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a b s t r a c t

In this paper, a finite element based on the Proper Generalized Decomposition (PGD) is presented for the
analysis of bi-dimensional laminated beams. The displacement field is approximated as a sum of sepa-
rated functions of x (axial coordinate) and z (transverse coordinate). This choice yields to an iterative pro-
cess that consists of computing a product of two one-dimensional functions at each iteration. The
capability and the behavior of the PGD approach are shown on isotropic beam with different slenderness
ratios. A second and fourth-order expansion with respect to the thickness are considered. Mechanical
tests for thin/thick laminated and sandwich beams are presented in order to evaluate the two
approaches. They are compared with elasticity and 2D finite element reference solutions.

1. Introduction

Composite and sandwich structures are widely used in the
industrial field due to their excellent mechanical properties, espe-
cially their high specific stiffness and strength. In this context, they
can be subjected to severe mechanical loads. For composite design,
accurate knowledge of displacements and stresses is required. So,
it is important to take into account effects of the transverse shear
deformation due to the low ratio of transverse shear modulus to
axial modulus, or failure due to delamination, etc. In fact, they
can play an important role on the behavior of structures in ser-
vices, which leads to evaluate precisely their influence on local
stress fields in each layer, particularly on the interface between
layers.

According to published research, various theories in mechanics
for composite or sandwich structures have been developed. The
following classification is associated with the dependancy on the
number of degrees of freedom (dofs) with respect to the number
of layers:

! The Equivalent Single Layer approach (ESL): the number of
unknowns is independent of the number of layers, but the trans-
verse shear and normal stresses continuity on the interfaces
between layers are often violated. We can distinguish the
classical laminate theory [1] (it is based on the Euler–Bernoulli
hypothesis and leads to inaccurate results for composites and
moderately thick beams, because both transverse shear and
normal strains are neglected), the first order shear deformation

theory [2], and higher order theories [3–6]. Some of them take
into account transverse normal deformation [7–9] with a higher
order theory. All these studies are based on a displacement
approach, althoughother approaches are formulated on the basis
of mixed formulations [10,11].

! The Layerwise approach (LW): the number of dofs depends on
the number of layers. This theory aims at overcoming the
restriction of the ESL concerning the discontinuity of out-of-
plane stresses on the interface layers. This approach was
introduced in [12,13], and also used in [14–16]. For recent con-
tributions, see [17–19].
Again, some models which take into account the transverse nor-
mal effect have been developed: [20] within a displacement
based approach and [21,22,10] within a mixed formulation.

In this framework, refined models have been developed in order
to improve the accuracy of ESL models avoiding the additional
computational cost of LW approach. Based on physical consider-
ations and after some algebraic transformations, the number of
unknowns becomes independent of the number of layers. [15]
has extended the work of [23] for symmetric laminated composites
with arbitrary orientation and a quadratic variation of the trans-
verse stresses in each layer. So, a family of models, denoted
zig-zag models, was derived (see [24–26]). Note also the refined
approach based on the Sinus model [27–29]. This above literature
deals with only some aspects of the broad research activity about
models for layered structures and corresponding finite element
formulations. An extensive assessment of different approaches
has been made in [30–34].

Over the past years, the Proper Generalized Decomposition
(PGD) has shown interesting features in the reduction model



framework [35]. This type of method has been also introduced by
[36] and called ‘‘radial approximation’’ in the Latin method frame-
work. It allows to decrease drastically computational time [37]. It
has been also used in the context of separation of coordinate vari-
ables in multi-dimensional PDEs [35] and for composite plates in
[38]. For a review about the PGD and its fields of applications,
the reader can refer to [39,40].

In this work, a finite element based on the PGD for rectangular
laminated beam analysis is evaluated. The displacements are
written under the form of separated variables representations,
i.e. a sum of products of unidimensional polynomials of x and z.
The 2D beam is based on a quadratic finite element (FE) approx-
imation for the variation with respect to x. The second and
fourth-order LW descriptions are used for the variation with re-
spect to z. Using the PGD, each unknown function of x is classi-
cally approximated using one degree of freedom (dof) at the
node of the mesh while the LW unknown functions of z are global
for the whole beam. Finally, the deduced non-linear problem im-
plies the resolution of two linear problems alternatively. This pro-
cess yields to few unknowns involved in each of these linear
problems.

We now outline the remainder of this article. First the mechan-
ical formulation is given. Then, the FE discretization based on the
PGD is described. The principles of the approach are recalled in
the framework of our study. It is illustrated by numerical tests
which have been performed upon various isotropic, laminated
and sandwich beams under a global or localized pressure. This
work deals with the monomial terms in the z expansion and the
mode (functions of x) which are involved in the displacement,
depending on the boundary conditions and the stacking sequences
of the beam. A special attention is pointed towards the behavior of
the PGD process to build these modes. A comparison between two
LW descriptions in the thickness (second and fourth-order) is gi-
ven. The accuracy of the results are evaluated by comparisons with
an exact three-dimensional theory for laminates in bending [16]
and also two-dimensional finite element computations using com-
mercial finite element software. Finally, the most accurate model is
assessed on a highly anisotropic sandwich beam.

2. Reference problem description

2.1. The governing equations

Let us consider a beam occupying the domain B ¼ Bx#
Bz # $ b
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in a Carte-

sian coordinate (x,y,z). The beam has a rectangular uniform cross
section of height h, width b and is assumed to be straight. The
beam is made of NC layers of different linearly elastic materials.
Each layer may be assumed to be orthotropic in the beam axes.
The x axis is taken along the central line of the beam whereas y
and z are the two axes of symmetry of the cross section intersect-
ing at the centroid, see Fig. 1. As shown in this figure, the y axis is
along the width of the beam. This work is based upon a displace-
ment approach for geometrically linear elastic beams.

In the following, the beam is considered in the (x,z) plane, the y-
coordinate is neglected.

2.1.1. Constitutive relation
Each layer of the laminate is assumed to be orthotropic. Using

matrix notation, the stress–strain law of the kth layer is given by:
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where we denote the stress tensor [r] and the strain tensor [e]. CðkÞ
ij

are the moduli of the material for the kth layer taking into account
the zero transverse normal stress hypothesis (r22 = 0). They are ex-
pressed by

CðkÞ
ij ¼ CðkÞ

ij $ CðkÞ
i2 CðkÞ

j2 =C
ðkÞ
22 ð2Þ

where CðkÞ
ij are orthotropic three-dimensional elastic moduli. We

also have CðkÞ
55 ¼ CðkÞ

55 .

2.1.2. The weak form of the boundary value problem
Using the above matrix notation and for admissible displace-

ment d~u 2 dU, the variational principle is given by: find ~u 2 U
(space of admissible displacements) such that

$
R
B½eðd~uÞ&

T ½rð~uÞ&dB þ
R
B½du&

T ½b&dB þ
R
@BF

½du&T ½F&d@B ¼ 0

8d~u 2 dU
ð3Þ

where [b] and [F] are the prescribed body and surface forces applied
on @BF .

2.2. The displacement field for the composite beam

In classical beam theory, the displacement field is assumed to
be of the following form

u1ðx; zÞ ¼
XN1

i¼0

ziv i
1ðxÞ ð4Þ

u3ðx; zÞ ¼
XN3

i¼0

ziv i
3ðxÞ ð5Þ

where v i
1; v i

3

# $
are the functions to be sought.

For instance, we can derive two models available in the
literature:

! the classical Timoshenko model with N1 = 1 and N3 = 0,
! ED2 model in Carrera’s Unified Formulation [32] with
N1 = N3 = 2.

3. Application of the proper generalized method to beam

The Proper Generalized Decomposition (PGD) was introduced in
[35] and is based on an a priori construction of separated variables
representation of the solution. In this section, we briefly introduce
the PGD for beam analysis.

3.1. The displacement and the strain field

The displacement solution (u1(x,z), u3(x,z)) is constructed as the
sum of N products of functions of only one spatial coordinate
(N 2 N is the order of the representation)

u ¼
u1ðx; zÞ
u3ðx; zÞ

% &
¼
XN

i¼1

f i1ðzÞv i
1ðxÞ

f i3ðzÞv i
3ðxÞ

 !
ð6Þ

where f i1; f
i
3

# $
are defined in Bz and v i

1;v i
3

# $
are defined in Bx. In this

paper, a classical quadratic FE approximation is used in Bx and a LW
description is chosen in Bz as it is particulary suitable for the mod-
eling of composite structure. The strain derived from Eq. (6) isFig. 1. The laminated beam and co-ordinate system.
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3.2. The problem to be solved

For sake of clarity the surfaces forces are neglected in the devel-
opments and the weak form of the beam problem introduced in Eq.
(3) simplifies in

$
Z

Bx

Z

Bz

ð½eðduÞ&T ½C&½eðuÞ& þ ½du&T ½b&Þdzdx ¼ ½0& ð8Þ

where [C] represents, in each layer (k), the matrix of the elastic
moduli.

Following the approach proposed in [35], Eq. (8) is solved by an
iterative procedure. If we assume that the first n functions have
been already computed, the trial function for the iteration n + 1
is written as

unþ1 ¼ !uþ
f1v1

f3v3

% &
ð9Þ

where (v1,v3), (f1, f3) are the functions to be computed and !u is the
associated known set at iteration n defined by

!u ¼
Xn

i¼1

f i1v i
1

f i3v i
3

 !
ð10Þ

The test function is

d
f1v1

f3v3

% &
¼

df1v1 þ f1dv1

df3v3 þ f3dv3

% &
¼ Vdf þ Fdv ð11Þ

where

v ¼
v1

v3

% &
f ¼

f1
f3

% &
V ¼

v1 0
0 v3

% &
F ¼

f1 0
0 f3

% &
ð12Þ

The test function defined by Eq. (11) and the trial function defined
by Eq. (9) are introduced into the weak form (Eq. (8)) to obtain two
equations
Z

Bx

Z

Bz

ð½eðFdvÞ&T ½C&½eðFvÞ&Þdzdx

¼
Z

Bx

Z

Bz

ð½Fdv &T ½b& $ ½eðFdvÞ&T ½C&½eð!uÞ&Þdzdx ð13Þ

$
Z

Bx

Z

Bz

ð½eðVdf Þ&T ½C&½eðVf Þ&Þdzdx

¼ $
Z

Bx

Z

Bz

ð½eðVdf Þ&T ½C&½eð!uÞ& þ ½Vdf &T ½b&Þdzdx ð14Þ

As these equations define a coupled non-linear problem, a non-lin-
ear resolution strategy has to be used. The simplest strategy is a
fixed point method. An initial function f(0) is set, and at each step,
the algorithm computes a new pair (v(m+1), f(m+1)) such that

! v (m+1) satisfies Eq. (13) for f set to f (m)

! f (m+1) satisfies Eq. (14) for v set to v (m+1)

These two equations are linear and the first one is solved on Bx,
while the second one is solved on Bz. The fixed point algorithm is
stopped when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Bx

Z

Bz

v ðmþ1Þ
1 f ðmþ1Þ
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1
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3 f ðmþ1Þ
3 $v ðmÞ

3 f ðmÞ
3

( )2
dxdz

s

6e ð15Þ

where e is a parameter to be fixed by the user. In this paper we set
e = 10$6.

3.3. Finite element discretization

To build the beam finite element approximation, a discrete rep-
resentation of the functions (v,f) must be introduced. We use a
classical finite element approximation in Bx, and a polynomial
expansion in Bz. The elementary vector of degree of freedom
(dof) associated with the finite element mesh in Bx is denoted
½qve & and the vector of dof associated with the polynomial expansion
in Bz is denoted [qf]. The displacement fields and the strain fields
are determined from the values of ½qve & and [qf] by

ve ¼ ½Nx& qve
! "

; Ee
v

! "
¼ ½Bx& qve

! "
; f ¼ ½Nz&½qf & and ½Ef & ¼ ½Bz&½qf & ð16Þ

The matrix [Nx], [Bx], [Nz], [Bz] contain the interpolation functions,
their derivatives and the jacobian components dependent on the
chosen discrete representation.

3.4. Finite element problem to be solved on Bx

For the sake of simplicity, the function f(m) which is assumed to
be known, will be denoted !f (and F), and the function v(m+1) to be
computed will be denoted v. The strain in Eq. (13) is defined in ma-
trix notations as

½eðFvÞ& ¼ ½Bzð!f Þ&½Ev & ð17Þ

with

½Bzð!f Þ& ¼
0 !f 1 0 0
0 0 !f 03 0
!f 01 0 0 !f 3
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The variational problem defined on Bx from Eq. (13) is
Z

Bx

½dEv &T ½kzð!f Þ&½Ev &dx ¼
Z

Bx

½dv &T ½fzð!f Þ&dx

$
Z

Bx

½dEv &T ½rzð!f ; !uÞ&dx ð19Þ

with

½kzð!f Þ& ¼
Z

Bz

½Bzð!f Þ&T ½C&½Bzð!f Þ&dz ð20Þ

½fzð!f Þ& ¼
Z

Bz

½F&T ½b&dz ð21Þ

½rzð!f ; !uÞ& ¼
Z

Bz

½Bzð!f Þ&T ½C&½eð!uÞ&dz ð22Þ

The introduction of the finite element approximation (16) in the
variational Eq. (19) leads to the linear system

½Kzð!f Þ&½qv & ¼ Rvð!f ; !uÞ ð23Þ

where [qv] is the vector of the nodal displacements associated with
the finite element mesh in Bx; ½Kzð!f Þ& the stiffness matrix obtained
by summing the elements’ stiffness matrices Ke

zð!f Þ
! "

and ½Rvð!f ; !uÞ&
the equilibrium residual obtained by summing the elements’ resid-
ual load vectors Re

vð!f ; !uÞ
! "

Ke
zð!f Þ

! "
¼
Z

Le
½Bx&T ½kzð!f Þ&½Bx&dx ð24Þ

and

Re
vð!f ; !uÞ

! "
¼
Z

Le
½Nx&T ½fzð!f Þ&dx$

Z

Le
½Bx&T ½rzð!f ; !uÞ&dx ð25Þ



3.5. Finite element problem to be solved on Bz

For the sake of simplicity, the function v(m+1) which is assumed
to be known, will be denoted !v (and V), and the function f(m+1) to be
computed will be denoted f. The strain in Eq. (14) is defined in ma-
trix notations as

½eðVf Þ& ¼ ½Bxð!vÞ&½Ef & ð26Þ

with

½Bxð!vÞ& ¼

!v 0
1 0 0 0

0 0 0 !v3

0 !v1 !v 0
3 0

2
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775 and ½Ef & ¼

f1

f 01
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2

666664

3
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ð27Þ

The variational problem defined on Bz from Eq. (14) is
Z

Bz

½dEf &T ½kxð!vÞ&½Ef &dx ¼
Z

Bz

½dF&T ½fxð!vÞ&dx

$
Z

Bz

½dEf &T ½rxð!v; !uÞ&dz ð28Þ

with

½kxð!vÞ& ¼
Z

Bx

½Bxð!vÞ&T ½C&½Bxð!vÞ&dx ð29Þ

½fxð!vÞ& ¼
Z

Bx

½V&T ½b&dx ð30Þ

½rxð!v; !uÞ& ¼
Z

Bx

½Bxð!vÞ&T ½C&½eð!uÞ&dz ð31Þ

The introduction of the finite element discretization (16) in the var-
iational Eq. (28) leads to the linear system

½Kxð!vÞ&½qf & ¼ ½Rf ð!v; !uÞ& ð32Þ

where [qf] is the vector of degree of freedom associated with the
polynomial expansion in Bz, ½Kxð!vÞ& is a stiffness matrix defined
by (33) and ½Rf ð!v ; !uÞ& an equilibrium residual defined by (34)

½Kxð!vÞ& ¼
Z

Bz

½Bz&T ½kxð!vÞ&½Bz&dx ð33Þ

½Rf ð!v ; !uÞ& ¼
Z

Bz

½Nz&T ½fxð!vÞ&dz$
Z

Bz

½Bz&T ½rxð!v ; !uÞ&dz ð34Þ

4. Numerical results

In this section, several static tests are presented validating our
approach, evaluating its efficiency and showing the properties of
the algorithm. A classical quadratic finite element is used for the
unknowns depending on the x-axis coordinate. For the transverse
direction, a quadratic and fourth-order layer-wise description is
chosen. The present models are herein denoted by the acronym
B2LD2-PGD and B2LD4-PGD respectively as a reference to the
nomenclature from [32]. B2 refers to the quadratic Beam FE, LDN
means Layer-Wise approach in a Displacement formulation with
a Nth order expansion in z.

First, the behavior of the approach is shown on an isotropic
beam submitted to a localized load. An interesting feature of the
method is the capability to give the utmost terms of the expansion
with respect to the z-coordinate. Then, a comparison between the
second and fourth-order LW description is addressed. Finally, the
most accurate model is assessed on the flexural behavior of a
highly anisotropic sandwich beam.

For all these tests, the numbers of dofs are also precised for the
two problems associated with v i

1;v i
3

# $
and f i1; f

i
3

# $
. They are de-

noted Ndofx and Ndofz respectively.

Note that the convergence rate of the fixed point process is high.
Usually, only less than four iterations are required. This subject is
not discussed here.

4.1. Properties of the PGD: bending analysis of isotropic beam under
localized pressure

This test is about clamped–clamped isotropic beam submitted
to a localized pressure. We focus on the behavior of the approach
on a quite severe test and its capability to capture local effects. It
is shown in Fig. 2 and detailed below:

Geometry: S ¼ L
h ¼ 4

Boundary conditions: clamped–clamped beam subjected to a
transverse pressure q(x1) = q0 applied on a line of length Lp
= L/8 at the beam center (see Fig. 2).
Material properties: E = 106 MPa,m = 0.3
Mesh: Nx=16, half of the beam is meshed.
Model: B2LD4-PGD
Results: The reference solution is issued from a 2D elasticity
analysis with a very refined mesh including 7000 dofs in ANSYS.
The element PLANE82 is used.

Figs. 3 and 4 give the distribution of the transverse displace-
ment, in-plane, transverse shear and normal stresses through the
thickness.These figures show the evolution of the solution for dif-
ferent number of couples in the PGD process. For this thick beam,
six couples are necessary to obtain a very good agreement with the
2D reference solution for both displacements and stresses. For each
couple, the shape functions in the thickness f i1ðzÞ=f i3ðzÞ and along
the x-axis v i

1ðxÞ=v i
3ðxÞ are given in Figs. 5 and 6 respectively. As

the solution is the product f i1ðzÞv i
1ðxÞ (Figs. 5 and 6 left) for the axial

displacement and f i3ðzÞv i
3ðxÞ (Figs. 5 and 6 right) for the transverse

one, the following comments can be made:

! The first solution calculated with the first couple corresponds to
the Timoshenko model, i.e. a linear and constant variation
through the thickness for the axial and the transverse displace-
ments respectively.

! The four following modes can be considered as a local correc-
tion of the first global solution. A high gradient appears near
the clamped edge and the localized pressure.

! The last couple represents a global mode.
! All the terms f i1ðzÞ–f i3ðzÞ are normalized. So, the maximum value
of each term v i

1ðxÞ–v i
3ðxÞ in Fig. 6 gives the order of magnitude

of each correction. It confirms that the main mode is the first
one.

! Finally, the interesting feature of the method is its capability to
build complex shape functions depending on the problem to be
solved.

Note that an orthogonalization of the modes is not used, and the
optimization of the z-functions f i1ðzÞ–f i3ðzÞwith the known axial ba-
sis is not carried out.

Moreover, the approach allows us to deduce the utmost terms
in the z-expansion for the axial and transverse displacements.
Figs. 7 and 8 show the influence of the slenderness ratio. For

Fig. 2. Beam under localized pressure.



the thick structure, all the terms in the fourth-order expansion
are needed. For the thin structure, the axial displacement re-
quires only the 1st and 3rd terms. For the deflection, only the
constant, 2nd, 4th terms are active. The representation of the

first function in Fig. 8 confirms that it corresponds to the Timo-
shenko model. This knownledge is interesting in the framework
of advanced models based on a priori assumptions in the
kinematics.
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Fig. 3. Distribution of !w (left) and !r11 (right) along the thickness for different number of couples – S = 4 – isotropic-localized pressure – B2LD4-PGD.
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Fig. 4. Distribution of !r13 (left) and !r33 (right) along the thickness for different number of couples – S = 4 – isotropic-localized pressure – B2LD4-PGD.
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Fig. 5. f i1ðzÞ (left)/f i3ðzÞ (right) – S = 4 – isotropic-localized pressure – B2LD4-PGD.



4.2. Comparison between B2LD2-PGD and B2LD4-PGD

In this section, the B2LD2-PGD and B2LD4-PGD approaches are
compared. The bending analysis of symmetric and antisymmetric
laminated composite beam is considered. The results are given
for very thick and thin structures to see the influence of the slen-
derness ratio. The configurations are detailed below:

Geometry: composite cross-ply beam (0"/ 90"), (0"/90"/0") and
length-to-thickness ratio S = 2/4/20/40/100. All layers have the
same thickness.
Boundary conditions: simply supported beam subjected to sinu-
soidal load qðxÞ ¼ q0 sin px

L .
Material properties:

EL ¼ 172:4 GPa; ET ¼ 6:895 GPa; GLT ¼ 3:448 GPa;
GTT ¼ 1:379 GPa; mLT ¼ mTT ¼ 0:25

where L refers to the fiber direction, T refers to the transverse
direction.

Mesh: half of the beam is meshed. Nx = 8 with spacing ratio (6)
(denoted sr (6)), Le max

Le min
¼ 6, where Le max and Le min are the maxi-

mal and minimal length of the elements. The mesh is refined
near the two edges of the finite element model.
Number of dofs: Ndofx = 32 and Ndofz = 4 # NC + 2(B2LD2-PGD),
Ndofz = 8 # NC + 2 (B2LD4-PGD)
Results: The results ð!u; !w; !r11; !r13Þ are made non-dimensional
using:

!u ¼ u1ð0; h=2Þ ET
hq0

!w ¼ u3ðL=2;0Þ 100ET
S4hq0

!rij ¼ rij
1
q0

for
r11ðL=2;h=2Þ
r13ð0; 0Þ

* ð35Þ

The exact solution of the beam problem is derived from [16].
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3ðxÞ (right) – S = 4 – isotropic-localized pressure – B2LD4-PGD.
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The two approaches based on a second-order (B2LD2-PGD) and
a fourth-order (B2LD4-PGD) expansion are compared in Figs. 9–14
for symmetric and antisymmetric composite beam. As the bound-
ary conditions are not severe, only one couple is built. The results
of B2LD4-PGD are in excellent agreement with the exact solution
for both the displacements and stresses. The B2LD2-PGD model
gives quite similar results for the displacements and the axial

stress. For the transverse shear and the normal stresses, a fourth-
order approach is necessary to recover accurate results. In fact, a
linear variation per layer of the transverse shear stress occurs for
the B2LD2-PGD. As far as the transverse normal stress is con-
cerned, a discontinuity appears with this model.

Numerical results from B2LD4-PGD are summarized in Tables 1
and 2 for a large range of length-to-thickness ratios. Note that the

0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0
 Fx − Couple 1

 zi  zi  zi  zi

 zi  zi

 zi  zi
0 1 2 3 4

−0.5

0

0.5

1
 Fx − Couple 2

0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0
 Fx − Couple 3

0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0
 Fx − Couple 4

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 Fz Couple 1

0 1 2 3 4
−0.2

0
0.2
0.4
0.6
0.8

 Fz Couple 2

0 1 2 3 4

−0.5

0

0.5

1
 Fz Couple 3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 Fz Couple 4

Fig. 8. Values of each term of the z-expansion in f i1ðzÞ/f i3ðzÞ – S = 100 – isotropic-localized pressure – B2LD4-PGD.

−5 −4 −3 −2 −1 0 1 2
−0.5

0

0.5

z/
h

B2LD2−PDG
B2LD4−PGD
exact

4.4 4.5 4.6 4.7 4.8 4.9
−0.5

0

0.5

z/
h

B2LD2−PDG
B2LD4−PGD
exact

Fig. 9. Distribution of !u (left) and !w (right) along the thickness – S = 4 – 2 layers (0"/90") – Nz = NC.

−40 −30 −20 −10 0 10 20 30
−0.5

0

0.5

z/
h

B2LD2−PDG
B2LD4−PGD
exact

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

z/
h

B2LD2−PDG
B2LD4−PGD
exact

Fig. 10. Distribution of !r11 (left) and !r13 (right) along the thickness – S = 4 – 2 layers (0"/90") – Nz = NC.



model performs very well with respect to the exact solution,
except for the transverse shear stress for a very thin beam. As it
has been noticed in [41], it is necessary to refine the mesh to im-
prove the accuracy of this one. It is due to the quadratic FE interpo-
lation for all the components of the displacements. Fig. 15 shows
the effect of the slenderness ratio on the convergence. For
S = 100, a regular mesh with Nx = 32 is necessary to have an error
rate of 1% for the transverse shear and normal stresses. For S = 4,
the error is lower with a coarse mesh.

4.2.1. Bending analysis of a sandwich beam under a sinusoidal
pressure

A sandwich beam under a sinusoidal pressure with a high value
of face-to-core stiffness ratio is presented. This severe test allows

us to evaluate the capability of the model for a high anisotropy.
This case has already been studied in [42].

This example is detailed now.

Geometry: The 3-layer sandwich beam has aluminum alloy
faces and a soft core with thickness 0.1 h/0.8 h/0.1 h and
length-to-thickness ratio S = 4; half of the beam is meshed
Boundary conditions: simply supported beam under a sinusoi-
dal pressure qðxÞ ¼ q0 sin px

L

# $

Material properties: Face: Ef = 73000MPa, m = 0.34.
Core: Ec = gEf, with g = 10$5

Mesh: Nx = 16 sr (8)
Number of dofs: Ndofx = 64 and Ndofz = 26
Model: B2LD4-PGD
Results: the results ð!u; !w; !r11; !r13Þ are made non-dimensional
using:

!u ¼
Ef u1ð0;$h=2Þ

hq0
!w ¼

100Ef u3ðL=2; 0Þ
S4hq0

!r11 ¼ r11ðL=2;$h=2Þ
q0

!r13 ¼ r13ð0; 0Þ
q0

ð36Þ

They are compared with results from a commercial code with a very
refined mesh including 3800 dofs.

Only the more accurate model is assessed in this severe case.
Figs. 16–18 show the in-plane, transverse displacements and in-
plane, transverse shear and normal stresses along the thickness.
The results perform very well with respect to the 2D reference
solution. Note that the high variation of the transverse shear stress
in the face is captured. For this case, only two couples are needed.
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The second mode is a local correction of the transverse normal
stress in the faces of the sandwich beam. See Fig. 18.

5. Conclusion and future prospects

In this article, a beam finite element based on the PGD has been
presented and evaluated through different benchmarks. This meth-
od has been applied to the modeling of both isotropic beam and
laminated, sandwich composite. The displacement is expressed
as a separated representation of two 1D functions. The axial func-
tions have a parabolic distribution. For the transverse functions, a

second and fourth-order expansion are considered. The derived
iterative process implies the resolution of 1D problems and each
of them has a low computational cost. The total cost depends on
the number of couples necessary to represent the solution.

This studyhas showed the interesting capability of themethod to
build complex shape functions in the transverse direction, and to ex-
hibit themain contributions of the z-expansion. This result depends
on the complexity of the problem to be solved. This information is
also the subject of a Carrera’s work [43], dealing with the utmost
termsas a functionof theboundary conditions, the load, the slender-
ness ratio and the anisotropy. Several numerical evaluations have

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5

 z
/h

B2LD2−PDG
B2LD4−PGD
exact

Fig. 14. Distribution of !r33 along the thickness – S = 4 – 3 layers (0"/90"/0") –
Nz = NC.

Table 1
Two layers (0"/90") – Nx = 8 sr (6) – Nz = NC.

S Model !uð0; h=2Þ !wðL; 0Þ !r11ðL=2; h=2Þ !r13ð0;$h=4Þ

2 Exact $0.7687 10.9008 1.4575 1.1637 (maxi)
B2LD4-PGD $0.7680 (0.1%) 10.8924 (0.1%) 1.4573 (0.0%) 1.1814 (1.5%)

4 Exact $4.5680 4.7076 3.8377 2.7057
B2LD4-PGD $4.5680 (0.0%) 4.7077 (0.0%) 3.8393 (0.0%) 2.7342 (1.1%)

20 Exact $486.3535 2.7092 76.6462 14.6209
B2LD4-PGD $486.4 (0.0%) 2.7079 (0.0%) 76.6840 (0.0%) 14.7460 (0.9%)

40 Exact $3865.6117 2.6462 303.8544 29.3251
B2LD4-PGD $3865.8400 (0.0%) 2.6412 (0.2%) 304.0200 (0.1%) 30.2550 (3.2%)

100 Exact $60288.9009 2.6285 1894.2817 73.3717
B2LD4-PGD $60289 (0.0%) 2.6150 (0.5%) 1895.4 (0.1%) 87.0610 (18.7%)

Table 2
Three layers (0"/90"/0") – Nx = 8 – sr (6) – Nz = NC.

S Model !uð0; h=2Þ !wðL; 0Þ !r11ðL=2; h=2Þ !r13ð0;0Þ

2 Exact $0.2216 8.5243 8.9546 0.5342
B2LD4-PGD $0.2216 (0.0%) 8.5240 (0.0%) 8.9547 (0.0%) 0.5342 (0.0%)

4 Exact $0.9456 2.8899 18.8202 1.4319
B2LD4-PGD $0.9458 (0.0%) 2.8900 (0.0%) 18.8260 (0.0%) 1.4324 (0.0%)

20 Exact $66.9407 0.6185 263.1638 8.7483
B2LD4-PGD $66.9500 (0.0%) 0.6185 (0.0%) 263.2600 (0.0%) 8.7593 (0.1%)

40 Exact $519.1155 0.5379 1019.6788 17.6412
B2LD4-PGD $519.2 (0.0%) 0.5377 (0.0%) 1020.0 (0.0%) 17.7170 (0.4%)

100 Exact $8038.4630 0.5152 6314.5597 44.2062
B2LD4-PGD 8039.6 (0.0%) 0.5140 (0.2%) 6316.7 (0.0%) 45.3440 (2.6%)
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also proved that the fourth-order approach gives very accurate re-
sults and is suitable to model laminated and sandwich composite

beam. Moreover, this approach is very interesting from a computa-
tional point of view, especially in the framework of LW approach.
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Based on these promising results, the use of PGD for plate and
shell structures will be carried out.
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