f ðzÞ ¼ h
p sin pz

h

� �
f 0ðzÞ ¼ cos pz

h

� �
(

gðzÞ ¼ h
p cosðpz

h Þ
g0ðzÞ ¼ � sinðpz

h Þ

(

Finally, the transverse shear strain component is given
by

c13ðx1; zÞ ¼ vðx1Þ þ w0ðx1Þ þ f 0ðzÞu2ðx1Þ þ g0ðzÞv2ðx1Þ

þ
XðNCÞ�1

i¼1

uc
i ðx1ÞHðz� ziþ1Þ ðA:2Þ
A.2. Boundary conditions on the top and bottom surfaces

• bottom surface z1 ¼ � h
2
; from Eq. (A.2), the following

relation is obtained:

rð1Þ13 ðz1Þ ¼ 0() Gð1Þðvðx1Þ þ w0ðx1Þ þ v2ðx1ÞÞ ¼ 0

() vðx1Þ þ w0ðx1Þ ¼ �v2ðx1Þ ðA:3Þ

• top surface zNCþ1 ¼ h
2
; in the same way, we have:



rðNCÞ
13 ðz¼ zNCþ1Þ¼ 0

()GðNCÞ vðx1Þþw0ðx1Þ� v2ðx1Þþ
XðNCÞ�1

i¼1

uc
i ðx1Þ

!
¼ 0

()
XðNCÞ�1

i¼1

uc
i ðx1Þ¼ 2v2ðx1Þ ðA:4Þ

Then, the following relations are deduced:

vðx1Þ ¼ �w0ðx1Þ �
1

2

XðNCÞ�1

i¼1

uc
i ðx1Þ

v2ðx1Þ ¼
1

2

XðNCÞ�1

i¼1

uc
i ðx1Þ

ðA:5Þ

Therefore, introducing Eq. (A.5) in Eq. (A.1), new dis-
placement field can be written as below:

u1ðx1; zÞ ¼ uðx1Þ � zw0ðx1Þ þ f ðzÞu2ðx1Þ

þ
PðNCÞ�1

i¼1

uc
i ðx1Þ � 1

2
zþ 1

2
gðzÞ þ ðz� ziþ1ÞHðz� ziþ1Þ

� �
u3ðx1; zÞ ¼ wðx1Þ

8>>><
>>>:

ðA:6Þ

Unknown functions uc
i ðx1Þ are now used to ensure the con-

tinuity conditions at each layer interface.

A.3. Continuity conditions for the transverse shear stress

From Eq. (A.6), the transverse shear strain is

c13ðx1; zÞ ¼ f 0ðzÞu2ðx1Þ

þ
XðNCÞ�1

i¼1

uc
i ðx1Þ �

1

2
þ 1

2
g0ðzÞ

	 


þ
XðNCÞ�1

i¼1

uc
i ðx1ÞHðz� ziþ1Þ ðA:7Þ

Therefore, continuity condition is ensured writing:

rðkÞ13 ðz ¼ zkþ1Þ ¼ rðkþ1Þ
13 ðz ¼ zkþ1Þ ðA:8Þ

• layer (k):

rðkÞ13 ðz ¼ zkþ1Þ

¼ GðkÞ f 0ðzkþ1Þu2ðx1Þ þ
1

2

XðNCÞ�1

i¼1

uc
i ðx1Þðg0ðzkþ1Þ � 1Þ þ

Xk�1

i¼1

uc
i ðx1Þ

!

• layer (k + 1);

rðkþ1Þ
13 ðz ¼ zkþ1Þ ¼ Gðkþ1Þ f 0ðzkþ1Þu2ðx1Þ þ

1

2

XðNCÞ�1

i¼1

uc
i ðx1Þ

� ðg0ðzkþ1Þ � 1Þ þ
Xk�1

i¼1

uc
i ðx1Þ þ uc

kðx1Þ
!

For k 2 {1, NC � 1}, continuity conditions for the trans-
verse shear stress is

GðkÞ f 0ðzkþ1Þu2ðx1Þ þ
1

2

XðNCÞ�1

i¼1

uc
i ðx1Þðg0ðzkþ1Þ � 1Þ

þ
Xk�1

i¼1

uc
i ðx1Þ

!
¼ Gðkþ1Þ

f 0ðzkþ1Þu2ðx1Þ þ
1

2

XðNCÞ�1

i¼1

uc
i ðx1Þðg0ðzkþ1Þ � 1Þ

þ
Xk�1

i¼1

uc
i ðx1Þ þ uc

kðx1Þ
!

ðA:9Þ

which can be written under the following form:

ðGðkÞ �Gðkþ1ÞÞf 0ðzkþ1Þu2 ¼ Gðkþ1Þuc
kðx1Þ � ðGðkþ1Þ �GðkÞÞ

� 1

2

XðNCÞ�1

i¼1

uc
i ðx1Þðg0ðzkþ1Þ � 1Þ þ

Xk�1

i¼1

uc
i ðx1Þ

!

ðA:10Þ

Finally, a system of NC � 1 equations is obtained for the
NC � 1 unknown functions uc

i ðx1Þ. This system is denoted:

½A�½U � ¼ ½B�u2

where ½U �t ¼ ½uc
1uc

2 . . . . . . uc
NC�1� and the coefficients Akl of

[A] for k 2 {1,NC � 1} are:

l < k: Akl = (G(k+1) � G(k))(g 0(zk+1) + 1)
l = k: Akl = Gk + G(k+1) + (G(k+1) � G(k))g 0(zk+1)
l > k: Akl = (G(k+1) � G(k))(g 0(zk+1) � 1)
while second member [B] is defined by coefficient:

Bk ¼ 2ðGðkÞ � Gðkþ1ÞÞf 0ðzkþ1Þ

Finally, the solution of this system gives relations as
uc

i ðx1Þ ¼ aiu2ðx1Þ where coefficients ai are expressed from
(G(k))k=1,NC; (zk+1; g 0(zk+1); f 0(zk+1))k=1, NC�1.

A.4. Final displacement field

The final displacement field takes the following form

u1ðx1; zÞ ¼ uðx1Þ � zw0ðx1Þ þ u2ðx1Þ
(

f ðzÞþ

PðNCÞ�1

i¼1

ai � 1
2
zþ 1

2
gðzÞ þ ðz� ziþ1ÞHðz� ziþ1Þ

� �)

u3ðx1; zÞ ¼ wðx1Þ

8>>>>>>><
>>>>>>>:

ðA:11Þ

Remark. for NC = 1, the sinus model is recovered with
u2(x1) = x3(x1) + w 0(x1).
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