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Assessment of the refined sinus model for the non-linear
analysis of composite beams

P. Vidal, O. Polit *

LMpX, Universite´ Paris X-Nanterre, 50 rue de Se`vres, 92410 Ville d’Avray, France 
Abstract

The objective of this paper is to evaluate a new three-noded mechanical beam finite element for the non-linear analysis of laminated
beams. It is based on a sinus distribution with layer refinement. The transverse shear strain is obtained by using a cosine function avoid-
ing the use of shear correction factors. This kinematic accounts for the interlaminar continuity conditions on the interfaces between lay-
ers, and the boundary conditions on the upper and lower surfaces of the beam. A conforming FE approach is carried out using Lagrange
and Hermite interpolations. It is important to notice that the number of unknowns is independent from the number of layers.

Buckling, post-buckling, and non-linear bending tests are presented in order to compare with the ones available in the literature or 
based on a 2D analysis. The influence of mesh, boundary conditions, length-to-thickness ratios and lay-ups is studied to show the accu-
racy and the efficiency of this finite element.

Keywords: Laminated composite beam; Geometric non-linearity; Higher-order transverse shear; Layer refinement; Finite element
1. Introduction

Composite and sandwich structures are widely used in
the engineering field due to their excellent mechanical prop-
erties. In this context, they can be submitted to severe con-
ditions. For composite design, accurate knowledge of
deflection or stresses is required to take into account effects
of transverse shear deformation due to the low ratio of
transverse shear modulus to axial modulus, or failure due
to delamination . . . In fact, they can play an important role
on the behaviour of structures in services, which leads to
evaluate precisely their influence on stresses, particularly
on the interface of layers.

The aim of this paper is to evaluate a new finite element
introduced in [2] which allows to analyze laminated com-
posite beams. This particular study focuses on elasticity
field in relation to moderately large displacements.
* Corresponding author. Fax: +33 1 47 09 52 24.
E-mail address: philippe.vidal@u-paris10.fr (O. Polit).
According to published research, various theories in
mechanics for composite or sandwich structures have been
developed. They can be classified as:

� The equivalent single layer (ESL): the number of
unknowns is independent from the number of layers,
but the shear stress continuity on the interfaces of layers
are often violated. We can distinguish the classical lam-
inate theory [3] (it is based on the Euler–Bernoulli
hypothesis and leads to inaccurate results for composites
and moderately thick beams, because the transverse
shear is neglected), the first-order shear deformation the-
ory, and higher-order theories: [4–12] which analyse
stresses for beams and plates. These theories are also
applied to buckling problems. A finite element model
is developed in [13]. A parabolic distribution is chosen
in [1]. Karama [14,15] uses an exponential function for
in-plane displacement components. In [16], the method
of power series expansion of displacement components
is carried out. We also find works about stepped
composite beams [17]. And, in [18], the displacement
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Fig. 1. The laminated beam and co-ordinate system.
components are expressed in a series of simple algebraic
polynomials with the Ritz method to obtain the critical
buckling load. Concerning non-linear bending analyses,
Chandrashekhara [19] and Polit [20] develop a finite ele-
ment approach.
� The discrete layer theory or layer-wise approach (DLT):

this theory aims at overcoming the restriction of the
ESL about the discontinuity of in-plane displacement
on the interface layers [21–24] (FSDT), [25]. Few works
about buckling problems are applied to beams.In this
framework, some authors have developed the zigzag
model in order to improve the accuracy of results and
reduce the number of unknowns for multilayered com-
posites. This model has the advantage of taking into
account the first derivative discontinuity of the in-plane
displacement in the transverse direction. This was first
employed by Murakami [26] with Reissner’s new mixed
variational principle to develop a plate theory. Then, it
was also used and improved by Reddy, Icardi, Di Sci-
uva, Averill, Cho, Carrera [27–32], with different order
kinematics assumptions. For a review of zig-zag
method, see Carrera [33]. In the context of buckling
analyses, see [34].
A multitude of analysis models for layered structures
and corresponding finite element formulations have
been developed over many years. An extensive assess-
ment of different approaches has been made by Noor
[35], Reddy [36] and Carrera [37]. Overviews about the
particular problem of buckling of composite plate and
shell structures are given in [38].

Thus, the proposed finite element which belongs to a
family of sinus models for rectangular laminated beam
analysis is built, in order to have a low cost tool, efficient
and simple to use. In fact, our approach is associated with
the ESL theory. This element is totally free of shear locking
and is based on a refined shear deformation theory [39]
avoiding the use of shear correction factors for laminates.
Our element is based on the sinus model [40]. It is C0-con-
tinuous except for the transverse displacement associated
with bending which is C1. It should be noted that all the
interface and boundary conditions are exactly satisfied
for displacements and stresses. Therefore, this approach
takes into account physical meaning. The new model
named SinRef-c model uses a Heaviside function to satisfy
conditions of continuity. It is based on the double superpo-
sition hypothesis from [41]. Three local functions are added
to the sinus model. It yields to only four independent gen-
eralized displacements, i.e. three displacements and one
rotation.

In this article, first the mechanical formulation for the
refined sinus model is described. The associated finite ele-
ment is given in the context of the geometric non-linearity.
It is illustrated by numerical tests which have been per-
formed upon various laminated beams.

In particular, the influence of boundary conditions and
stacking sequences on critical buckling loads is investigated
as in [18]. A parametric study is given to show the effects of
different parameters such as length-to-thickness ratio and
number of degrees of freedom. The accuracy of computa-
tions are also evaluated by comparisons with literature
results and also two-dimensional finite element computa-
tions using commercial codes.

Finally, other numerical examples are presented to dem-
onstrate the effectiveness and the accuracy of the finite ele-
ment models for post-buckling and non-linear analyses.
Computations for different stacking sequences are com-
pared to 2D finite element computations.

2. Resolution of the mechanical problem

2.1. The governing equations for mechanics

Let us consider a beam occupying the domain
B ¼ ½0; L� � � h

2
6 z 6 h

2

� �
� � b

2
6 x2 6

b
2

� �
in a cartesian

coordinate ðx1; x2; zÞ. The beam has a rectangular uniform
cross-section of height h, width b and is assumed to be
straight. The beam is made of NC layers of different line-
arly elastic materials. Each layer may be assumed to be
transversely isotropic in the beam axes. The x1 axis is taken
along the central line of the beam whereas x2 and z are the
two axes of symmetry of the cross-section intersecting at
the centroı̈d, see Fig. 1. As shown in this figure, the x2 axis
is along the width of the beam. This work is based upon a
displacement approach for geometrically non-linear elastic
beams. The list of principal notations is listed in Table 1.

2.1.1. Constitutive relation

Using matrix notations, the one-dimensional
constitutive equations of an orthotropic material are given
by:

�11

�13

� �
¼ C11 0

0 C55

" #
"11

"13

� �
i:e: ½�� ¼ ½C�½"� ð1Þ

where we denote: the stress tensor ½��; the strain tensor ½"�.
Furthermore, in Eq. (1), constitutive unidimensional laws
are given by the elastic stiffness tensor ½C�.

Taking into account the classic assumption
�22 ¼ �33 ¼ 0 (transverse normal stresses are negligible),
the longitudinal modulus is expressed from the three
dimensional constitutive laws by:

C11 ¼ C11 � 2C2
12=ðC23 þ C33Þ ð2Þ

where Cij are orthotropic three-dimensional elastic moduli.
We also have C55 ¼ C55.



Table 1
Principal notations

½�� Stress tensor
½"� Strain tensor
½"L� Linear part of strain tensor
½"NL� Non-linear part of strain tensor
Cij 3D elastic stiffness modulus
Cij 1D elastic stiffness modulus
½Ke� Elementary stiffness matrix
½KTe� Elementary tangent stiffness matrix
½Eu�; ½Es� Generalized displacement vector
½N �; ½B� Interpolation functions vector and derivatives vector
½qe� Degrees of freedom elementary vector
~u Displacement vector
L Length of the beam
b Width of the beam
h Height of the beam
NC Number of layers
N Number of elements
t Time
S Length to thickness ratio
�k Continuity coefficient for the Sin-c model
ð�k

i ; �
k
i Þi¼1;2;3 Continuity coefficients for the SinRef-c model

SinRef-c Refined sinus model with continuity requirements
2.1.2. The weak form of the boundary value problem
Using the above matrix notations and for admissible vir-

tual displacement~u� 2 U �, the variational principle is given
by:

Find~u 2 U (space of admissible displacements) such as:

Jð~u;~u�ÞB ¼ að~u;~u�ÞB � f ð~u�ÞB � F ð~u�Þ@BF
¼ 0; 8~u� ð3Þ

with

að~u;~u�ÞB ¼
Z
B
½"ð~u�Þ�T½�ð~uÞ�dB

f ð~u�ÞB ¼
Z
B
½~u��T½f �dB

F ð~u�Þ@BF
¼
Z
@BF

½~u��T½F �d@B

ð4Þ

where ½f � and ½F � are the prescribed body and surface
forces applied on @BF . "ð~u�Þ is the virtual strain.

Eq. (3) is a classical starting point for finite element
approximations.

2.2. The displacement field for laminated beams: the refined

sinus model

Based on the sinus function (see [42,43]), the refined
sinus model denoted SinRef-c is presented in this section.

This part is based on both:

� various works on beams, plates and shells, cf. Refs.
[20,39,40,42,44,45] concerning the refined theory,
� the so-called 1–3 double-superposition theory developed

by Li and Liu [41].

It also follows works about local–global approach stud-
ied in [46,47].
The SinRef-c model (see [2]) takes into account the con-
tinuity conditions between layers of the laminate for both
displacements and transverse shear stress, and the free con-
ditions on the upper and lower surfaces owing to the heav-
iside function. Moreover, the refinement is added in each
layer.

Hence, in our approach, the displacement field is
assumed to be of the following particular form (with
w0 ¼ @w=@x1):

u1ðx1; x2; z; tÞ ¼ uðx1; tÞ � zwðx1; tÞ0

þf ðzÞð!3ðx1; tÞ þ wðx1; tÞ0Þ þ
PNC

k¼1

ð�uðkÞlocðx1; z; tÞ

þûðkÞlocðx1; z; tÞÞðHðz� zkÞ � Hðz� zkþ1ÞÞ
u3ðx1; x2; z; tÞ ¼ wðx1; tÞ

8>>>>>><
>>>>>>:

ð5Þ
where H is the Heaviside function defined by

Hðz� zkÞ ¼ 1 if z P zk

Hðz� zkÞ ¼ 0 if not

�
ð6Þ

t is the time and �k ¼ akz� bk; ak ¼ 2
zkþ1�zk

; bk ¼ zkþ1þzk
zkþ1�zk

.
In the context of the sinus model, we have:

f ðzÞ ¼ h
�

sin
�z
h

ð7Þ

and this function will represent the transverse shear strain
distribution due to bending by its derivative.

The local functions �uðkÞloc and ûðkÞloc based on the Legendre
polynomial can be written as:

�uðkÞlocðx1; z; tÞ ¼ �kuk
31ðx1; tÞ þ � 1

2
þ 3�2

k
2

� �
uk

32ðx1; tÞ

ûðkÞlocðx1; z; tÞ ¼ � 3�k
2
þ 5�3

k
2

� �
uk

33ðx1; tÞ

8><
>: ð8Þ

In the classic approach, w is bending deflection following
the z direction. u is associated with the uniform extension
of the cross-section of the beam along the central line.
And, !3 is the shear bending rotation around the z axis.

Remarks:

� From Eq. (5), classical beam models can be deduced
without the local functions:
– Euler–Bernoulli

f ðzÞ ¼ 0

– Timoshenko

f ðzÞ ¼ z

– sinus model

f ðzÞ ¼ h
�

sin
�z
h

� These Legendre polynomials have the interesting follow-

ing properties: if we note A1 ¼ �k; A2 ¼ � 1
2
þ 3�2

k
2

and

A3 ¼ � 3�k
2
þ 5�3

k
2



Fig. 2. Coordinate system of laminated beam.
Z þ1

�1

Ai d�k ¼ 0 i ¼ 1; 2; 3 and

Z þ1

�1

AiAj d�k ¼ 0 i 6¼ j

ð9Þ
At this stage, 3�NCþ 3 generalized displacements are

included in Eqs. (5) and (8).
It should be noted that it is not necessary to introduce

transverse shear correction factors.
The following part is dedicated to the obtention of rela-

tions between kinematic unknowns from:

� lateral boundary conditions,
� interlaminar continuity conditions (displacement, trans-

verse shear stress).

It should be noted that the physical meaning is kept.

2.2.1. Continuity conditions and free conditions for the

refined sinus model

From the displacement field Eq. (5), some continuity
conditions on displacements and interlaminar stress must
be imposed. For an interface layer k�f2; . . . ;NCg (see
Fig. 2), we have:

� displacement continuity conditions as in [46] i.e.:

�uðkÞlocðx1; zk; tÞ ¼ �uðk�1Þ
loc ðx1; zk; tÞ k ¼ 2; . . . ;NC ð10Þ

ûðkÞlocðx1; zk; tÞ ¼ ûðk�1Þ
loc ðx1; zk; tÞ k ¼ 2; . . . ;NC ð11Þ

� transverse shear stress continuity between two adjacent
layers:

�
ðkÞ
13 ðx1; zþk Þ ¼ �

ðk�1Þ
13 ðx1; z�k Þ k ¼ 2; . . . ;NC ð12Þ

So, 3 �NC� 3 conditions are imposed, which allow to
reduce the number of unknowns to 6 generalized
displacements.

Free conditions of the transverse shear stress on the
upper and lower surfaces must also be verified. So, we
have:

�
ð1Þ
13 x1; z ¼ �

h
2

	 

¼ 0 and �

ðNCÞ
13 x1; z ¼

h
2

	 

¼ 0 ð13Þ

Finally, the number of generalized displacements is re-
duced to 4, which is independent from the number of
layers.
2.2.2. Relation between the generalized displacements

Using the displacement notation introduced in Eq. (8),
the conditions Eqs. (10)–(13) can be written under the fol-
lowing form:

½A�fvg ¼ fbgu1
31ðx1; tÞ þ fcgð!3ðx1; tÞ þ wðx1; tÞ0Þ ð14Þ

where ½A� is a ð3 �NC� 1Þ � ð3 �NC� 1Þ matrix.

fvgT ¼ fu1
32 u1

33 . . . uj
31 uj

32 uj
33 . . . uNC

31 uNC
32 uNC

33 g
T, a ð3 �

NC� 1Þ vector, and fbg; fcg two ð3 �NC� 1Þ vectors.
From the resolution of this linear system, relations

between uj
31ðj 6¼ 1Þ; uj

32; uj
33; j ¼ 1; . . . ;NC and u1

31 can be
deduced. This relation can be written under the following
form:

uj
31ðx1; tÞ ¼ �j

1ð!3ðx1; tÞ þ wðx1; tÞ0Þ þ �j
1u1

31ðx1; tÞ;
j ¼ 1; . . . ;NC

uj
32ðx1; tÞ ¼ �j

2ð!3ðx1; tÞ þ wðx1; tÞ0Þ þ �j
2u1

31ðx1; tÞ;
j ¼ 1; . . . ;NC

uj
33ðx1; tÞ ¼ �j

3ð!3ðx1; tÞ þ wðx1; tÞ0Þ þ �j
3u1

31ðx1; tÞ;
j ¼ 1; . . . ;NC

8>>>>>>>><
>>>>>>>>:

with ð�1
1 ¼ 1; �1

1 ¼ 0Þ ð15Þ

where �j
1; �

j
2; �

j
3, and �j

1, �j
2; �

j
3 are the coefficients deduced

from Eq. (14).
Finally, the four unknowns become u; w; !3, and u1

31.

2.2.3. Linear part of strain

Matrix notations can be easily defined using a general-
ized displacement vector as:

½u�T ¼ ½F uðzÞ�½Eu�

with ½Eu�T ¼ u ..
.

w w;1
..
.
!3

..

.
u1

31

h i ð16Þ

and ½F uðzÞ� is depending on the normal coordinate z. Its
expression is given below:

½F uðzÞ� ¼
1 0 F u13ðzÞ F u14ðzÞ F u15ðzÞ
0 1 0 0 0

� �
ð17Þ

where

F u13ðzÞ ¼ �zþ f ðzÞ þ S�ðzÞ
F u14ðzÞ ¼ f ðzÞ þ S�ðzÞ
F u15ðzÞ ¼ S�ðzÞ

and

S�ðzÞ ¼
XNC

k¼1

�k�
k
1 þ � 1

2
þ 3�2

k

2

	 

�k

2 þ � 3�k

2
þ 5�3

k

2

	 

�k

3

	 


� DHðk; k þ 1Þ

S�ðzÞ ¼
XNC

k¼1

�k�
k
1 þ � 1

2
þ 3�2

k

2

	 

�k

2 þ � 3�k

2
þ 5�3

k

2

	 

�k

3

	 


� DHðk; k þ 1Þ

with DHðk; k þ 1Þ ¼ Hðz� zkÞ � Hðz� zkþ1Þ:



The linear part of the strains for the symmetric lami-
nated beam element is:

"L11 ¼ u;1 � zw;11 þ ðf ðzÞ þ S�ðzÞÞðw;11 þ !3;1Þ þ S�ðzÞu1
31 ;1

	L13 ¼ ðf ðzÞ;3 þ S�ðzÞ;3Þðw;1 þ !3Þ þ S�ðzÞ;3u1
31

ð18Þ
These expression can be described using a matrix notation:

½"L� ¼ ½F sðzÞ�½Es� with

½Es�T ¼ u;1 ..
.

w;1 w;11
..
.
!3 !3;1

..

.
u1

31 u1
31;1

� �
ð19Þ

and ½F sðzÞ� is depending on the normal coordinate z. Its
expression is given below:
½F sðzÞ� ¼
1 0 �zþ ðf ðzÞ þ S�ðzÞÞ 0 ðf ðzÞ þ S�ðzÞÞ 0 S�ðzÞ
0 ðf ðzÞ;3 þ S�ðzÞ;3Þ 0 ðf ðzÞ;3 þ S�ðzÞ;3Þ 0 S�ðzÞ;3 0

" #
ð20Þ

Fig. 3. Description of the laminated beam finite element dof.
2.2.4. Matrix expression for the weak form: linear part

From the weak form of the boundary value problem Eq.
(3), and using Eqs. (19) and (20), an integration throughout
the cross-section is performed analytically in order to
obtain an unidimensional formulation. Therefore, for a lin-
ear analysis, the first term of Eq. (4) can be written under
the following form:Z
B
½"Lð~u�Þ�T½�Lð~uÞ�dB ¼

Z L

0

½E�s �
T½A�½Es�dx1

with ½A� ¼
Z

X
½F sðzÞ�T½�C�½F sðzÞ�dX ð21Þ

where ½C� is the constitutive unidimensional law given in
Section 2.1.1, and X represents the cross-section
� h

2
6 z 6 h

2

� �
� � b

2
6 x2 6

b
2

� �
.

In Eq. (21), matrix ½A� is the integration throughout the
cross-section of the beam material characteristics. The
interest of the Legendre polynomials choice can be empha-
sized in the calculation of the matrix ½A� owing to their
properties of orthogonality (cf. Eq. (9)).

3. The 1D three-node finite element for non-linear analyses

This section is dedicated to the finite element approxima-
tion of the generalized displacement and the resolution of the
non-linear mechanical problem, see matrices ½Es�; ½E�s �; ½Eu�,
and ½E�u� (Eqs. (19) and (16)). It is briefly described, and the
reader can obtain a detailed description in [40,2].

3.1. Non-linear finite element formulation

The multilayered structure is considered in a Total
Lagrangian configuration, so that its mesh is denoted
[Lh
eð0Þ where (0) indicates the initial (fixed) configuration

used.
The discrete boundary value problem is therefore for-

mulated by the following Total Lagrangian functional
available for non-linear analysis:

Jð~u;~u�Þ[Lh
eð0Þ
¼ að~u;~u�Þ[Lh

e ð0Þ
� f ð~u�Þ[Lh

e ð0Þ

� F ð~u�Þ@BF ð0Þ ¼ 0; 8~u� ð22Þ

Absence of followed forces is considered here. Thus, the
main feature of the non-linear formulation is incorporated
into the virtual internal power að~u;~u�Þ[Lh

eð0Þ i.e.

að~uh;~u�hÞLh
e ð0Þ
¼
Z

Lh
eð0Þ

Z h=2

�h=2

½"�he �
T½CðkÞ�½"h

e �dzdLeð0Þ ð23Þ
3.2. The geometric approximation

Given the displacement field constructed above for
sandwich and laminated beams, a corresponding finite ele-
ment is developed in order to analyze the behaviour of lam-
inated beam structures under combined loads. Let us
consider the eth element Lh

e of the mesh [Lh
e . This element

has three nodes, denoted by ðgjÞj¼1;2;3, see Fig. 3. The coor-
dinate x1 on the central line of the beam is approximated as
follows:

x1ð
Þ ¼
X3

j¼1

Nqjð
Þxe
1ðgjÞ ð24Þ

where Nqjð
Þ are Lagrange quadratic interpolation func-
tions and xe

1ðgjÞ is the cartesian coordinate (measured along
the x1 axis) of the node gj of the element Lh

e . 
 is an isopara-
metric or reduced coordinate and its variation domain is
½�1; 1�.

3.3. Interpolation for the bending-traction beam element

The finite element approximations of the assumed dis-
placement field components are hereafter symbolically
written as uh

i ðx1; x2; zÞ where the superscript h refers to the
mesh [Lh

e .



From the kinematics (see Eq. (5)), the transverse dis-
placement wh must be C1-continuous; whereas the rotation
!h

3, the extension displacement uh and u1h
31 can be only C0-

continuous. Therefore, the generalized displacement wh is
interpolated by the Hermite cubic functions Nhjð
Þ.

According to the transverse shear locking phenomena,
the other shear bending generalized displacements, rotation
!h

3, are interpolated by Lagrange quadratic functions
denoted Nqjð
Þ. This choice allows the same order of inter-
polation for both wh

;1 and !h
3 in the corresponding trans-

verse shear strain components due to bending, and
enables to avoid transverse shear locking using the field
compatibility approach, see [48].

Finally, traction uh and u1h
31 are interpolated by Lagrange

quadratic functions.

3.4. Expression of strains

All the quantities in Eq. (23) refer to the initial (fixed)
configuration. Virtual strain rates and strains can be split
into their linear (index L) and non-linear (index NL) parts
as follows:

½"�he � ¼ ½"�hLe
� þ ½"�hNLe

�
½"h

e � ¼ ½"h
Le
� þ ½"h

NLe
�

ð25Þ

The geometrically non-linear formulation now considered
is based on Von-Karmann assumptions where deflexion is
moderately large, while rotations and strains are small.
Non-linear parts in (25) are then given by

½��hNLe
�T ¼ uh

3; 1u�h3 ; 1 0
� �

½�h
NLe
�T ¼ 1

2
uh

3; 1
2 0

� � ð26Þ

The linear part in Eq. (25) is detailed in Section 2.2.3.

3.5. Consistent linearization procedure

From these latest equations, it is evident that expression
(23) is non-linear with respect to displacements, and a
Newton algorithm has to be used to find a numerical solu-
tion of Eq. (22). For a Newton-type method, knowledge of
the tangent stiffness is required and can be derived using
standard linearization procedures. Applying it to Eq.
(22), we obtain

Jð~uh;~u�hÞ[Leð0Þ ¼ Jð~�uh;~u�hÞ[Leð0Þ þ D~uJð~�uh;~u�hÞ � D~uh ð27Þ

with ~uh ¼~�uh þ D~uh, where ~�uh refers to a known state.
According to Eq. (27), the linearized form of the func-

tional (22) is deduced and we now have to find the solution
of the following equation:

D~uað~�uh;~u�hÞ[Leð0Þ � D~u
h ¼ �að~�uh;~u�hÞ[Leð0Þ þ f ð~u�hÞ[Leð0Þ

þ F ð~u�hÞ[@BF eð0Þ
; 8~u�h ð28Þ

The left member of Eq. (28) has to be computed and gives
the tangent operator, while other quantities in the right
member are known vectors as they depend only on the
known state ~�uh.

3.6. Tangent stiffness matrix

The tangent stiffness matrix is now derived from the left
member of Eq. (28). For an arbitrary finite element Leð0Þ of
the mesh [Leð0Þ, the tangent operator is found as

D~uað~�uh;~u�hÞLeð0Þ � D~u
h ¼

Z
Leð0Þ
½E�hse �

T½Ae�½DEh
se�dLeð0Þ

þ
Z

Leð0Þ
½E�hse �

T½Aeð~�uhÞ�½DEh
se�dLeð0Þ

þ
Z

Leð0Þ
½E�hse �

T½Aeð��hÞ�½DEh
se�dLeð0Þ

ð29Þ
In Eq. (29), the matrix ½Ae� has been given in Section 2.2.4
(see Eq. (21)), as well as vectors ½Eh

se� and ½DEh
se� ¼ D½Eh

se�
from Eq. (19). The matrix ½Aeð~�uhÞ� depends on material
properties and on both linear and quadratically known
state~�uh. Finally, the matrix ½Aeð��hÞ� is linked to the in-plane
stresses. Expressions for these last two matrices are given in
Appendices A.1 and A.2.

Following the procedure given in Section 2 to derive the
linear stiffness matrix ½Ke�, it is easy to compute the tangent
stiffness matrix, denoted ½KTe�, so that

D~uað~�uh;~u�hÞLeð0Þ � D~u
h ¼ ½q�e �

T½KTe�½Dqe� ð30Þ
where

½KTe� ¼ ½Ke� þ ½Keð~�uhÞ� þ ½Keð��hÞ� ð31Þ
In Eq. (31), to compute either matrix ½Ke� or ½Keð~�uhÞ� or
½Keð��hÞ�, we use Eq. (32) detailed in the next section, respec-
tively based either on ½Ae� or ½Aeð~�uhÞ� or ½Aeð��hÞ�.

3.7. Elementary matrices

In the Section 2.2, all the finite element mechanical
approximations were defined, and elementary rigidity ½Ke�
matrix can be deduced from Eq. (21). It has the following
expression:

½Ke� ¼
Z

Le

½Be�T½Ae�½Be�dLe ð32Þ

where ½Be� is deduced expressing the generalized displace-
ment vectors, see Eq. (19), from the elementary vector of
degrees of freedom (dof) denoted ½qe� by:

½Eh
se� ¼ ½Be�½qe� ð33Þ

The matrix ½Be� contains only the interpolation functions,
their derivatives and the jacobian components.

The same technique can be used defining the elementary
matrices ½Keð~�uhÞ� and ½Keð��hÞ�.

4. Numerical results and discussions

In this section, several non-linear tests are presented
evaluating the efficiency of our finite element. It is to be



noted that this finite element has showed very good prop-
erties in the context of linear analysis, i.e. static and vibra-
tion tests (see [2]). In particular, there is no need for
transverse shear correction factors. Convergence velocity
is high, and accurate results have been obtained for differ-
ent benchmarks. So, we want to extend these characteris-
tics to non-linear analysis.

4.1. Critical buckling

The critical buckling load value is found by solving the
following eigenvalue problem:

ð½K� � �½Kð��Þ�Þ½q� ¼ ½0�
In the following sections, buckling predictions are vali-
dated against results obtained by other available higher-or-
der shear-deformation theory or 2D analysis.

4.1.1. Convergence study

Before proceeding to the detailed analysis, numerical
computations are carried out for convergence properties.

As in [13], an isotropic beam is considered to study the
shear-deformation effect and the refinement of the mesh on
the buckling load. This test is detailed below:

Geometry: the beam studied has a length of
L ¼ 0:0254 m, and a thickness h ¼ 0:00254 m ðS ¼
10Þ; b ¼ 0:003048 m.
Boundary conditions: simply supported beam.
Material properties: isotropic beam with
E ¼ 1:379� 109 Pa; G ¼ 0:6895� 109 Pa, or G ¼
0:6895� 108 Pa.
Mesh: N = 2, 4, 8, 16.
Table 2
Critical buckling load parameter obtained by various beam theories for
homogeneous beams (kN) – S = 10

Models N dof nb G ¼ 0:6895�
109 Pa

G ¼ 0:6895� 108 Pa

SinRef-c 2 16 86.7432 73.8207
4 32 86.1514 73.3914
8 64 86.111 73.362

16 128 86.1083 73.360

HSDT [49] 2 86.0859 73.0340
4 85.4426 72.9421

20 85.4321 72.9407

Analytical [49] 86.1043 73.3295

Table 3
Critical loads for the buckling of a simply supported beam (thin beam)

Mode N = 1 err (%) N = 2 err (%) N = 4

1 2.466e7 21 2.040e7 0.1 2.040e7
2 11.084e7 45 7.674e7 0.4 7.674e7
3 – – 15.896e7 1.3 15.896e7
Results: critical buckling load; comparison with analyti-
cal results [49] and higher-order shear-deformation the-
ory [13] (third-order expansion in the thickness) for a
finite element model.

The results are compared with the buckling loads
obtained from the mechanics of materials solution includ-
ing shear effects, such that: P cr ¼ P e

ð1þP ek=ðGbhÞÞ with

P e ¼ �2EI=L2 and k ¼ 5=6. The results of HSDT model

are also given from [13] in Table 2. In this approach, a
four-node straight-beam element with 56 dofs per node is
used.

The convergence of the SinRef-c model is very high.
Moreover, the efficiency of this model is better than the
HSDT model.

The second example is issued from [14,15]. It deals with
a symmetric laminated composite with the following
characteristics:

Geometry: the beam studied has a length of L ¼ 6:35 m,
and a thickness h ¼ 0:2794 m (thin S � 22:7). The lay-
up is (90�/0�/90�), with thickness (0.25h/0.5h/0.25h).
Boundary conditions: simply supported beam.
Material properties: the material used is boron epoxy
which has the following mechanical properties:

E11 ¼ 241:5 GPa; E22 ¼ E33 ¼ 18:89 GPa;

G12 ¼ G13 ¼ 5:18 GPa G23 ¼ 3:45 GPa;

�12 ¼ �13 ¼ 0:24; �23 ¼ 0:25

 ¼ 2015 kg=m3.
Mesh: N = 1, 2, 4, 8, 12.
Results: critical loads for buckling.

Table 3 gives the convergence of the SinRef-c model for
the critical buckling load. The results obtained are in good
agreement with the reference values with few elements. In
particular, a N = 2 mesh gives excellent results for the three
modes. Based on progressive mesh refinement, a N = 8
mesh is adequate to model the laminated beam for a buck-
ling analysis.

4.1.2. Buckling of laminated composite beam

4.1.2.1. Influence of length to thickness ratio and boundary

conditions [1]. Analytical solutions of refined beam
theories (third-order beam theory) are compared with
SinRef-c model. The buckling behaviour of cross-ply rect-
angular beams with arbitrary boundary conditions is stud-
ied. The considered test has the following characteristics:
err N = 8 err (%) N = 12 err (%) Abaqus [14]

0.1 2.039e7 0.04 2.039e7 0.04 2.0381e7
0.4 7.626e7 0.2 7.623e7 0.2 7.6407e7
1.3 15.506e7 1.1 15.47e7 1.3 15.684e7



Table 5
Critical buckling load parameter obtained by various beam theories fo
homogeneous and cross-ply beams – S = 10

Models (0�) (0�/90�) (0�/90�/0�) (0�/90�/0�/90�

SinRef-c 11.567 2.8937 11.0945 5.7703
HSDT [50] 11.5255 2.9172 11.0573 5.7511

Table 6
Dimensionless critical buckling loads – (0�/90�/0�) ðE1=E2 ¼ 40Þ
Models S CS SS CF

mat I mat II mat I mat II mat I mat II

SinRef-c 5 9.674 6.192 8.593 5.473 4.704 3.440
20 46.856 37.288 27.076 23.763 7.610 7.319

HSDBT [18] 5 9.317 8.951 8.162 7.465 4.554 4.226
20 45.813 43.390 26.752 25.944 7.584 7.516

Table 7
Dimensionless critical buckling loads – (0�/90�/0�) ðE1=E2 ¼ 10Þ
Models S CS SS CF

mat I mat II mat I mat II mat I mat II

SinRef-c 5 6.468 4.320 4.722 3.447 1.702 1.492
20 14.907 13.736 7.665 7.368 1.978 1.958

HSDBT [18] 5 6.187 5.667 4.572 4.246 1.683 1.632
20 14.797 14.797 7.639 7.571 1.977 1.973
Geometry: the beam studied has a length of L, and a
thickness h (thin S ¼ 5; S ¼ 10). It possesses three layers
at (0�/90�/0�), with the same thickness.
Boundary conditions: hinged–hinged, clamped–hinged,
clamped–clamped, clamped–free

clamped: ui ¼ wi ¼ wi;x ¼ !3i ¼ u1
31i ¼ 0 for the

node i

hinged: wi ¼ 0:
Material properties: E1

E2
¼ 40; G12 ¼ G13 ¼ 0:6E2; G23 ¼

0:5E2; �12 ¼ 0:25.
Mesh: N = 8.
Results: critical buckling loads are non-dimensionalized

as: N ¼ NL2

E2bh3. They are compared to the third-order the-

ory of Reddy (TOBT).

The results for different length to thickness ratios and
boundary conditions are given in Table 4. As one can
observe, the critical loads for the SinRef-c model are
always lower than these of the TOBT. Nevertheless, these
values are very close.

4.1.2.2. Influence of stacking sequences. Different cross-ply
laminates are considered as follows:

Geometry: the beam studied has a length of L, and a
thickness h (S = 10). stacking sequencies: (0�), (0�/90�),
(0�/90�/0�), (0�/90�/0�/90�), layers with the same
thickness.
Boundary conditions:simply supported beam.
Material properties: E1 ¼ 181 GPa; E2 ¼ E3 ¼ 10:3
GPa; G1 2 ¼ G1 3 ¼ 7:17 GPa; G2 3 ¼ 6:21 GPa; �1 2 ¼
0:28; �13 ¼ 0:02; �23 ¼ 0:40.
Mesh: N = 8.
Results: critical buckling loads are non-dimensionalized
as: � ¼ pcr=½h2=L2 E2h=ð1� �12�21Þ� issued from [50]
(beam finite element model using a higher-order shear
deformation theory).

Table 5 shows a good agreement between the two theo-
ries regardless of the stacking sequence.

4.1.2.3. Influence of boundary conditions. A set of boundary
conditions is considered as in [18]. The results are com-
pared with the ones available in the literature for different
stacking sequences and length-to-thickness ratios. Only
critical loads of higher-order shear deformation theory
are presented for comparison, see [18] for more details. It
Table 4
Effect of length to thickness ratio on the dimensionless critical buckling loads obtained by various beam theories – (0�/90�/0�)

S Models Clamped–free Hinged–hinged Clamped–hinged Clamped–clampe

5 SinRef-c 4.704 8.593 9.674 11.289
TOBT [1] 4.708 8.613 9.814 11.652

10 SinRef-c 6.769 18.816 25.810 34.377
TOBT [1] 6.772 18.832 25.857 34.453
r

)

should be noted that this theory does not ensure the conti-
nuity of the transverse shear stress on the interfaces
between the layers for the unsymmetric beam. This limita-
tion does not exist in our approach. Nevertheless, these
theories are compared here.

The tests are characterized by

Geometry: the beam studied has a length of L, and a
thickness h (S = 10). stacking sequencies: (0�/90�), (0�/
90�/0�), layers with the same thickness.
Boundary conditions: simply supported beam (SS),
clamped–free (CF), clamped-simply supported (CS).
Material properties: two material are considered:
mat I: E1

E2
¼open; G12¼G13¼0:6E2; G23¼0:5E2; �12¼

0:25.
mat II: E1

E2
¼ open; G12 ¼ G13 ¼ 0:5E2; G23 ¼

0:2E2; �12 ¼ 0:25.
Mesh: N = 8
Results: critical buckling loads are non-dimensionalized
as: � ¼ N crL2=bE2h3 issued from [18]. HSDBT and
d



Table 8
Dimensionless critical buckling loads – (0�/90�) ðE1=E2 ¼ 40Þ
Models S CS SS CF

mat I mat II mat I mat II mat I mat II

SinRef-c 5 4.960 4.250 3.439 3.107 1.181 1.139
20 10.249 10.030 5.232 5.179 1.344 1.340

HSDBTds [18] 5 5.976 4.780 3.903 3.372 1.236 1.175
20 10.521 10.216 5.296 5.224 1.349 1.344

Table 9
Dimensionless critical buckling loads – (0�/90�) ðE1=E2 ¼ 10Þ
Models S CS SS CF

mat I mat II mat I mat II mat I mat II

SinRef-c 5 3.207 2.799 1.887 1.750 0.539 0.527
20 4.509 4.452 2.238 2.225 0.565 0.564

HSDBTds [18] 5 3.303 2.845 1.919 1.765 0.542 0.528
20 4.521 4.458 2.241 2.226 0.565 0.564

Table 10
Critical strains �"cr for sandwich beam

S SinRef-c Error (%) 2D [34]

5 �0.4404 4 �0.4220
7.5 �0.7746 3 �0.747

10 �1.058 3 �1.028
20 �1.638 1 �1.620

100 �1.989 0.0 �1.989
HSDBTds stand for hyperbolic shear deformation beam
theory and discontinuity interlaminar stresses
respectively.

The critical buckling loads for symmetric and anti-sym-
metric composite beams are given in Tables 6–9 with
respect to span-to-thickness ratio (thick S = 5, moderately
thick S = 20), boundary condition, and material.

For the three layers case:

� the difference between the two theories can be more
appreciated for the material II,
� the value of the critical load for the SinRef-c model is

lower than the corresponding HSDBT value for the
material I,
� it is the reverse for the material II.

For the two layers beam:

� it should be noted that the results issued from the Sin-
Ref-c model take lower values than the corresponding
HSDBT case (discontinuous case) regardless of the
material, the boudary condition, and the length-to-
thickness ratio,
� as in [18], the critical loads are close for CF boundary

condition, especially for E1=E2 ¼ 10 (Table 9).

4.1.3. Buckling of sandwich beam

As in [34], the particular case of a sandwich beam is con-
sidered as follows:

Geometry: the 3-layer sandwich beam has graphite-
epoxy faces and a soft core with thickness 0.1h/0.8h/
0.1h and length to thickness ratio from S = 5 to S = 100.
Boundary conditions: simply supported beam.
Material properties: Face: E11 ¼ 131:1 GPa; E22 ¼ E33 ¼
6:9 GPa; G12 ¼ 3:588 GPa; G13 ¼ 3:088 GPa; G23 ¼
2:3322 GPa; �12¼�13¼0:32; �23¼0:49; f ¼1000 kg=m3.
Core: E11¼0:2208 MPa;E22¼0:2001 MPa;E33¼2760
MPa;G12¼16:56MPa;G13¼545:1MPa;G23¼455:4MPa;
�12¼0:99; �13¼0:00003; �23¼0:00003; c¼70kg=m3.
Results: critical strains �"cr ¼ "crS

2 with "cr ¼
�N cr

R
z C11 dz

� �
b


:

In Table 10, the results of the present model are com-
pared to exact solution of 2D elastic buckling formulation
for different span-to-thickness ratios. It should be noted
that the error remains low for very thick and thin beams.

4.2. Post-buckling analyses

In this part, three stacking sequences (0�/90�), (0�/90�/
0�), and (0�/90�/0�/90�/0�) are considered in post-buckling
analyses. The tests have the following characteristics:

Geometry: the beam studied has a length of L ¼ 6:35 m,
and a thickness h ¼ 0:2794 m (thin S � 22:7). It pos-
sesses two layers (0.5 h/0.5 h), three layers (0.25h/0.5h/
0.25h), and five layers (with equal thickness h/5).
Boundary conditions: simply supported beam with a
transverse perturbation load F per.
Material properties: the material used is boron epoxy
which has the following mechanical properties:

E11 ¼ 241:5 GPa; E22 ¼ E33 ¼ 18:89 GPa;

G12 ¼ G13 ¼ 5:18 GPa; G23 ¼ 3:45 GPa;

�12 ¼ �13 ¼ 0:24; �23 ¼ 0:25

 ¼ 2015 kg=m3.
Mesh: N = 12.
Results: post-buckling, F =w:

The variation of F with respect to transverse displace-
ment w is presented in Figs. 4–6. The results are compared
with 2D finite element solution (ANSYS). It is seen from
these figures that the present finite element performs quite
well for all cases.

4.3. Non-linear analyses

In this section, the computation of the non-linear
response, with respect to the Von Karman assumption,
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Fig. 6. F =w with F per ¼ 10000 N; F per ¼ 30000 N; F per ¼ 300; 000 N –
five layers.
for a beam subject to a transverse load is achieved by
solving:

½KT�½Dq� ¼ ½DF � � ð½K� þ ½KNLð�qÞ�Þ½�q�
Table 11
Non-linear bending analysis – (90�/0�/90�) – S ¼ 22:7 – clamped–clamped

F (*1e6 N) 1 1.5 2 2.5

w SinRef-c �0.0441 �0.0628 �0.0792 �0.0935
w (ANSYS) �0.0443 �0.0632 �0.0797 �0.0941

Table 12
Non-linear bending analysis – (90�/0�) – S ¼ 22:7 – clamped–clamped

F (*1e6 N) 2 5 7 10

w SinRef-c �0.06793 �0.1339 �0.1641 �0.1993
w (ANSYS) �0.0680 �0.1348 �0.1656 �0.2016
where ½DF � is the incremental applied load matrix and
½KNLð�qÞ� is the non linear rigidity matrix terms.

Two stacking sequences of laminated composite are con-
sidered for non-linear bending tests:

Geometry: the beam studied has a length of L ¼ 6:35 m,
and a thickness h ¼ 0:2794 m (thin S � 22:7). It pos-
sesses three layers at (90�/0�/90�), with thickness
(0.25h/0.5h/0.25h) – two layers at (90�/0�) – (0.5h/0.5h).
Boundary conditions: clamped–clamped – sinusoidal
pressure pðx1Þ ¼ F sinð�x1=LÞ.
Material properties: same material as in Section 4.2.
Mesh: N = 8.
Results: Non-linear bending test, transverse displace-
ment �w ¼ w=h with respect to F.

The same study is carried out with the commercial code
ANSYS [51]. A very refined mesh with 7980 dofs in a 2D
analysis is considered as a reference.

Tables 11 and 12 present numerical values of force and
transverse displacement for symmetric and anti-symmetric
beams. These results show the excellent agreement with ref-
erence values. The maximal % error is 2. Figs. 7 and 8 show
3.5 4.5 8 10 15

�0.1176 �0.1374 �0.1883 �0.2101 �0.2533
�0.1185 �0.1386 �0.1904 �0.2128 �0.2572

12 13 14 15 17

�0.2187 �0.2275 �0.2358 �0.2436 �0.2583
�0.2215 �0.2305 �0.2391 �0.2472 �0.2623
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½a1� ¼ CðkÞ11 �u3;1 0
h i

½a2� ¼
CðkÞ11 �u2

3;1 CðkÞ11 �u3;1ð�zþ f ðzÞ þ S�ðzÞÞ

CðkÞ11 �u3;1ð�zþ f ðzÞ þ S�ðzÞÞ 0

" #

½a3�T ¼ CðkÞ11 �u3;1ðf ðzÞ þ S�ðzÞÞ 0
h i

½a4�T ¼ CðkÞ11 �u3;1S�ðzÞ 0
h i
the capability of our finite element to take into account the
non-linearity. These Figures also indicate the robustness of
the present finite element for geometrically non-linear tests.
5. Conclusion

In this article, a new numerical model, denoted SinRef-c,
has been presented and evaluated through different non-lin-
ear benchmarks: buckling, post-buckling, and non-linear
bending tests. It is a three-node multilayered (sandwich
and laminated) beam finite element for linear and non-lin-
ear analyses. Based on sinus equivalent single layer model,
a third-order kinematic per layer is added, improving the
bending description for thick beams. There is no need for
transverse shear correction factors and all the interface
and boundary conditions are exactly satisfied. So, this
approach has a strong physical meaning. Finally, the classi-
cal three unknown functions (two displacements, one rota-
tion) are used and only one more function is needed in this
new model. In fact, this finite element is simple and efficient
for a low cost, compared to layerwise approach or plane
elasticity model in commercial softwares.

Several numerical evaluations have proved that this
model has very good properties in the field of finite ele-
ments. The convergence velocity is high and accurate
results are obtained for thick or thin beams, all the bound-
ary conditions, and different stacking sequences. Critical
buckling loads and post-buckling are very well predicted.

This approach will be extended to plate and shell finite
elements.

Appendix A

A.1. Matrix ½Aeð~�uhÞ�

According to the expression of the generalized strain
vector [Eh

e ] (see Eq. (19)), this matrix is written in the form:

½Aeð~�uhÞ� ¼
Z

X

½0� ½a1� ½0� ½0� ½0� ½0�
½a2� ½0� ½a3� ½0� ½a4�

½0� ½0� ½0� ½0�
½0� ½0� ½0�

sym: ½0� ½0�
½0�

2
666666664

3
777777775

dX

where, in the case of orthotropic layers, non zero terms of
the sub-matrices have the following values:
A.2. Matrix ½Aeð��hÞ�

As above, we built this matrix in the form:

½Aeð��hÞ� ¼
Z

X

0 0 0 0 0 0 0
��
ðkÞ
11 0 0 0 0 0

0 0 0 0 0
sym: 0 0 0 0

0 0 0
0 0

0

2
666666664

3
777777775

dX
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