Skip to Main content Skip to Navigation
Journal articles

Computing an Inner and an Outer Approximation of the Viability Kernel

Dominique Monnet 1, 2, 3 Jordan Ninin 2, 1, 3 Luc Jaulin 2, 1, 3
1 Lab-STICC_ENSTAB_CID_IHSEV
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
2 Pôle STIC_OSM
ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne
3 Lab-STICC_ENSTAB_CID_PRASYS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : The viability kernel corresponds to the set of all state vectors of a controlled dynamic system that are viable, i.e., such that there exists an input such that the system will not enter inside a forbidden zone. In this paper, we propose a method which computes an inner and an outer approximation of the viability kernel in a guaranteed way. Our method is based on interval analysis and uses the notions of V-viability and capture basin. We illustrate our approach on the car on the hill problem. A software package has been developed to solve any 2D-problem.
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01366752
Contributor : Jordan Ninin <>
Submitted on : Friday, September 16, 2016 - 2:15:43 PM
Last modification on : Wednesday, April 21, 2021 - 11:38:02 AM
Long-term archiving on: : Saturday, December 17, 2016 - 1:25:22 PM

File

Viability_Kernel_FINAL.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Identifiers

  • HAL Id : hal-01366752, version 1

Citation

Dominique Monnet, Jordan Ninin, Luc Jaulin. Computing an Inner and an Outer Approximation of the Viability Kernel. Reliable Computing, Springer Verlag, 2016, 22. ⟨hal-01366752⟩

Share

Metrics

Record views

1024

Files downloads

446