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a b s t r a c t

This

 

paper

 

deals

 

with

 

a

 

comparative

 

study

 

of

 

several

 

laminated

 

plate

 

theories

 

with

 

respect

 

to

 

their

 

capa-
bility

 

to

 

capture

 

the

 

steep

 

transverse

 

stress

 

gradients

 

occurring

 

in

 

vicinity

 

of

 

free

 

edges.

 

The

 

considered

 

laminated

 

plate

 

theories

 

pertain

 

to

 

the

 

family

 

of

 

Equivalent

 

Single

 

Layer

 

(ESL)

 

as

 

well

 

as

 

Layer-Wise

 

(LW)

 

descriptions.

 

Reference

 

is

 

made

 

to

 

the

 

classical

 

displacement-based

 

approach

 

as

 

well

 

as

 

to

 

a

 

partially

 

mixed

 

variational

 

formulation,

 

which

 

allows

 

to

 

introduce

 

independent

 

assumptions

 

for

 

the

 

transverse

 

stresses

 

and

 

the

 

displacements.

 

Finite

 

element

 

solutions

 

are

 

obtained

 

for

 

free-edge

 

effects

 

that

 

arise

 

in

 

several

 

representative

 

laminates

 

subjected

 

to

 

uniaxial

 

tension.

 

An

 

equivalent

 

stress

 

measure

 

is

 

proposed

 

for

 

assessing

 

the

 

three-dimensional

 

(3D)

 

stress

 

fields

 

predicted

 

by

 

the

 

various

 

theories.

 

It

 

is

 

shown

 

that

 

refined

 

LW

 

models

 

can

 

provide

 

quasi-3D

 

results

 

that

 

compare

 

well

 

with

 

full

 

3D

 

FEM

 

computations,

 

whereas

 

ESL

 

models

 

fail

 

to

 

capture

 

the

 

free-edge

 

effects.

 

Present

 

results

 

indicate

 

that

 

free-edge

 

effects

 

induced

 

by

 

a

 

±45�

 

interface

 

are

 

most

 

critical

 

for

 

the

 

accuracy

 

of

 

laminated

 

plate

 

models.

1. Introduction

Fiber-reinforced composites are being increasingly used in
weight-sensitive industrial applications, in particular aerospace
structures. Composite plate and shell structures basically consist
of a stack of several plies whose fiber directions are oriented at dif-
ferent angles. Computational and analytical tools for predicting the
behavior of these structures all rely on the so-called effective mod-
ulus theory (EMT), in which the heterogeneous fiber–matrix sys-
tem is homogenized at ply level. As a consequence, elasticity
solutions as well as approximated models represent the composite
structure as a stack of different homogeneous and anisotropic
materials, in which adjacent layers are separated by bi-material
interfaces.

Over the last 40 years, much effort has been dedicated to the
formulation of appropriate plate/shell models that should cope
with the peculiar displacement, strain and stress fields produced
by the stiffness distribution across the laminate’s cross-section.
An overwhelming amount of literature has been produced on this
topic, as witnessed by the numerous review articles over compos-
ite plate/shell models, e.g., [1–7]. Extensions of models originally
formulated for homogeneous structures basically lead to a struc-
tural homogenization in which single ply’s properties are smeared
into an equivalent laminate stiffness. These so-called Equivalent
Single Layer (ESL) models have a number of unknown parameters
that does not depend on the number of layers constituting the
stack. The most widely employed plate models, namely Classical

Laminated Plate Theory (CLPT) and First-order Shear Deformation
Theory (FSDT), belong to this group [8]. However, these models
cannot represent the response at bi-material interfaces where,
according to EMT, the transverse stresses need to be continuous
(interlaminar equilibrium) and the displacement field has conse-
quently a discontinuous slope along the thickness direction. So-
called Zig-Zag models can represent up to a certain extent these
interfaces still within an ESL approach [9]. Within EMT, the most
refined description considers each ply’s properties separately; in
these Layer-Wise (LW) models, the number of unknown parame-
ters depends on the number of the represented layers. Three-
dimensional (3D) elasticity solutions make evidently use of this
layer-wise description.

It is nowadays well established that the simplest 2D models,
namely CLPT and FSDT, can be effectively used only for a stiffness
design that accounts for the laminate’s gross response. If a more
accurate representation of the stress field is demanded, for in-
stance for a strength design, refined models should be employed.
An assessment permitting clear statements concerning the perti-
nence of a given model with respect to the investigated response
appears thus of major interest. As can be seen in the already cited
review articles, most of the papers proposing assessments of 2D
plate/shell models refer to rather academic benchmark problems
that are essentially limited to the global bending, buckling or
free-vibration response and for which exact 3D elasticity solutions
may be available as solid reference. However, the main discrimi-
nating feature for reduced 2D models is their capability to
accurately represent transverse/interlaminar stresses [10]. Config-
urations with known transverse stress risers appear, hence, as
natural candidates for assessing plate models.



It is known that relevant transverse stresses arise in presence of
in-plane stress gradients and in vicinity of material and/or geomet-
ric discontinuities, such as ply-drops, cut-outs and stress-free
edges, see, e.g., [11]. Due to its simple implementation within the
experimental setup illustrated in Fig. 1, the free-edge effect arising
in a composite plate subjected to tensile loads has been extensively
studied since the seminal works of Pipes and Pagano [12,13]. Free-
edge effects are typical boundary layer effects where a 3D stress
concentration is locally confined in a small region in the vicinity
of the free edge [14]. While the simple plane stress solution of CLPT
holds in the inner region of the plate, no exact elasticity solution is
up to now known for the complex 3D stress state at the stress-free
edge. Due to the presence of bi-material interfaces, some stress
components show even a singular behavior [15–17]. As a conse-
quence, mesh-dependent stress fields are predicted in vicinity of
the free edge, which renders questionable the use of these stress
components for, e.g., delamination initiation [18]. Dedicated mesh
refinement strategies or element formulations have been proposed
in the framework of the Finite Element Method (FEM) in order to
measure the singularity, see, e.g., [19]. Stress intensity factors can
thus be evaluated that may be further used in a delamination onset
analysis as in, e.g., [20]. In this context, an attractive alternative to
FEM is given by the Boundary Element Method, which appears as
an efficient method for the singularity analysis because it permits
to substantially reduce the computational effort by confining the
dense mesh into the boundary region of concern [21].

Based on the above discussion, the objective of the present paper
is to numerically assess a large number of plate models with respect
to their capability of representing the stress concentration occur-
ring in the Pipes–Pagano problem illustrated in Fig. 1. The main fea-
ture of 2D models is to avoid the cumbersome mesh generation that
comes along 3D FEM analysis of general laminate configurations, in
which the discretization in the plane (x,y) of the structure depends
on that utilized along the laminate’s thickness direction z. Most of
the assessed models are obtained in the framework of Carrera’s
Unified Formulation (CUF), which is a compact notation that allows
to easily formulate the governing equations for different 2D models
[22]. CUF includes ESL and LW models based on either the classical
displacement-based approach or the partially mixed approach of
Reissner, in which independent assumptions are introduced for
the displacement and the transverse stress field [23,24]. It may be
interesting to note that the first FEM application of Reissner’s par-
tially Mixed Variational Theorem (RMVT) was proposed by Pian
and Li and included ESL and LW descriptions for the analysis of
stress fields around a hole [25]. Thanks to the systematic procedure
of CUF, hierarchic 2D models can be formulated and have been thor-
oughly assessed in several papers with respect to free-vibration,
bending and buckling response of laminated plates and shells,
see, e.g., [26–29]. However, an assessment of these models with
respect to the free-edge problem, as proposed in the present work,
is still missing. In addition to CUF models, the present contribution
employs a refinement of the classical sinus model proposed by
Touratier [30], which includes transverse normal stress by retaining
a quadratic through-the-thickness variation of the transverse
displacement as formulated in [31,32].

The outline of this paper is as follows: Section 2 proposes a
selective review of several approaches to the Pipes–Pagano prob-
lem. CUF models and their FEM implementation are briefly recalled
in Section 3 along with the refined sinus model. In Section 4, pres-
ent numerical results for the Pipes–Pagano problem are first com-
pared with those available in literature. Subsequently, an
equivalent stress measure is proposed for the quantitative assess-
ment of the models. The study considers symmetric cross-ply, an-
gle-ply and quasi-isotropic laminates. Furthermore, the paper
presents results of 3D FEM computations performed with the com-
mercial software ANSYS, against which results from plate models are
thoroughly compared. Conclusions are finally summarized in Sec-
tion 5 along with an outlook towards future investigations.

2. Selected literature review of the Pipes–Pagano problem

An overwhelming amount of literature has been devoted to the
classical Pipes–Pagano problem illustrated in Fig. 1. Since an
exhaustive review is out of the scope of the present investigation,
we refer the interested reader to the more complete surveys of this
topic by Mittelstedt and Becker [33,34]. The following selected re-
view is essentially limited to those works whose results are in-
cluded in the numerical study of the present paper.

In absence of an exact elasticity solution for the free-edge field,
approximate solutions have been proposed in semi-analytical
closed-form or by means of numerical approximations. The semi-
analytical solution approach of Tahani and Nosier [35] solves in
closed-form the boundary layer in the direction perpendicular to
the stress-free edge (the y direction of Fig. 1), while an approxi-
mate solution is found along the through-thickness direction (the
z direction of Fig. 1). The latter is defined according to Reddy’s
layer-wise theory [8] upon discretizing the thickness of each ply
in several mathematical layers, in which the field variables are
interpolated through linear Lagrange polynomials. Successive
refinement can be achieved by increasing the number of mathe-
matical layers in which the plies are divided into (h refinement
along the thickness). In this approach, the stress-free conditions
at the free edge are thus enforced in an averaged sense by means
of weighted integrals. The results of Tahani and Nosier [35] are ob-
tained with 15 subdivisions per ply.

Except the first numerical analysis of the Pipes–Pagano problem
provided in [12], which is based on a finite difference scheme, most
of the numerical reference solutions have been obtained by means
of the Finite Element Method (FEM). Wang and Crossman em-
ployed generalized plane strain, three-node triangular elements
for discretizing the mid-section x = 0 of the laminate [36]. Thanks
to the Sky-line storage scheme for the stiffness matrix, Wang and
Crossman could use a denser mesh and, hence, provide accurate
reference results despite the rather poor computer power available
at that time. Subsequent work using the same classical displace-
ment-based FEM focused on the stress singularity at the intersec-
tion between the bi-material interface and the free edge [15],
and showed that accurate solutions could be found everywhere ex-
cept in the elements closest to the free edge, i.e., in a region that
can be made arbitrarily small upon mesh refinement [37]. The
aforementioned works relied on the quasi-3D model (Q3D), which
refers to the hypothesis of zero gradients along the axial coordinate
x and retaining an axial warping of the (y,z)-planes which depends
only on y and z (axis notation according to Fig. 1).

The classical displacement-based method suffers some inherent
limitations, in particular the discontinuity of the transverse stress
field at the bi-material interface and the approximate satisfaction
of the stress-free boundary conditions. So, stress-based equilib-
rium approaches have been proposed in conjunction with either
analytical [38] or numerical FEM-based solutions [39]. Starting
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Fig. 1. The Pipes–Pagano problem: composite laminate under uniaxial uniform
tensile load.



from the mixed Hellinger–Reissner (HR) variational principle, Pag-
ano proposed a sound formulation that permits to express a varia-
tionally consistent displacement field starting from only stress
assumptions [40]. The mixed HR principle has been employed by
Spilker and Chou for developing hybrid-stress FE for the analysis
of the Pipes–Pagano problem [41]. Their generalized plane strain
quadrilateral has through-thickness cubic and quadratic approxi-
mations for the in-plane and transverse displacement, respectively.
Independent approximations are introduced for the stress field:
ryy, rzz and ryz vary across the thickness of each element with z3,
z5 and z4, respectively.

The layer-wise kinematics proposed by Reddy [8], in which the
displacement components are interpolated along z through
Lagrange polynomials, was successfully applied by Robbins and
Reddy to the Pipes–Pagano problem [42]. Eight-node quadratic
plate elements have been used to solve the problem in the (x,y)-
plane. In addition to the already discussed h refinement along
the thickness (i.e., increase of the number of mathematical layers
per physical ply), higher-order kinematics have been formulated
upon increasing the polynomial order of the interpolation (p-refine-
ment across the thickness); the reported results refer to a model
with four mathematical layers and a quadratic polynomial expan-
sion for each layer. The same authors developed in a subsequent
work a variable kinematics FEM which permitted to limit the com-
putationally expensive LW plate elements to the free-edge region,
while the inner region was modeled by lower-order (FSDT)
elements [43].

Based on the classical Q3D modeling assumption, Gaudenzi
et al. formulated a 1D FEM in conjunction with several different
kinematics for the behavior of the composite cross-section, for
which a sublaminate approach was used [44]. By varying the num-
ber of sublaminates (or macrolayers) in which the composite sec-
tion is subdivided, as well as the polynomial order for the
through-thickness response inside each sublaminate, this work as-
sessed different models with respect to the Pipes–Pagano problem
involving cross-ply and quasi-isotropic laminates. Up to 6th order
polynomials were used for the displacement variables in each
sublaminate.

As an alternative to LW approximations, Wu and Chen proposed
a higher-order ESL displacement model along with a 3-node finite
plate element [45]. Fifth and third-order expansions have been
used for the in-plane and transverse displacement components,
respectively. The exact satisfaction of the interlaminar continuity
condition for the transverse shear stress reduces the unknown
functions to 18.

In the context of the present paper, it is also interesting to men-
tion other plate models that, in contrast to the works mentioned
above, are not classical displacement-based ones. So, the already
mentioned mixed approach of Pagano [40] has been employed by
Nguyen and Caron for formulating LW finite plate elements
dedicated to the analysis of free-edge effects [46]. Furthermore, a
partially mixed 2D element has been developed by Desai et al.
and successfully applied to the free-edge problem [47].

3. Laminated plate models

The models that are investigated in this work consist in the
hierarchic family formulated in Carrera’s Unified Formulation
(CUF) and in a refined version of the sinus model. The 2D plate
equations are numerically solved by FEM. CUF models are all
implemented as user elements in the commercial software Abaqus
following the formulation proposed by Carrera and Demasi [48].
The plate element based on the refined sinus model has been
formulated by Polit et al. [32] and is implemented in the in-house
software EvalEF. Since all equations are explicitly reported in
various already cited works, in the following only the fundamental

relations of the elements shall be briefly summarized along with
their main features.

3.1. Description of the composite plate

The cross-section of the laminate of total thickness 2h is subdi-
vided in k = 1, 2, . . ., Nl layers of thickness hk, see Fig. 2. The
through-thickness coordinate z 2 [�h, h] can be represented as
the sum of Nl layer-specific local coordinates zk 2 zb

k; z
t
k

� �
, where

zb
k and zt

k represent the bottom and top interfaces of the kth layer,
respectively. The local coordinate is defined by zk = z � z0k, where
z0k ¼ zt

k þ zb
k

� �
=2 identifies the mean surface of the kth layer. A local

dimensionless coordinate fk 2 [�1, 1] is introduced for each layer
such that fk = 2(zk � z0k)/hk.

3.2. Hierarchic models in CUF

Plate/shell models may be classified according to their capabil-
ity to satisfy the bi-material interface conditions, namely the Inter-
laminar Continuity of transverse stresses (IC) and the associated
slope discontinuity (Zig-Zag effect, ZZ) of the displacement field
along the composite cross-section. Models based on the Principle
of Virtual Displacements (PVD) are formulated upon introducing
approximations for the displacement field ui = [u1 u2 u3]T. The
stress field is then obtained from the compatible strains through
the constitutive equation and, therefore, equilibrium at the inter-
faces may not be satisfied. Reissner’s partially mixed variational
theorem (RMVT) has been expressly proposed to overcome this
drawback by allowing the introduction of independent approxima-
tions for the displacements ui and the transverse stress compo-
nents ri3 = [r13 r23 r33]T [23]. This way, interlaminar stress
continuity and slope discontinuity of the displacement field at
bi-material interfaces can be a priori exactly met, whereas only
that part of the constitutive law that involves transverse stresses
is satisfied in an integral sense [24]. Moreover, no shear correction
factors are required.

The assumptions for the displacement unknowns ui can be
formulated within either an Equivalent Single Layer (ESL) or a
Layer-Wise (LW) description. In the ESL case, the through-
thickness distribution is defined by polynomials of order N, and
the N + 1 unknown functions ûisðx; yÞðs ¼ 0;1;2 . . . NÞ are defined
for the whole multilayered cross-section:

uiðx; y; zÞ ¼
XN

s¼0

FsðzÞûisðx; yÞ ð1Þ

In an LW model, assumptions are introduced for each layer sep-
arately as a function of the non-dimensional coordinate fk and by
letting explicitly appear the variables at the bottom (b) and top
(t) of each layer k:

uk
i ðx; y; zÞ ¼

XN

s¼0

FsðfkðzÞÞûk
isðx; yÞ

¼ FbðfkÞûk
ibðx; yÞ þ FtðfkÞ ûk

itðx; yÞ þ
XN

r¼2

FrðfkÞûk
i rðx; yÞ ð2Þ

The governing equations for the whole laminate are then ob-
tained through an assembly procedure of the Nl layer-specific

x,y

z

k=1

k

k=2

k=Nl

...
...

zk
b

zk
t

-h

h

Fig. 2. Coordinate system for the multilayered plate.



contributions. This assembly exactly satisfies the interlaminar con-
tinuity conditions uk

i x; y; zt
k

� �
¼ ukþ1

i x; y; zb
kþ1

� �
. For RMVT-based

models, the assumptions for the transverse stress field ri3 are al-
ways introduced within an LW description:

rk
i3ðx; y; zÞ ¼ FbðfkÞr̂k

i3bðx; yÞ þ FtðfkÞr̂k
i3tðx; yÞ

þ
XN

r¼2

FrðfkÞr̂k
i3rðx; yÞ ð3Þ

ESL descriptions employ Taylor polynomials, i.e., Fs(z) = zs in Eq.
(1). The slope discontinuity of the displacement field at the inter-
faces between dissimilar materials can be introduced within an
ESL description through the superposition of Murakami’s Zig-Zag
Function (MZZF) FZZ(fk) = (�1)kfk and the corresponding ESL un-
known function ûiZZ to the Taylor expansion of Eq. (1) [49]. The
interpolation functions Fs(fk) of the LW description Eq. (2) are con-
structed from Legendre polynomials and are illustrated in Fig. 3.
Note that the linear term (s = 1) corresponds to the linear Lagrange
interpolation and is only function of the top and bottom variables.
In this work, linear (N = 1) up to fourth-order (N = 4) polynomials
are used for all independent variables (i.e., ui for classical PVD-
based models and ui and ri3 for advanced RMVT-based models).

All CUF models are implemented as isoparametric four-node
plate elements based on a bilinear Lagrangian interpolation of all
unknown functions, see Fig. 4. For classical PVD-based models,
these are ûisðx; yÞ for an ESL description and ûk

i sðx; yÞ for an LW
description. For RMVT-based models, the same bilinear approxi-
mation is used for the LW transverse stress unknowns r̂k

i3sðx; yÞ.
All stiffness contributions are computed exactly through Gaussian
quadrature. Note that the (partially) mixed element formulation is-
sued from RMVT may be reduced to a hybrid element by statically
condensing out the stress parameters [48]. However, this proce-
dure will not be considered in this paper.

As a result, a large number of 2D elements can be constructed,
whose accuracy can be varied upon selection of (i) the underlying
variational formulation, (ii) the multilayer description for the dis-
placement field (ESL, ESL + MZZF or LW), and (iii) the polynomial
order employed for the assumption. Each model is identified by a
unique acronym that is constructed as illustrated in the left part
of Fig. 5. The table on the right in Fig. 5 summarizes the capability
of the models to a priori retain the Interlaminar Continuity of the
transverse stress field (IC) and the Zig-Zag behavior of the displace-
ment field at the interfaces (ZZ). Furthermore, the table in Fig. 5 re-
ports the number of degrees of freedom (NDOF) per node that are
associated to each element. Some characteristic examples are next
given to elucidate the interpretation of the acronyms:

� ED1: PVD-based model with an ESL displacement field
that varies linearly over the whole cross-section;
NDOF = 6.

� EM2: RMVT-based model with a quadratic ESL displace-
ment field and a quadratic LW transverse stress field;
NDOF depends on the number of layers Nl (stress field is
LW), e.g., NDOF = 24 if Nl = 2 and NDOF = 36 if Nl = 4.

� EDZ3: PVD model whose ESL displacement field is
obtained by superposing MZZF to a quadratic Taylor
expansion; NDOF = 12.

� EMZ2: RMVT model with quadratic transverse stresses in
each layer; the ESL displacement assumption is composed
of a linear term and of the superposed Zig-Zag function.
This FE has the same NDOF as the EM2 element.

� LD4: Most accurate PVD model studied here, in which the
displacement field varies according to a fourth-order
expansion within each layer. NDOF depends on Nl, e.g.,
NDOF = 27 for Nl = 2 and NDOF = 51 for Nl = 4.

� LM4: Most accurate RMVT model studied here, in which
displacement and transverse stress fields vary in each layer
according to a fourth-order polynomial. NDOF depends on
Nl, e.g., NDOF = 54 if Nl = 2 and NDOF = 102 if Nl = 4.

It is finally worthwhile pointing out following remarks:

1. The number Nl of layers employed for the mathematical
description of the laminate may not coincide with the
number of plies with dissimilar material which physically
constitutes the laminate. Similar to the h-refinement,
enhanced LW descriptions can be thus obtained upon sub-
dividing each physical ply into several mathematical layers.

2. All CUF models retain the transverse normal deformation
and employ the full 3D constitutive law. FSDT is obtained
from the linear PVD-based model by penalyzing the trans-
verse normal deformation term and by introducing a
shear correction factor (the standard value of j2 = 5/6 will
be used). CLPT is obtained from FSDT by additionally pen-
alyzing the transverse shear strain contributions so as to
reproduce the Kirchhoff–Love hypotheses. FSDT and CLPT
models employ the reduced constitutive law referring to
the plane stress condition r33 = 0.

3. CUF elements are implemented in Abaqus within user
subroutines that exploit the parametric definition of CUF
models. The selection of the model can be directly made
through the standard GUI of Abaqus thanks to dedicated
plug-ins written in Python. Visualization of the results is
performed through third-party software.

3.3. Refined sinus model

The refined sinus model employed in this work and denoted
SZ2, is a PVD-based ESL model that enhances the original sinus
model by Touratier [30] upon including the transverse normal
stress according to the following kinematics [32]:

U1ðx1; x2; x3 ¼ zÞ ¼ u0ðx1; x2Þ � zu1ðx1; x2Þ
þf ðzÞðu1ðx1; x2Þ þ h2ðx1; x2ÞÞ

U2ðx1; x2; x3 ¼ zÞ ¼ v0ðx1; x2Þ � zv1ðx1; x2Þ
þf ðzÞðv1ðx1; x2Þ � h1ðx1; x2ÞÞ

U3ðx1; x2; x3 ¼ zÞ ¼ w0ðx1; x2Þ
þzw1ðx1; x2Þ þ z2w2ðx1; x2Þ

8>>>>>>>><
>>>>>>>>:

ð4Þ

k

+1

-1

0

F ( )t k F ( )b k F ( )2 k F ( )3 k F ( )4 k

1

Fig. 3. Through-thickness interpolation functions for LW descriptions.
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Fig. 4. Isoparametric bilinear FEM interpolation for CUF elements.



where (u0,v0,w0) are the displacements of a point of the middle sur-
face; (v1,h1) and (u1,h2) measure the rotations of the normal trans-
verse fiber about the axis (0,x1) and (0,x2), respectively; (w1,w2)
permit to represent the through-thickness stretch.

As far as the FE interpolation is concerned, an isoparametric ap-
proach based on the eight-node quadrilateral finite element is used
for (u0,v0) and (u1,v1,h1,h2). For the set of unknown functions asso-
ciated with the refinement of the transverse displacement (w1,w2),
a bilinear finite element approximation is defined using four inter-
nal points. These variables can be thus condensed out statically at
the element level. A dedicated FE interpolation is used for w0 for
controlling the transverse shear locking according to the ‘‘field
compatibility’’ paradigm, see [32] for more details. Therefore, the
FE has 7 DOF per node independent of the number of layers (ESL
approach).

4. Numerical results

The free-edge effects are investigated by referring to the Pipes–
Pagano problem illustrated in Fig. 1. According to the common def-
inition of this classical benchmark, the plate width is taken to be
2b, the total thickness made of Nl identical plies is 2h = Nlhk and
the ratio b = 4h is employed [12,35,36,46]. A uniform axial strain
�0 is applied along the x-axis by prescribing end displacements �u

at x = ±a. All results will be reported in non-dimensional form.
The uniform traction load induces a constant strain state along
the x-axis in the central region of the plate provided the length a
is sufficiently large with respect to the perturbed regions next to
the pulled edges. Convergence studies performed with 3D ANSYS

elements, not shown for the sake of conciseness, have shown that
a = 2b = 8h provides a sufficient plate length. All plies are CFRP
composites with the material properties given in Table 1. These
material properties correspond to those employed in previous ref-
erence works [12,35,36,42] and permit, hence, a direct comparison
of the results.

In the following, the free-edge effects are studied which arise in
classical symmetric laminates, namely the cross-ply laminates
[0�,90�]s and [90�,0�]s, the angle-ply laminate [±45�]s and the qua-
si-isotropic laminates [90�,0�,45�,�45�]s and [45�,�45�,0�,90�]s

[36,44]. In all cases, the symmetry about the mid plane z = 0 is
exploited to reduce the computational cost.

A mesh with decreasing element size towards the free edge
y = b is employed in order to capture the steep gradients of the re-
sponse. 3D FEM computations with ANSYS are performed for provid-
ing a reference with solid elements. Appropriate spacing ratios are
defined for the 3D mesh which ensure a perfectly cubic shape of
the smallest element at the free edge. Several analyses conducted
with a different number of elements, not shown for the sake of
conciseness, have shown that a mesh with 16 � 16 elements in
the xy-plane is adequate, see Fig. 6. The same mesh is considered
in the xy-plane for all 2D plate computations.

At first, the results computed with the most refined CUF ele-
ments are validated by comparison against results available in lit-
erature as well as ANSYS simulations. Subsequently, the different
plate models previously described are assessed using a scalar
parameter that retains the 3D stress field. Finally, the most accu-
rate approaches are further compared for all the aforementioned
laminates.

4.1. Comparison with results available in literature

In this section, the results provided by the quasi-3D approach
LM4 using one numerical layer per physical ply are compared with
those available in literature. The main features of the involved
works have been recalled in Section 2.

The symmetric four-layered laminates [0�,90�]s and [90�,0�]s

are first considered. The only non-zero transverse stress compo-
nents arising in orthotropic laminates subjected to uniaxial strain-
ing along x are due to the Poisson mismatch and are the transverse
normal stress rzz and the transverse shear stress ryz [34]. Figs. 7
and 8 show their distributions along the y-axis at the bi-material
interface and through the thickness at the free edge, respectively.
In Fig. 7, LM4 results agree well with the 3D solution for both

Fig. 5. Hierarchic CUF models: construction of the acronyms (left) and capability of the models to fulfill a priori the Zig-Zag behavior (ZZ) and the Interlaminar Continuity of
the transverse stresses (IC) (right) along with the associated number of nodal DOF.

Table 1
Material properties of the ply (all moduli and strengths
in MPa).

E1 = 137,900 X+ = 1300, X� = 1000
E2 = E3 = 14,480 Y+ = 70, Y� = 200
G12 = G13 = G23 = 5860 Z+ = 100, Z� = 240
m12 = m13 = m23 = 0.21 Q = 50, R = 90, S = 70

Fig. 6. Mesh employed in the xy-plane for the 3D and plate simulations.



[0�,90�]s and [90�,0�]s laminates, in particular the steep rise of the
transverse normal stress is well captured. Note that the results of
Spilker and Chou [41] show remarkable differences with respect to
the behavior near the free edge predicted by ANSYS and LM4. Fig. 8
highlights some oscillations of the distribution of rzz(z) obtained by
the LM4 model. This may be overcome by adding numerical layers,
see Fig. 9. This refinement enhances the representation of the
stress-free boundary conditions on the top of the plate as well.

Free-edge stresses in a symmetric angle-ply plate are induced
by the extension-shear coupling and concern primarily the trans-
verse shear and normal stress rxz and rzz. The distributions of these
stress components at the bi-material interface along y and along
the thickness at the free edge are given in Figs. 10 and 11, respec-
tively. Again, present LM4 results are very satisfactory as an excel-
lent agreement with the 3D ANSYS solution is found. The high
gradient at the bi-material interfaces and in the vicinity of the free
edge is well estimated, see Fig. 10. Note that the maximum value of
the transverse shear stress becomes very high at the free edge. In
comparison with the cross-ply laminates, a better agreement is
found between present results and those of the literature. We ob-
serve that the ESL model of Wu and Cheng [45] is also capable of
capturing the steep rxz gradient at the free edge. A satisfactory
agreement is found for the through-thickness distributions rxz(z)
and rzz(z) as well, see Fig. 11. As for the results in Fig. 9, increasing
the number of numerical layers in each material ply can correct the
slightly oscillatory behavior of the LM4 model along with the sat-
isfaction of stress-free conditions at the top face.

Results for the quasi-isotropic laminate [90�,0�,45�,�45�]s are
reported in Fig. 12. The LM4 model is the most suitable to repre-
sent the complex behavior of the transverse normal and shear
stresses through the thickness at the free edge. In particular, the
high stress gradient at the [±45] interface is well-captured.

Once we proved that the most refined CUF model is capable of
well capturing the free-edge effects of various laminates, in the
next section we shall analyze to what extent less refined 2D mod-
els can represent these steep transverse stress gradients.

4.2. Assessment of models

The capability of various CUF models and the SZ2 model to cap-
ture the free-edge effect is assessed. A meaningful, though simple,
way to compare the accuracy of the stress field predicted by
different models consists in defining a representative scalar param-

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2
LM4
ANSYS
Tahani & Nosier 2003
Spilker & Chou 1980
Wang & Crossman 1977

[90º, 0º]s

[0º,90º]s

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3
LM4
ANSYS
Tahani & Nosier 2003
Spilker & Chou 1980
Wang & Crossman 1977

[90º, 0º]s

[0º, 90º ]s

Fig. 7. Interlaminar stresses along y at the bi-material interface z = hk of cross-ply laminates: ryz (left) and rzz (right).
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Fig. 8. Through-thickness behavior of rzz at the free edge (y = 0.999b) for cross-ply laminates.
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Fig. 10. Distributions along y of the interlaminar stresses rxz (left) and rzz (right) at the bi-material interface z = hk for the angle-ply [45�,�45�]s laminate.

−15 −10 −5 0
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
LM4
ANSYS
Robbins & Reddy 1993
Wang & Crossman 1977
Mittelstedt & Becker 2007

−5 −4 −3 −2 −1 0 1 2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
LM4
ANSYS
Robbins & Reddy 1993
Mittelstedt & Becker 2007

Fig. 11. Through-thickness behavior of rxz (left) and rzz (right) at the free edge (y = 0.999b) for the angle-ply [45�,�45�]s laminate.

−15 −10 −5 0 5
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
LM4
ANSYS
Wang & Crossman 1977
Gaudenzi et al. 1998

−20 −15 −10 −5 0 5
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
LM4
ANSYS
Wang & Crossman 1977
Gaudenzi et al. 1998

Fig. 12. Through-thickness distributions of rxz (left) and rzz (right) at the free edge (y = 0.999b) for the quasi-isotropic [90�,0�,45�,�45�]s laminate.
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Fig. 13. Error rate Db along the y-axis for the quasi-isotropic [90�,0�,45�,�45�]s laminate-ESL models.



eter that encompasses all 6 stress components. This assessment cri-
terion is introduced in Section 4.2.1 and subsequently employed in
Section 4.2.2 to classify different model families. The quasi-isotro-
pic laminate [90�,0�,45�,�45�]s has been taken for this evaluation
because it includes different types of bi-material interfaces.

4.2.1. Assessment criterion
A scalar parameter, denoted b, is in the following introduced in

order to assess the various plate models. This parameter is con-
structed by combining all stress components into a single non-
dimensional value. Each stress component is herein weighted by
its corresponding limit value, that is a material parameter and,
hence, independent of the model. The expression for the parameter
b reads:

b ¼ 1ffiffiffi
a
p with a ¼ r2

11

X2 þ
r2

22

Y2 þ
r2

33

Z2 þ
r2

23

Q 2 þ
r2

13

R2 þ
r2

12

S2 ð5Þ

where X, Y, Z are the normal strengths in the x, y, z directions, and Q,
R, S are the shear strengths in the yz, xz, xy planes. The values are
given in Table 1, where superscripts + and � denote tensile and
compressive strengths, respectively. Despite the similarity of a to
classical failure criteria, the parameter b is not meant to be a mea-
sure of the criticity of the stress state, i.e., we refrain from referring
to any strength consideration concerning the composite material.
We remark that the function a describes a convex surface which en-
sures a finite value for all possible non-nil stress states.

We next define an error rate with respect to the 3D solution
based on the parameter b. This error rate is constructed as a
weighted average over the whole thickness of the point-wise dis-
crepancies between the values of b issued from the 2D model
and the 3D calculation:

Db½%� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðbEF � bAnsysÞ2
s

1
n

Xn

i¼1

bAnsys

� 100 ð6Þ

where n is the number of sampled points through the thickness (a
value of n = 13Nl is used throughout this work). Hence, a small value
of Db indicates that the through-thickness stress distribution ob-
tained from the 2D model recovers well the 3D solution.

4.2.2. Comparison of the CUF and sinus models
In this section, a comparison of the plate models presented in

Section 3 is addressed considering the quasi-isotropic laminate
[90�,0�,45�,�45�]s. First, the ESL models based on PVD as well as
RMVT approaches are assessed. For this purpose, the error rates de-
fined in Eq. (6) are given along the y-coordinate axis in Fig. 13a and
b. The curves show that the ED1, EDZ2, SZ2, EM1 and EMZ2 formu-
lations are not suitable for the analysis of free-edge effects. All
these models provide results that substantially coincide with CLT
ones. A second group of curves can be distinguished, which has
an improved accuracy with respect to the previous ones and which
comprises the ED2, EDZ3, ED3, EDZ4 models and the corresponding
mixed models. The reason for the improved results of these models
lies in their refined kinematics that includes the 2nd order term,
which allows to retain the transverse stress. Note that the intro-
duction of Murakami’s Zig-Zag Function does not bring any signif-
icant changes in the value of Db. We also observe that the odd
terms in the z-expansion of the mechanical quantities have no
influence, which appears as reasonable due to the simple tensile
sollicitation (no bending). Finally, the high-order models ED4 and
EM4 drive to the most accurate results.

Fig. 14 reports the error rate Db associated to LW models. An
improved accuracy of this class of models is evident when com-
pared to the ESL ones of Fig. 13. We observe that the error rate de-
creases when the order of expansion of the displacement and/or
stresses increases. So, the steep gradients of the interlaminar stres-
ses require the use of higher-order approximations in conjunction
with LW description. This example shows also that the range of
validity of the CLT is limited to the interior of the plate, say y < 0.5b.

Neither Fig. 13 nor Fig. 14 show a significant improvement of
partially mixed models with respect to displacement-based ones.
However, partially mixed models may give more accurate local re-
sults, in particular at the interfaces between adjacent plies due to
the automatic satisfaction of the interlaminar continuity.

4.3. Comparison of some models for different laminates

For further assessment, the most accurate models identified in
Section 4.2 are compared for a wide kind of symmetric laminates,
namely cross-ply [0�,90�]s and [90�,0�]s (Fig. 15), angle-ply [±45�]s

(Fig. 16) and quasi-isotropic [90�,0�,45�,�45�]s, [45�,�45�,0�,90�]s

(Fig. 17). The results obtained from the CLT are also given for
comparison.

The comparison between Figs. 15–17 shows that the less severe
case is that involving cross-ply laminates, for which even the CLT
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leads to errors less than 6%, whereas the most severe one is that
concerning the quasi-isotropic laminate, with errors up to 35%.
The angle-ply laminate shows an error rate concentration that is
locally confined in vicinity of the free edge. For all configurations,
three model groups are again clearly identified, namely CLT, high-
er-order ESL models and higher-order LW models. The maximum
error rate of ED4 and EM4 is about 3% for the cross-ply, about
15% for the angle-ply and about 20% for the quasi-isotropic lami-
nates. For the same lamination schemes, the maximum error rates
of LW models are of the order of 2%, 2.5% and 5%, respectively. Fi-
nally, the difference between PVD and RMVT models is only mar-
ginal, with a slightly superior performance of the partially mixed
models.

In order to gain further insight concerning the performance of
these higher-order ESL and LW models, the through-thickness dis-
tribution of the scalar parameter b at the free edge is shown in

Figs. 18–20 for the cross-ply, angle-ply and quasi-isotropic lami-
nates, respectively. The 3D solution from ANSYS is given as a refer-
ence together with that provided by the CLT. For the cross-ply
laminates (Fig. 18), the parameter is nearly constant within each
layer, with a higher value in the 0� ply. The results are rather close
for the considered CUF models, with ESL models driving to small
discrepancies that are limited to the 0� ply. For the three other
stacking sequences, Figs. 19 and 20 show that the main error
source for ESL models is the steep gradient occurring at the ±45�
interface. On the contrary, the LW approach gives accurate results
in excellent agreement with the reference 3D solution, even in the
most complex case involving quasi-isotropic laminates.
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Fig. 16. Error rate along the y-axis for the angle-ply [45�,�45�]s.
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5. Conclusions and outlook

Various plate models have been assessed with respect to the
free-edge effect of the Pipes–Pagano problem. ESL and LW as well
as displacement-based and partially mixed models issued from
Carrera’s Unified Formulation (CUF) and a refined sinus model
have been compared against results available in literature and
against 3D solutions obtained from 3D ANSYS simulations. After a
first comparison of the transverse stress fields occurring in
cross-ply, angle-ply and quasi-isotropic laminates, the assessment
has been performed on the basis of a representative scalar param-
eter that encompasses all six stress components. The results have
shown that the most critical configuration is that occurring in
quasi-isotropic laminates and that the plate models have most
difficulties in capturing the steep stress gradients arising at the
±45� interfaces. The relevance of the quadratic term in the
z-expansion of the kinematics has been highlighted, which per-
mits to retain the transverse normal stress. High-order LW models
recover with very good accuracy the reference 3D solution,
whereas high-order ESL models fail to grasp the steep gradients
at bi-material interfaces. These results show that refined LW plate
models can provide accurate 3D stress states without the need of
the cumbersome 3D mesh generation associated with 3D FEM
analysis.

The following points can be devised as future perspectives.
Due to the rapid decay of the free-edge effects, a fully 2D glo-
bal–local modeling approach as proposed in [43], in which
high-order LW models are confined in vicinity of the free edge,
appears as a viable modeling strategy that offers a good accuracy
at a moderate computational cost. Since CUF employs the same
thickness expansion for all variables, a more rational distribution
of the computational effort can be achieved by selecting different
approximations for the field variables, as accomplished by the
Generalized Unified Formulation of Demasi [50]. The analysis of
different configurations, such as free-edge effects in plate bending
or around a hole, can provide further insight on the performances
of plate models.

Interlaminar stress analysis can be finally completed by a
delamination initiation investigation. Here, great attention should
be given to the stress singularity at the free edge, which calls
for the use of an energy criterion [51]. As recently demonstrated
for the layerwise stress approach of [46], a converged evaluation
of the stress intensity factors can be achieved within a 2D FEM
mesh with a sufficiently refined ply subdivision, in particular in
proximity of the bi-material interfaces [52]. A consequent experi-
mental correlation is here necessary.
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