Formation of C-S-H in calcium hydroxide–blast furnace slag–quartz–water system in autoclaving conditions
Nourredine Arabi, Nourredine Chelghoum, Raoul Jauberthie, Laurent Molez

To cite this version:

HAL Id: hal-01366494
https://hal.archives-ouvertes.fr/hal-01366494
Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Formation of C-S-H in calcium hydroxide–blast furnace slag–quartz–water system in autoclaving conditions

Nourredine Arabi
Professor, Laboratoire Matériaux Géomatériaux et Environnement, Université Badji Mokhtar Annaba, Annaba, Algeria

Raoul Jauberthie
Professor, Laboratoire GCGM, INSA de Rennes, Rennes, France

Nourredine Chelghoum
Senior lecturer, Laboratoire Matériaux Géomatériaux et Environnement, Université Badji Mokhtar Annaba, Annaba, Algeria

Laurent Molez
Senior lecturer, Laboratoire GCGM, INSA de Rennes, Rennes, France

In masonry, the most commonly used materials are concrete blocks or burnt clay brick. Owing to energy costs, there is a need to explore alternative raw materials and energy-efficient technologies for making building materials. This paper deals with the incorporation of blast furnace granulated slag in sand–lime materials as a replacement for hydrated lime during autoclaving conditions. The slag grain-size grinding and the heat treatment in saturated vapour pressure autoclave conditions were investigated to study the compressive strength behaviour of the new material. This substitution induces a decrease in compressive strength. The reaction products consist mainly of 11 nm tobermorite and xonotlite. The X-ray diffractions of these phases are difficult to see. The slag seems more reactive with lime than quartz. Observations with the scanning electron microscope allow better appreciation of these crystallites. With its composition and amorphous structure, the granulated slag does not release new distinct phases of hydrates.

Introduction
Calcium silicate hydrate (C-S-H) is formed during paste hydration of the tricalcium silicate (C₃S) and dicalcium silicate (C₂S) phase in Portland cement paste at ordinary temperatures. The formed C-S-H is of amorphous or poorly crystalline form and has a wide compositional range, with molar calcium oxide (CaO)/silicon dioxide (SiO₂) (C/S) ratios between 0-6 and more than 2 (Aitken and Taylor, 1960; Al-Wakeel et al., 1999; Chen et al., 2004).

The lime silica water has been investigated in autoclaving conditions at different temperatures and during reactions by different authors. The stability is sometimes questioned after several years. This system is highly complex with over 30 stable phases reported. The relative stabilities of some of these phases are shown in Figure 1 (Taylor, 1997). The C/S ratios of C-S-H precipitated from aqueous solution depend on the C/S ratios of the starting materials, with higher C/S ratios in the starting materials usually resulting in higher C/S ratios in the final products (Baltakys et al., 2009).

High-pressure steam curing adds remarkable features in comparison to cement hydration at lower temperatures. During autoclaving, some crystallised calcium silicate hydrates are formed. The crystal structure provides various building materials with highly preferred properties, such as high strength, dimensional stability (shrink and creep) and high resistance to chemical attack (Richardson, 2008). In the majority of cases the product of transformation presents a mixture of C-S-H (I) and tobermorite (Hong and Glasser, 2004). Meanwhile, C-S-H (I) with crystals only ordered in two directions transforms to other phases (Z-phase) and then finally recrystallises to gyrolite (Jauberthie et al., 1996; Klimesch and Ray, 2002; Siauciunas and Baltakys, 2004).
C-S-H (I) can be an intermediate phase in the formation of the other phases mentioned. For other C/S ratios or other atoms present, with higher temperature (150°C) tobermorite transforms to xonotlite (Shaw et al., 2000).

Sand–lime brick is obtained by hydrothermal reaction of a mixture of lime and sand at high temperatures under saturation vapour pressure in an autoclave (Kondo, 1965). At temperatures around 170–200°C, the finely ground quartz which is insoluble at room temperature becomes chemically more active and reacts with lime ‘calcium hydroxide (Ca(OH)$_2$), thereby forming C-S-H that is solid, resistant and insoluble in water. However, despite many previous studies, several aspects of the reaction are still incompletely understood. This reaction type is often affected according to the duration or too high temperature of autoclaving or by the presence of too much fine quartz (Crennan et al., 1977).

The hydrothermal process in the autoclave is still not fully scientifically understood. The difficulties in following the process in the autoclave are mainly attributable to the ‘black box’, that is, the synthesis in an autoclave cannot be observed (Dietz and Bohnemann, 2000). However, the C-S-H formed at ambient temperatures is amorphous or poorly crystallised, whereas the autoclaved calcium silicate hydrate is mostly well crystallised.

The degree of crystallisation depends on the raw materials, C/S ratio, curing conditions in the autoclave and other factors (Yazıcı et al., 2013). Temperature and time of autoclaving determine which form of C-S-H is produced. The relevant forms of C-S-H in autoclaved building materials are 11 nm tobermorite and xonotlite. The 11 nm tobermorite is more stable, is obtained at 0.8–1 C/S ratio and is synthesised at temperatures above 150°C, whereas the xonotlite, formed by the molar C/S ratio of approximately 1, is produced at temperatures above 200°C (Black et al., 2009).

The C-S-H synthesis starts with the dissolution of the raw materials (calcium hydroxide and silicon dioxide). The calcium hydroxide dissolves in the aqueous phase (Ca$^{2+}$ and OH$^{-}$) and the silicon dioxide dissolves in the aqueous phase as (H$_4$SiO$_4$)$_2$$^-$ or (H$_2$SiO$_3$)$_2$$^{2-}$ complexes. The solubility kinetics of calcium hydroxide and silicon dioxide are shown in Figure 2 (Dietz and Bohnemann, 2000). At lower temperatures the solubility of the calcium hydroxide in comparison to the silicon dioxide is far higher. This is the reason why the initially produced C-S-H is lime-rich or semi-crystalline C-S-H with a C/S ratio of more than 1:5. At higher temperatures the silicon dioxide solubility is increased, whereas the solubility of the calcium hydroxide is decreased. All the dissolved silicon dioxide is immediately consumed and it is the formation of 11 nm tobermorite which is favoured. Consequently the rate of reaction depends on the availability of dissolved silicon dioxide only (Narayanan and Ramamurthy, 2000; Ungkoon et al., 2007). Significant influences have impurities in the raw materials, which can accelerate or inhibit the formation of the crystallised C-S-H. The presence of some sulfates and aluminates enhance the formation of tobermorite, whereas the formation of xonotlite is inhibited by the presence of aluminium oxide (Dietz and Bohnemann, 2000).

With its chemical composition similar to cement, ground granulated blast furnace slag may be an alternative to lime materials. The rapid cooling gives a metastable glassy structure, which increases the kinetic of the reaction with the lime. Granulated slag has latent hydraulic properties, it is considered to be slow curing and it is not reactive with water at room temperature (Behim et al., 2011). Chemical activation, sulfate or alkali are necessary to start germination (Gruskovnjak et al., 2008). Furthermore, the slag can also become reactive with thermal activation (steaming or autoclaving) (Barnett et al., 2006).

In this work, the lime and granulated slag were mixed with different composition, and the reaction occurred at the saturated vapour pressure at various temperatures. Slag grinding degree characterised by the Blaine specific surface was investigated. Mechanical performance was evaluated by compressive strength. Analysis by X-ray diffraction (XRD), X-ray microanalysis (EDX) and scanning electron microscope (SEM) observations explained the evolution of phases obtained during autoclave reaction.
Experimental details

Materials
The materials used in this work are outlined below.

(a) Calcium hydroxide (industrial product of ArcelorMittal in El Hadjar, Algeria). This was used with a particle size distribution giving a screen overflow of 19.2% on the 0.08 mm sieve.

(b) Blast furnace slag is a by-product of the iron industry ArcelorMittal in El Hadjar (Algeria). It was ground to obtain different Blaine specific surfaces (SSB) to 2500, 3500 and 4500 cm²/g.

(c) Dune sand is quartz sand (El Kala, eastern Algeria). The particle size is reduced by ball milling to obtain a specific surface of 2325 cm²/g.

All chemical analyses are summarised in Table 1 and are determined by manufacturer laboratory tests by the X-ray fluorescence method.

Sample preparation and analysis
Samples were cylindrical (Ø = 50 mm, L = 100 mm), each being made with 20% lime and 80% ground sand, with 10% of water added. Blast furnace slag with different specific surface partially replaced the lime. The compaction pressure of samples was 20 MPa. Hydrothermal synthesis was carried out under saturated steam pressure at temperatures of 176, 190 and 204°C, and steam pressures of 1.0, 1.5 and 1.8 MPa. The duration of the treatment in autoclaving was 10 h: that is, 2 h for progressively rising temperatures, 6 h of conservation at constant temperature and finally 2 h for cooling by ventilation. After synthesis, samples were removed from the autoclave. Throughout the curing period, the compressive strength was measured after 2 d.

The XRD data were collected by Philips PW 3710 X-ray diffractometer with Bragg–Brentano geometry using Ni-filtered Cu Kα radiation, operating with the voltage of 30 kV and emission current of 20 mA. The step-scan covers the angular range 2–60° (2θ) in steps of 2θ = 0.02°. The morphology of hydrates formed was determined by SEM (SEM-JEOL-JSM-6301F) using an accelerating voltage of 9 kV and a working distance of 15 mm. The elementary compositions (EDX) were measured using energy-dispersive spectrometer Oxford Inca Link (SEM JSM 6400).

Results and discussion

Compressive strength
Table 2 shows the compressive strength under the influence of the following effects: replacement rate of hydrated lime by granulated slag, the fineness of the slag and the saturated vapour pressures in autoclave. Replacing hydrated lime by granulated slag as a binder, induces a significant reduction in compressive strength. It is slightly affected when the slag percentage is less than 40% and significantly affected with higher percentages.

Table 1. Chemical analyses of initial compounds

<table>
<thead>
<tr>
<th></th>
<th>Silicon dioxide (SiO₂)</th>
<th>Calcium oxide (CaO)</th>
<th>Magnesium oxide (MgO)</th>
<th>Aluminium oxide (Al₂O₃)</th>
<th>Iron (III) oxide (Fe₂O₃)</th>
<th>Titanium dioxide (TiO₂)</th>
<th>Manganese oxide (MnO)</th>
<th>Potassium oxide (K₂O)</th>
<th>Sodium oxide (Na₂O)</th>
<th>Barium oxide (BaO)</th>
<th>Loss on ignition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slag</td>
<td>75.88</td>
<td>42.17</td>
<td>7.49</td>
<td>7.92</td>
<td>0.5</td>
<td>0.29</td>
<td>0.83</td>
<td>96.1</td>
<td>0.18</td>
<td>0.94</td>
<td>25.35</td>
</tr>
<tr>
<td>Lime</td>
<td>0.54</td>
<td>70.53</td>
<td>1.16</td>
<td>1.7</td>
<td>0.90</td>
<td>0.18</td>
<td>0.83</td>
<td>96.1</td>
<td>0.18</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
</tbody>
</table>
The evolution of compressive strength according to the variation of fineness of the granulated slag is reported in Table 2 as well as in Figure 3. This contributes slightly to the increase of the compressive strength when the specific surfaces vary from 2500 to 3500 cm²/g. The effect is not significant when varying between 3500 and 4500 cm²/g. In addition, the excessive grinding promotes the formation of electrostatic charges of particles, which produces flocculation. As with the cement case, the phenomenon of over-grinding leads to flocculation phenomena attributed to electrostatic charges, which agglomerate the extremely fine particles (Diederich et al., 2012). In addition, the hydration product of the mechanically activated slag depends not only on the initial specific surface area of the slag but also on the surface activation, as manifested by the change in the zeta potential of the slag during the milling process (Kumar et al., 2005). This explains the low increase of mechanical strength in the specimens composed from slag with specific surface areas between 3500 to 4500 cm²/g compared to between 2500 and 3500 cm²/g.

Temperature, related to the autoclaving pressure, contributes to the activation of slag and also ensures an interesting evolution of mechanical resistance (Aldea et al., 2000). On the other hand, the lime in solution increases the pH; consequently the slag is in this highly basic environment. This environment can be depleted (less basic) if the Ca⁺⁺ ions combine with the silica of slag to form the C-S-H.

The mechanical strength is observed to improve significantly when the saturated vapour pressure, inside the autoclave, ranges from 1·0 to 1·5 MPa. On the other hand, for the case of 1·5–1·8 MPa saturated vapour pressure, a slight improvement is noticed (Figure 4). A significant increase of curing temperature can result in the phase breakdown followed by recrystallisation of

<table>
<thead>
<tr>
<th>Saturated vapour pressures in autoclave: MPa</th>
<th>Fineness (slag): cm²/g</th>
<th>Replacement ratio of slag: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1·0</td>
<td>2500</td>
<td>36·4</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>36·4</td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>36·4</td>
</tr>
<tr>
<td>1·5</td>
<td>2500</td>
<td>42·4</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>42·4</td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>42·4</td>
</tr>
<tr>
<td>1·8</td>
<td>2500</td>
<td>45·2</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>45·2</td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>45·2</td>
</tr>
</tbody>
</table>

Table 2. Compressive strength (MPa) of samples containing different percentages of slag

Figure 3. Compressive strength development of samples containing different proportions of slag and autoclaved at saturated vapour pressure to 1·5 MPa

Figure 4. Compressive strength development of samples containing different proportions of slag at specific surface of 3500 cm²/g
other phases with weaker properties at microscopic scale (or at crystal scale) (Gutovic et al., 2005). In the work reported by Black et al. (2009) concerning xonotlite, which was not general to hydrothermally formed phases, an increasing synthesis temperature led to larger crystals, but the crystals also appeared to have split along their length. This case is also observed in the present study: there is a conversion of the tobermorite to xonotlite. Figure 5 shows well-crystallised tobermorite in the form of dense and entangled platelets, whereas xonotlite is in the form of very fine interwoven needles (Figure 6). However, at material scale the interleaving of xonotlite needles leads to an improvement of mechanical strength.

Microstructural analyses
Samples containing 0, 40, 60 and 100% of granulated slag (ground to a specific surface of 3500 cm²/g) were autoclaved at saturated vapour pressures of from 1.0 to 1.8 MPa. Samples were observed using XRD, SEM (SEM) and EDX.

The X-ray powder diffraction patterns (Figures 7 and 8) show a significant presence of portlandite in the sample without slag. The decrease of portlandite is induced by the pozzolanic effect.
when the slag partially replaces hydrated lime, and is also attributable to dilution. Portlandite disappears completely for mixtures of 60 and 100% granulated slag. In the XRD patterns at the temperatures employed and in the presence of slag, the poorly crystallised phases appear. The spectral line located at $7.8^\circ 2\theta$ is more visible; the XRD patterns from the sample without slag do not show clearly.

The temperature effect, that is autoclaving pressure, is also highlighted; the XRD intensity corresponding to portlandite decreases when the autoclaving pressure reaches 1.8 MPa for a slag-free mixture. This is probably attributable to silica, which reacts with Ca^{++} into solution to produce new hydrated calcium silicates. XRDs at Miller indices (hk0) of C-S-H seem to increase. The presence of tobermorite 11 nm ($C_6S_6H_2O$) and of xonolite ($C_6S_6H_2O$) is also observed. Their diffraction lines are very weak and perceptible with difficulty. These hydrated calcium silicates are probably in too low quantities to give high intensities compared with XRD of quartz (sand of the mixture). When the curing temperature in the autoclave increases, the formation of xonolite at the expense of tobermorite is noticed. This is attributed to the presence in the matrix of aluminium. When the latter increases, the tobermorite becomes a more stable phase as the autoclaving temperature decreases. Inversely, when the aluminium contents decrease and the temperature increases, the xonolite will become the most stable phase. The EDX data analyses (Tables 3 and 4) confirm this; Shaw et al. (2000) also reported this observation. The presence of the slag does not

![Figure 8. X-ray diffraction patterns of synthesis products at saturated vapour pressure of 1.8 MPa (204°C)](image)

<table>
<thead>
<tr>
<th>Oxide: % by mass</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0% slag</td>
</tr>
<tr>
<td>Aluminium oxide (Al_2O_3)</td>
<td>3.16</td>
</tr>
<tr>
<td>Silicon dioxide (SiO_2)</td>
<td>54.90</td>
</tr>
<tr>
<td>Calcium oxide (CaO)</td>
<td>41.94</td>
</tr>
<tr>
<td>Magnesium oxide (MgO)</td>
<td>—</td>
</tr>
<tr>
<td>Iron (III) oxide (Fe_2O_3)</td>
<td>—</td>
</tr>
<tr>
<td>Potassium oxide (K_2O)</td>
<td>—</td>
</tr>
<tr>
<td>Calcium oxide (CaO)/silicon dioxide (SiO_2) ratio</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 3. EDX of newly formed hydrates in autoclave at temperature of 176°C
provide new phases of distinct hydrates on the XRD patterns, whereas the tobermorite is clearly present, especially regarding mixtures with 100% slag.

To appreciate the new phases formed, it is necessary to use SEM (Figures 9–12). Figure 9(a) shows the tobermorite in the form of dense and entangled well-crystallised platelets. Xonotlite is in the form of very fine interwoven needles (Figure 9(b)). These two aspects are the usual forms of tobermorite and xonotlite. They try to overrun the cracks and cleave slightly in some cases. Some atomic directions of the unit cell of the initial crystal network with a development in platelets are conserved in the crystal network of the xonotlite. This leads to cleavages (cracks of parallel orientation fixed by the initial atomic network). The fibres of the resulting xonotlite occurred in parallel laths in the form of a bundle (observations by HFW Taylor in the 1960s) (Speakman, 1968). The addition of 40% slag in lime substitution did not disturb the fundamental aspect of these two phases (Figures 10(a) and 10(b)). On the other hand, with 60% slag at autoclave temperatures of 176 and 204°C, the phases obtained show cleavages that have fibrous aspects (Figures 11(a) and 11(b)). The fibres develop on the slag particle and progress into the porosity. Finally, with 100% slag the phases obtained have needle-like appearances. The germination appears to occur on particles of slag showing a fibred structure with a characteristic sea-urchin shape (Figure 12(a)). At a temperature of 204°C, the

<table>
<thead>
<tr>
<th>Oxide: % by mass</th>
<th>0% slag</th>
<th>40% slag</th>
<th>60% slag</th>
<th>100% slag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium oxide (Al₂O₃)</td>
<td>1.67</td>
<td>6.03</td>
<td>5.56</td>
<td>–</td>
</tr>
<tr>
<td>Silicon dioxide (SiO₂)</td>
<td>57.30</td>
<td>60.91</td>
<td>71.8</td>
<td>36.25</td>
</tr>
<tr>
<td>Calcium oxide (CaO)</td>
<td>41.03</td>
<td>32.59</td>
<td>22.54</td>
<td>54.07</td>
</tr>
<tr>
<td>Magnesium oxide (MgO)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9.69</td>
</tr>
<tr>
<td>Iron (III) oxide (Fe₂O₃)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Potassium oxide (K₂O)</td>
<td>–</td>
<td>0.35</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Calcium oxide (CaO)/Silicon dioxide (SiO₂) ratio</td>
<td>0.72</td>
<td>0.54</td>
<td>0.32</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Table 4. EDX of newly formed hydrates in autoclave at temperature of 204°C

Figure 9. SEM micrographs of samples containing 0% slag: (a) sample treated at 176°C; (b) sample treated at 204°C
form of the phases is as fine needles (Figure 12(b)). The cleavage of phases which occurs presents a different appearance to products obtained with the samples containing 40 and 60% slag. The EDX data analyses that identify the hydrates formed are given in Tables 3 and 4. The investigation cannot resolve the ambiguity: tobermorite or xonotlite. These two hydrates are composed of the same elements (oxides). The C/S ratio mean is approximately equal to 0.85. Overall, the atomic elements noticed in EDX analyses correspond to the presence of C-S-H. Other elements such as magnesium, potassium and iron are also present, but in small quantities introduced to the mix by granulated slag.

Conclusions
The complexity of the calcium oxide–silicon dioxide–water system under hydrothermal reaction and saturated vapour pressure has been widely discussed for many years. The presence of
slag with almost a complete amorphous structure under such conditions, does not release new hydrate phases other than those known in similar conditions.

It is estimated that a relatively high concentration of calcium ions is required for hydrate formation; the presence of lime is found to be essential as an activator for slag.

The mechanical strengths are closely related to composition of mixtures. It is estimated that the increment of temperature does not significantly affect resistance (in this study). However, the temperature has a much greater influence on the morphology and crystalline structure of C-S-H.

The increase in the fineness of the grinding of slag has not brought the desired effect on the mechanical resistance with small amounts of slag (20% of total mixture).

The investigation of phases by X-ray diffractograms is complicated by the presence of quartz (well crystallised and with intensities that mask other phases). However, the SEM micrographs are more clearly highlighted.

The usual forms of tobermorite and xonotlite are distinct and are not disturbed by the presence of slag. Atomic elements such as aluminium, iron, potassium, magnesium and sodium are present but they do not affect the areas of synthesis and stability of these phases.

Acknowledgements

The authors express their thanks to Joseph Le Lannic and Francis Goutefangeas, CMEBA Rennes1 University (France), for their assistance with SEM.

REFERENCES

Crennan JM, El-Hemaly SA and Taylor HFW (1977) Autoclaved...

Shaw S, Clark SM and Henderson CMB (2000) Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca$_5$ Si$_6$ O$_{16}$ (OH)$_2$, 4H$_2$O) and xonotlite Ca$_6$ Si$_6$ O$_{17}$ (OH)$_2$: an in situ synchrotron study. *Chemical Geology* 167(1–2): 129–140.

WHAT DO YOU THINK?

To discuss this paper, please submit up to 500 words to the editor at journals@ice.org.uk. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as a discussion in a future issue of the journal.