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Abstract—In this paper we present a pipeline for automatic
analysis of neuronal morphology: from detection, modeling to
digital reconstruction. First, we present an automatic, unsu-
pervised object detection framework using stochastic marked
point process. It extracts connected neuronal networks by fitting
special configuration of marked objects to the centreline of
the neurite branches in the image volume giving us position,
local width and orientation information. Semantic modeling of
neuronal morphology in terms of critical nodes like bifurcations
and terminals, generates various geometric and morphology
descriptors such as branching index, branching angles, total
neurite length, internodal lengths for statistical inference on
characteristic neuronal features. From the detected branches we
reconstruct neuronal tree morphology using robust and efficient
numerical fast marching methods. We capture a mathematical
model abstracting out the relevant position, shape and connec-
tivity information about neuronal branches from the microscopy
data into connected minimum spanning trees. Such digital
reconstruction is represented in standard SWC format, prevalent
for archiving, sharing, and further analysis in the neuroimaging
community. Our proposed pipeline outperforms state of the
art methods in tracing accuracy and minimizes the subjective
variability in reconstruction, inherent to semi-automatic methods.

Index Terms—Neuron morphology analysis; Marked point
processes; Fast marching; Neurite tracing; Digital reconstruction.

I. OVERVIEW

A. Introduction

Comprehending the complex structure and connections of
neurons is key to the study of brain development and function-
ing. Advances in microscopy imaging technology has enabled
us to capture neuronal morphology in unprecedented high res-
olutions. But, the huge volume of rich and heterogeneous data
generated, makes expert manual analysis tedious, subjective
and prohibitively time consuming.
Till date, the only organism to have a fully described connec-
tome is the roundworm (C. Elegans) [38]. It is a nominally
evolved organism with a primitive neuronal network presenting
only a small subset of the morphological variations and com-
plexity exhibited in higher organism. Recently, many efforts
are underway to generate detailed neuronal atlases of common
lab animals such as rats, mice and fruit-flies to facilitate in
silico experimentation. At the core of such efforts lies the
challenging task of detection and reconstruction of neuronal
branches from large 3D microscopy data stacks acquired by
various imaging modalities.
Neurons exhibit a tree-like pattern of tubular branches at
light microscopy resolutions. To extract the positional, shape
and connectivity information of the neuronal branches is a
difficult task. Firstly, the branches present a wide variation of
scale and shape from thin, wispy filaments to thick primary

branches. Secondly, the branches take on a beaded appearance
with inhomogeneous intensity, gaps and discontinuities due
to imperfect staining and exhibit poor contrast with fuzzy,
undefined boundaries distorted by microscopy PSF. Imaging
artefacts, such as structured noise, gradation caused by uneven
illumination, background clutter due to other labelled organelle
— impose further challenges for automatic analysis. Often
limiting resolution in Z axis (perpendicular to imaging plane),
induces a 2D projection effect obscuring branch connectivity
and misappropriating branch length. It is known to have
caused expert manual reconstructions to contain loops in the
neuronal arborization. These are treated as Gold Standards
(GS) to evaluate performance of automatic algorithms. It is a
particularly significant problem as automatic reconstructions
are then penalized for performing better than the tracing
methods producing incorrect loopy reconstructions.

B. Related Works

Tubular structures such as neurites, vasculature networks,
bronchial airways are abundantly encountered in biomedical
imaging. The connected centerlines of these tubules provide
an accurate representation of the topologies. Existing neurite
tracing methods mostly fall into 2 broad categories — global
segmentation and local exploratory methods.

The global methods are mainly skeletonisation or medial
axis representations of a segmented neurite image [3], [27],
[41], [39], [29]. These methods are extremely sensitive to
the segmentation results. A good segmentation of the neurite
is difficult to achieve due to imaging artifacts, noise and
non-uniform staining of neuronal fibres. Subsequent pruning
of the skeletal tree is necessary to remove loops and spurs
adding false length to the neurites. Traditional segmentation
techniques fail to generate a connected 1 pixel-wide centreline
representation of the neurite topology. Often, heuristic post
processing or even manual intervention, is required to merge
disconnected components into graph-theoretic representation
of nodes as bifurcations, terminals and intermediate paths.
Moreover, the memory requirements of global methods are,
generally, exceptionally high making them unattractive choices
for large data sets (and limiting them to 2D data only [3]).
The complexity and variability of neurons make it painstaking
to extract morphological and geometrical parameters (e.g.,
total neurite length, the number of branches, branch angle)
to describe the neurons.

In contrast to global methods, explorative neurite tracing con-
nects paths of maximum neuriteness voxels locally between
sets of seed points incrementally to extract the global neurite
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structure [35], [8], [37], [30]. A common drawback of these
algorithms is their dependence on availability and quality of
seed points. Often, interactive tracing is required to select
the optimal seed points [21]. Traditionally, multi-scale Eigen
analysis [12], in combination with gradient information [17]
or intensity ridge traversal [1] are used to detect seed voxels
on tubule centerlines. These multiscale filters find voxels
maximizing a vesselness measure by collecting responses over
a range of filter scales. However, Hessian-based filters, eg.
Frangi vesselness filters, fail at critical junctions and bifur-
cations where the neuronal morphology deviates significantly
from expected tubular cross-sections. They are also sensitive
to presence of adjacent structures. Hence, a scale-orientation
space non-maxima suppression of the filter response fails to
generate seeds on the topological centreline of the neurite
branches for subsequent connectivity inference.

Recently, various supervised machine learning techniques
modeling the centreline detection problem as a classification
task have been proposed in the literature [32], [34]. These
methods use a cascade of weak binary classifiers for extracting
centreline voxels. However, they are not strongly discrimi-
native between pixels on and close to centerlines. This is
because the complex geometric and radiometric variability,
both natural and induced by imaging and staining artefacts,
present in neurites are difficult to enumerate and learn.
Parametric deformable Active Contour are frequently used for
tracing neuronal branches between pairs of seed points [8],
[37]. The intrinsic shortcoming of snake based methods is their
sensitivity to initialization and background noise, in addition to
its inability to deal with topological adaptation such as splitting
or merging of branch parts. Active contours require very
precise initialization to avoid being trapped by local energy
minima. Extensive preprocessing is required for selection of
candidate voxels for initialization of snakes and dynamic re-
parameterization is necessary to accurately recover the object
centreline. Hence, recently level sets and the numerically
efficient fast marching methods, that can avoid the mentioned
drawbacks, have gained popularity for neurite tracing [26],
[28], [13]. A second class of local explorative methods — the
Iterative Model Fitting — fits a cylindrical neurite-like kernel,
between sets of detected seed points [42]. These methods are
computationally efficient since it performs a localized search
by matching templates at different orientations at the end
of already detected segments. But the high cross-sectional
morphology variability does not allow such shape averaging.
The neuronal fibres are approximate tubules often of irregular
cross-section depending on “XY” and “Z” data acquisition
resolution. Moreover, such cylinder or tubule like templates
perform poorly at junctions or bifurcations.

Existing methods are mostly semi-automatic, requiring user
interaction for resolving ambiguities and merging fragmented
traces. The growing literature and many recent survey papers
on the topic [25], [11], [33] is evidence that automated neu-
ronal reconstruction is still an open and challenging problem.

C. Contribution

In this work, we propose a fully automatic pipeline for
analysis of neuronal tree morphology: from detection, seman-

tic modeling to digital reconstruction. Components of this
pipeline has been previously published [4], [S], [6]. Starting
with an unsupervised object detection methodology to extract
neuronal fibres from 3D image stacks, we integrate detection,
modeling and connectivity inference into an automated neurite
tracing pipeline. We employ stochastic marked point process
and energy function suitably adapted to detection of tubular
structures. We incorporate high level semantics of branching
arbor patterns as priors in our model to generate a meaningful
and precise description of the neuronal tree morphology. This
enables generation of characteristic geometric and topological
features, such as branching index, branching angles, total neu-
rite length, internodal lengths, branch curvature, tapering rate
etc., for statistical inference on neuronal parameters. Special
priors enable to interpolate the continuity of disjoint, weakly
labeled sections of neuronal branches. The parameter-free fast
marching method verifies the connected minimal paths using
image potential. We order the geodesic curves representing
the branch topologies into a directed minimum spanning tree
(MST) hierarchy. The underlying numerical principles make it
fast, memory efficient and robust. Thus, our method captures
the inherent graphical structure of neuronal arborization. We
compare the performance of our proposed pipeline against
the state of the art on data sets featured in the DIADEM
challenge using multiple standard metrics. Overall, our method
improves accuracy of automated reconstruction and further
minimizes the subjective variability of existing interactive and
semi automatic reconstruction tools. This digitized represen-
tation of both morphology and connectivity information of
neuronal trees from the noisy unstructured microscopy data
can facilitate further analysis and archiving.

The rest of the article is organized as follows: In section
IT we present a brief overview of our reconstruction pipeline.
Section IIT introduces the marked point process methodology
and explains our object detection model. In section IV, we
present our reconstruction method. Section V contains the
experimental results and finally we conclude in section VI.

II. PROPOSED METHOD

Our aim is to capture the positional and connectivity in-
formation of neuronal morphology into an analytic model.
We solve this problem by formulating neuronal branches as
a special configuration of an object process. It offers the
advantage of imposing geometric shape and point interaction
constraints on the set of points describing the spatial distribu-
tion of data. The neuronal structure is described by an optimal
configuration of the marked point process objects fitted to
the tubular branches. The centreline co-ordinates and corre-
sponding scale and orientation information is obtained in an
automatic, unsupervised manner requiring no user interaction.
Finally, a tree traversal of the detected points on the neuron
generates a minimum spanning tree representation.
Refer Fig. 1 for an overview of the reconstruction pipeline. We
detect seed points spaced uniformly on the neurite branches by
a Marked Point Process model (Fig. 1(a)). The automatically
generated seeds, with bifurcation nodes in green, terminals in
blue, and anchor nodes along branches in red, are used to fre-
quently re-initialize the marching front on the speed map. The
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Fig. 1: Reconstruction pipeline. L: The final MPP configuration - bifurcation nodes (green), terminal nodes (blue) and anchor nodes (red)
on branches. M. The speed image for front propagation. R. Reconstructed neuron with branch segments approximated by minimal paths.

Gradient Vector Field (GVF) based speed image (Fig. 1(b))
guides the front propagation to have maximum speed on
the branch centrelines. The resulting minimum spanning tree
is shown in (Fig. 1(c)). The neuron tree reconstruction by
fast marching models the branches by the geodesic curves
representing the medial axes of their topologies. Our algorithm
goes through the following steps:

1. First we detect the neuronal branches by fitting the optimal
MPP object configuration to the neurite centrelines.

2. Now we define an adjacency matrix with all MPP objects
as nodes and edges defined by euclidean distances between
nodes within attractive distances of each other according to
the MPP final configurations. We perform a topological sort
of the automatically generated nodes into a tree-like hierarchy
using Kruskal’s algorithm [18]. Now we use fast marching to
verify the edges of the tree by extracting them as geodesic
minimal paths.

3. We compute a Gradient Vector Field (GVF) based speed
map of the data volume to guide Front Propagation (FP).

4. From a start node, the front propagates on the speed image
until it reaches the end node. A gradient descent on the arrival
time map of the front connecting the start and end nodes
extracts the geodesic path between them in the form of the
medial axis of the branch topology. For the erroneous edges
in our tree, the minimal geodesic path fails to connect the 2
nodes due to the image potential based speed map. We remove
the corresponding end nodes of the detected false edges.

5. We re-initialize our front and repeat Step 4 until all
nodes are exhausted. Thus, our reduced node list gives a
minimum spanning tree (MST)description of the neuronal data
by modeling the neurite branches by minimal geodesic paths.
In the following sections, we explain in further detail the
individual steps involved.

III. DETECTION

In this section, we describe the stochastic framework that
enables a flexible object process to sample special configura-
tions of objects fitted to the voxels of maximum medialness
measure on the image volume. In [2], the Point Process
models were introduced to exploit random fields whose real-
izations are configurations of random points describing spatial
repartition of data. It is particularly useful for addressing
spatial relation and configuration modeling problems for high
dimensional, high resolution data.

A. 3D Marked point process: notations, definitions

Marked point process (MPP) is an augmented point process,
where each point x; existing in a bounded, connected subset
K = [0, Xmax] % [0, Yiax] X [0, Zpax] of V3, the image domain,
is associated with additional parameters (marks) M = [m;] to
define an object @; = (x;,m;). Here, x; € K and m; € M and the
marked point process ¢ is defined on K x M. A countable,
unordered set of points in % is called a configuration. The
configuration space of the objects is given by:

Q=U;_(Q, 1)

where Qg is the empty set, each Q,,n € N is a configuration
containing n objects and ¥, € Q,, % = {®@;,...,®,}. Note, that
n can be arbitrary, and in the following sections of the paper
the elements of configuration y € Q (with an arbitrary number
of elements) will be denoted as {®;}, where i = 1.

The Marked Point Processes are defined by their probabrhty
density w.r.t. the reference Poisson process. Given a real,
bounded function U(7) in Q, the Gibbs distribution g () in

terms of the probability density p(y) = dd%(y) w.r.t. Lebesgue-

Poisson measure A on Q is defined as:

B 27!
p(Y) = gexp[—ﬁU(V)]- )

Here, y represents the configuration of objects, z,8 > 0 and
Zg is a normalizing factor:

Z5 - /7 _ Mexp[-BU(MIaa (. 3)

Eq. 3 shows how these models are defined on huge configura-
tion spaces over unknown number of objects. The principle for
estimating such very high-dimensional integrals is to define a
Markov Chain Monte Carlo (MCMC) simulation converging
to a target distribution. By including a simulated annealing
scheme, the chain converges to the Maximum A Posteriori
(MAP) estimate, which is the configuration maximizing the
target distribution.

Under this view, images are considered as configurations of
a Gibbs field. In such a formulation, if an assumption is
made on the underlying structure, convergence is guaranteed in
theory w.r.t. defined model by searching for the configuration
minimizing the energy, i.e., there exists a Gibbs field such
that its ground states represent regularized solutions of the
problem. Thus, in the Gibbs energy model, the optimum object
configuration § corresponds to the minimum global energy,
where 7y represents the configuration of objects:

7= argmax p(y) = argminU (7). @)

Object extraction in Bayesian inference is formulated as an
inverse problem, solved by energy U(y) optimization in the
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space of model parameters. Energy formulations in Bayesian
inference framework typically involves a likelihood term or
data energy response to fit the model to the data and a
regularization prior to embed expected structural constraints.

U(y) =Ua(y) +Ui(y) + Ue(), (5)

is our adopted energy function where U, represents the data
energy, U; and U, are prior energies. We seek to minimize the
global energy U (7).

B. Energy model for 3D neuronal networks

In this section, we explain the intuition behind the special
energy function we adopt for neurite detection proposed in
[5]. Our aim is to detect and model the neuronal branches
by generating a configuration of objects fitted to the points
of maximum medialness measure on the image volume. We
adopt spheres as objects @; = (x;,7;), Xi € V3, 1i € [Fmin» 'max]
and @;(x;,r;) = (yi : |xi —yi|< ri) where y; are voxels in the
image domain V3. Refer Fig. 2 for illustration of each of the
energy components.

Af%@@y/

Fig. 2: A,B,C - possible neighborhood spatial configurations of
objects. D: High negative data energies indicate ’good” objects. E,F:
uniform spacing between objects (F) is desired over crowding and
overlap (E) in the configurations.
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Fig. 3: Evolution of configurations. Every iteration, at the birth

Death

phase objects are added (grey) to the surviving set (green) from the
previous iterations with centre and radii independently sampled from
image volume and radii range respectively. Objects failing to meet the
neuriteness and interaction constraints are removed (red) in the death
step. Iterations continue until no more new objects can be added.

1) Fit to data: The data energy checks the fit of the
object to the image volume and is based on a tubularity filter
proposed in [31]. Eigen analysis at the scale of object radii
determines the local width and orientation of branch and the
normal plane spanned by the local Hessian eigenvectors V1
and V2. The medialness measure M(@;) is an average of the
gradient response at a scale o proportional to the object radii
averaged by a rotating phasor Vy = cos(0)V; +sin(6)V, along
the circumference of the cut of the spherical object on the
normal plane:

2T
M(a) =15 /9 VI Vool ©)

An adaptive thresholding of the medialness response M, (@;) =
|VI(%1)(x;)| discriminates between “good” and “bad” objects.
Fig. 2D shows the adopted neurite-ness function on 1 slice
of data with the cuts of our spherical objects (red). High
negative energies indicate “good” objects (eg. objects B,C,D)
i.e. spheres situated on the branch centreline and the same
size as the local branch width. “Bad” objects, for example,
on the background (object A) or not centered correctly on
the branch (object E) have low probabilities of survival in
the configuration during the energy minimization scheme. The
data energy response is then defined as follows:

—(M(a),-) —MC((DI‘)), ifM((D,‘) > M. ()
0, otherwise.

Uy(ay) = { @)

2) Connectedness: A pair-wise interaction potential for
objects in each other’s zone of influence imposes continuity
constraints on the configuration of objects modeling neuronal
fibers. In poorly stained, fragmented sections, when the data
energy response is not favorable, this term still ensures survival
of the object in the configuration to ensure continuity of
branches. U is a repulsive potential to penalize overlapping
objects, and —U is an attractive potential to favor objects in
touching distances of each other. Every object is surrounded
by a zone of repulsion where birth of other objects are
discouraged to prevent clustering and overlapping of objects.
Beyond the zone of repulsion is a concentric zone of attraction
where birth of objects are favored to preserve continuity of
structures. The following equation illustrates this prior:

U, ifd <d,
_U7 ifdr S d S da (8)
0, ifd >d,.

Ui(w;, »;) =

Here, d is the Euclidean distance between the centers of the
spheres; d, and d, (d» < d,) are respectively the repulsive
and attractive distances, d, = r; +7rj,d, = 2 d,. By varying
d, and d,, density of spheres along the neuronal branches can
be controlled. Refer Fig. 2E.F to see the effect of connection
prior on the MPP configurations. We see unevenly spaced con-
figuration on the left, considering radiometric properties only.
On the right, we see object at uniform distances considering
interaction constraints in addition to radiometric properties.
3) Spatial configurations: The second prior is a multi-
object interaction potential, incorporating constraints on the
local sub-configurations depending on k(w;) = |@; € v:d, <
d(w;, wj) < d,| number of immediate neighbors of an object.
Fig. 2A,B,C highlights the sub configurations that are rou-
tinely encountered in axonal structures — A: terminal, B:
anchor points along the length of a branch, and C: bifurcation
junction. The spatial configuration prior is designed to favor
bifurcations and terminals with negative potential Ej, to en-
courage survival of such sub-configurations. At the same time,
it discourages isolated objects in the configuration, which are
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Object Parameters [Fmin s Fmasx) derived from domain
OPF [1,10] knowledge and imaging
CCF [1,25] resolution information
Energy Parameters U=5E =2 Prior potentials;

empirically calibrated.
6 and A0 is critical for no.

Simulation Parameters | 9,

B=1, of objects in optimal
AS =0.999, configuration. The
AB =0.998 condition for convergence

is AB<AS <1

TABLE I: Marked point process model parameters.

likely to correspond to cell nuclei or other such background
structures. It not only provides a sophisticated semantic in-
terpretation of neuronal morphology but also generates char-
acteristic descriptors for the extracted neurons as mentioned
earlier in the introduction. We propose the improved prior as
follows:

oo, ifk(@;) =0

—Ey, ifk(w;) =1,3 ©)
oo, ifk(@;) >3

Uc(wi) =

C. Sampling and estimation

The goal of the proposed approach is to sample special con-
figurations of spherical objects and fit them to the microscopy
data stacks to voxels of maximum neuriteness measures.
Spherical objects with a 1-dimensional object space limit the
computational complexity of sampling and estimation. These
configurations are projected onto the image volume and a
similarity between the proposed configuration and the neuronal
data is computed by a Gibbs energy model defined on the
configuration space. The optimum global energy is defined
over the space of union of all possible configurations, con-
sidering an unknown a-priori number of objects. Exhaustive
search of the solution space is impractical. Hence, we choose
an efficient Multiple Birth and Death (MBAD) dynamics
[10] to find the Maximum A Posteriori (MAP) estimation
(Eq.4), greatly reducing computational cost and speeding up
convergence. The discretization of the continuous case and its
convergence conditions are proved in [10]. We optimize the
object configuration in an iterative scheme, where multiple
random objects are proposed and removed independently and
simultaneously in each iteration depending on the relative
energy change due to their introduction. We sample from
the probability distribution ug(y) using a Markov chain of
the discrete-time MBAD dynamics defined on Q and apply a
Simulated Annealing scheme. At every iteration, a transition

is considered from current configuration Y to }/ U }/H where

7// C v and yN is any new configuration. The corresponding
transition probability is given by:

P(y— 7y UY)
i og(w;,7)6 1 (10)
~ @) T 1+ﬁoi (my-) )8 Il (0,7)8’
a),EY\V’ B i Y. co,»ey’ B i Y,

where og(@;,y) = exp(—B(U(y\ @) —U(7))). The conver-
gence properties of the Markov Chain to the global minimum
under a decreasing scheme of parameters § and + are proved
in [10]. The probability of death of an object depends on
both the temperature and its relative energy in the sub-
configuration; whereas, birth of object is independent of both
energy and temperature and is spatially homogeneous. In this
way, the iterative process finds a configuration ¥ minimizing
the global energy Eq. 5.

IV. RECONSTRUCTION

Digital reconstruction of neuronal trees contain position,
shape and connection hierarchy of the neuronal branches. The
position is reflected by the centreline, which along with local
width gives an accurate representation of the branch topology.
A graph theoretic model further augments this description with
the complex connection pattern of branches and generate a
Minimum Spanning Tree (MST) encoding.

In this section, we focus on a tree traversal of the detected MPP
objects. We generate a adjacency matrix with the MPP objects
as nodes of a graph ny,n, ... € N, taking the Euclidean distance
between connected nodal pairs as the edge weight. We have
sorted the nodes according to Euclidean closeness and allowed
objects within attractive distances of each other in the MPP
final configurations to be connected. A MST representation of
the detected set of objects is derived from the adjacency matrix
using Kruskal’s algorithm [18]. Next, the notion of neighbor-
ing nodes is augmented by incorporating image potential on
top of Euclidean distance between the centers of MPP objects.
This consideration of image data in inferring and verifying
the connectivity removes the false positives and is particularly
important at the junctions or densely branched zones. For
this purpose, first, we adopt a gradient vector field based
speed map to guide front propagation, taking into account
the anisotropy of the voxels in the image stack. Second, we
choose the parameter-free fast marching methods to extract the
neuronal fibres as geodesic paths. This framework is presented
in [6].Beginning with the root R, a depth first traversal of
the obtained MST, by computing the minimal geodesic path
between neighboring nodes, gives us the directed MST of the
voxels representing the centreline of the neuronal structure.
The speed map for aiding Front Propagation (FP) in our
algorithm is computed by diffusion of a Gradient Vector
Field (GVF) as proposed by Xu. et al in [40]. It enables
edge-preserving diffusion of gradient information. The GVF
exhibits some characteristic properties in case of tubular
structures — the magnitude of the gradient vector decreases in-
wards away from the boundary and vanishes at the center. For
given image volume /, and an initial vector field F = |VI9|,
where o is the scale of the gaussian, the GVF is defined as
the vector field V(x) that minimizes the energy:
Eor®)= [ [ [ w9V @PHF@PV0-FRP A
Here, voxel vector x = (x,y,z) € V3, the image domain, and u
is a parameter for balancing between the two terms dependent
on noise level in data. We calculate the average outward
flux for every voxel using the divergence theorem [36]. The
divergence at a point is defined as the net outward flux per
unit volume, as the volume about the point shrinks to zero:

D(x)=Nii///wV(x,<).ﬁ,-dS,-.

Here N; is a 26-neighbor of x; and 7; is the unit outward
normal at x; of the unit sphere §; in 3D, centered at x;.

Fast Marching methods (FMM) find numerical approximate
solutions to the boundary value problems of the Eikonal
equation [22]:

(12)

F(X)|VT(x)|= 1. (13)

Here T'(x) is an arrival time map that denotes the time taken
by a front originating from x; and propagating according to
the speed map F(x) to reach voxel x;. We allow the front
to propagate guided by the speed image F(x) until it reaches
the target nodes n; from the node list N. A gradient descent
from target node ny < n; to the start node of marching front
ng, using the 4th order Runge-Kutta time-step operator on


https://www.researchgate.net/publication/11436587_Initialization_noise_singularities_and_scale_in_hight_ridge_traversal_for_tublar_object_centerline_extraction?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/11436587_Initialization_noise_singularities_and_scale_in_hight_ridge_traversal_for_tublar_object_centerline_extraction?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/263351378_Recontructing_Neural_Morphology_from_Microscopiy_Stacks_Using_Fast_Marching?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/29596792_Object_Extraction_Using_a_Stochastic_Birth-and-Death_Dynamics_in_Continuum?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/29596792_Object_Extraction_Using_a_Stochastic_Birth-and-Death_Dynamics_in_Continuum?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/29596792_Object_Extraction_Using_a_Stochastic_Birth-and-Death_Dynamics_in_Continuum?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/29596792_Object_Extraction_Using_a_Stochastic_Birth-and-Death_Dynamics_in_Continuum?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/228057831_On_the_Shortest_Spanning_Subtree_of_a_Graph_and_the_Traveling_Salesman_Problem?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/3671585_Level_set_and_fast_marching_methods_in_image_processing_and_computer_vision?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/44804980_Neuron_Tracing_in_Perspective?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==
https://www.researchgate.net/publication/3193181_Flux_Maximizing_Geometric_Flows?el=1_x_8&enrichId=rgreq-6cc1f98511ddc7f4ff0f01caab66b892-XXX&enrichSource=Y292ZXJQYWdlOzI4OTUzNDc4NTtBUzozMjAwNjg0NDM5MzQ3MjFAMTQ1MzMyMTY3MTk2NQ==

Energy Opt

imization

Data Energy
Total Energy ||

Evolution of configuration

Objects after Birth
Objects after Death

Number of Objects
8
s

200

—

100

100 200 300 400

Iterations

500 600 700 800 0 100 200 300 400

Iterations

500 600 700 800

Fig. 4: Neurite branches detected by spherical objects on Olfactory Projection Fibre 7. Corresponding graphs show the convergence of the

algorithm in term of number of objects at every iteration: in red is a number of added objects after birth and in blue after death. The energy

plots show that at convergence the optimal configuration has a globally

iteration f = % no of iterations n = 780. It took 57 minutes on a Intel

the arrival time map T(x) extracts the path corresponding
to the shortest arrival time between the start node ng < X;
and end node ny < Xy. The resulting minimal path p is
updated to the list of minimal paths p; U p. Next, we make
target node our new start node ng < n;, remove it from node
list N = N —n; and re-initialize the front to extract the next
part of the neuron tree. When the gradient descent fails to
reach the start node, we remove the target/end node as a false
detection. The algorithm terminates when node list N is empty.
In this way, FMM captures accurate minimum spanning tree
representation of neuronal morphology by iteratively adding
minimal paths between nodes [9]. FFM offers several desirable
features such as inherent connectivity and smoothness, which
counteract noise and cross-section irregularities.

V. EXPERIMENTS AND RESULTS

We tested our proposed model on 3D light microscopy
image stacks featured in the DIADEM challenge [7], which
represent some of the most challenging and diverse neuron
morphology to try the computational intelligence of automated
tracing algorithms. From the database, we choose the data
sets representing single neuron image stacks. The task of
separating fibres from multiple sources is better resolved
at the experimental stage as demonstrated by the Brainbow
technique in [19]. The Olfactory Projection Fibre axons are
acquired by 2-channel confocal microscopy and the Cerebellar
Climbing Fibres are acquired by transmitted light brightfield
microscopy. For both types of neurons we have several datasets
representing their natural morphological variation.

In Table. I, we list the parameters of the algorithm and
explain how they are initialized. Our analysis revealed that
only the parameters radius range [rmin,"max] and the birth
intensity 6 are data dependent. The model is sensitive to the
initialization of the birth intensity, which is generally set as
an over estimation of the expected number of objects in the
final configuration. We propose simple rules to automatically
estimate the birth intensity initialization, to free the users from
the burden of tuning them manually for each new data set.
Binary clustering into foreground and background gives an
approximate volume of neurites P. Let f(I) be the number
of objects expected from the radiometric term. This can be

minimum energy. &y = 2400,As5 = 0.999.fraction of objects at every
Core 17 processor, 2.80GHz and 16 GB RAM.

where r,, is the mean radius.

approximated as f(/)

471:r,3,, >
Our unoptimized Matlab in31plementati0n takes on average 57
mins and lhr 33 mins to converge on OPF and CCF data sets
respectively, on a PC running Intel Core i7 processor, 2.80GHz
and 16 GB RAM.

The validation of traces is a topic of much research with

gFN gFP cFN cFP
MPP 0.026+0.005 | 0.0424+0.006 | 0.35+0.17 0.44+0.20
MPP+FEM | 0.026£0.005 | 0.042+0.006 | 0.327+0.12 | 0.282+0.12
TABLE II: NetMets scores for MPP+FFM.
OPI OP4 OP5 OP6 OP7 OP8 overall
[ 2150 1850 1000 1350 1100 1100
No. of objects in 435 | 358 | 204 | 283 | 226 | 223
final configuration
DIADEM Score 0.829 | 0.789 | 0.797 | 0.830 | 0.921 | 0.854 | 0.837£0.043
IISAIIZEDEM Score 0.846 | 0.807 | 0.818 | 0.854 | 0.926 | 0.863 | 0.85240.038
MPP+FEM
TABLE III: DIADEM scores
Avg Manual Tracer[26] | M 0.78+0.1
Stepanyants et. al[8] SA 0.80+£0.1
Wang et. al [37] SA 0.863
Mukerjee et. al[26] A 0.82+0.07
Xiao et. al[39] A 0.77£0.17
MPP A | 0.8371+0.043
MPP+FFM A 0.852+0.038

TABLE IV: DIADEM scores comparison. M-Manual; SA-Semi-

Automatic; A-Automatic.

SNT Neurolucida| 3Dtip APP2 MPP(A)
(SA)[21] | (SA)(16] (A)[20] | (A)[39]
OP1 41 49 48 43 43
OP4 43 61 46 46 39
OP5 9 9 17 6 9
OP6 18 18 23 12 16
TABLE V: Terminals on various data sets using various tracing

tools. SA-Semi-Automatic; A-Automatic.

various metrics being employed [13], [15], [24]. We evaluate
our automatic reconstruction using the standard DIADEM
metric [14] and the newly proposed NetMets metric [23], [24].
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Fig. 5: (a) Gold standard reconstruction (b) MPP reconstruction (c) MPP+FFM reconstruction. The red nodes indicate the erroneous regions.
The FFM based reconstruction further improves the reconstruction from the MPP configurations.
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Fig. 6: MPP configuration

The NetMets software is a general graph comparison tool
with an expressive scoring system for the quantification and
visualization of errors in two biological networks. It scores the
geometric (g) and connectivity (c) false positive (FP) and false
negative (FN) rates gFN, gFP, cFN, cFP. It helps us to quantify
and visualize how the incorporation of an image potential
in inferring connectedness of nodes reduces false positive
rates and improves overall reconstruction. Refer to NetMets
generated graphs (Fig. 5) for visualization of reconstructions
with MPP and MPP+FFM against the manual gold standard
(Fig. 5a). Red node indicates the missed branches. Fig. 5(b)
shows the automatic reconstruction with our proposed marked
point process. Red nodes indicate the false positive nodes.
Figure 5(c) shows reconstruction using fast marching and
marked point process, where we can see false positive nodes
are removed. Figs. 6 and 7 show respectively the detection by
our MPP model and reconstruction by our proposed pipeline
on the Cerebellar Climbing Fibres.

The DIADEM metric gives a combined F-score for the posi-
tion and connection of the reconstructed neuron by comparing
against a manual gold standard reconstruction. The DIADEM
metric is particularly crafted for scoring tree hierarchic neu-
ronal reconstructions and is relaxed in penalizing errors far
from the root node. In Table. IV, is presented the DIADEM
metric scores of various reconstruction tools. The existing
methods are mostly interactive or semi-automatic and incor-
porate user-interaction at some stage of reconstruction. The
Open Snake based method [37] and the method presented by
Stepanyants et. al [8] were judged the two best methods in the
DIADEM challenge. But with the Open Snake method there
is significantly large variance, 0.863 £0.35, due to incorpo-

Fig. 7: Reconstructed MST

Cc A

Fig. 8: Visualization of obtained terminals
(blue) and branching nodes (green) by
various tracing methods.

ration of user interaction for proof-editing and optimization
of initial automatic trace. We observe that our MPP+FFM
framework improves overall accuracy of automated neurite
tracing and minimizes variability with a DIADEM metric score
of 0.852+0.038.

In our experience with various semi-automatic tools for neu-
ronal morphometry analysis, the baseline inter operator vari-
ability limits DIADEM metric score at 0.91. Indeed, this repre-
sents the inherent limitation of validation against gold standard
manual reconstructions due to lack of a singular ground truth.
Table. V lists the different number of terminal nodes obtained
on the same data using different tracing tools. In Fig. 8,
we highlight some of the erroneous interpretation of neuronal
morphology by these softwares. For example, Fig. 8(A) shows
the tracing by Vaa3D has obtained terminal points at points of
high curvature along neuronal branches. Fig. 8(B) shows the
tracing by Neurolucida resolves branch terminals presenting
a blob-like appearance as a bifurcation node with two short
tiny branches. Our model is not sensitive to the complex
variability of branch morphology presented by neurites Fig.
8(C). It resolves blob-like terminals correctly with fitting a
bigger sphere instead of interpreting as a branching point with
two short branches. Similarly, points of branch curvature are
correctly identified as inflection point and not terminals. Our
proposed model thus provides more sophisticated and accurate
semantic interpretation of neuronal morphology compared to
existing tools.

VI. CONCLUSION

We propose a novel marked point process approach to detect
complex neuronal morphology as the global optimum of a well
designed energy function. Unlike existing methods, it models
neuronal trees with sophisticated semantic priors generating
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geometric and morphological features to characterise neuronal
morphology. Our neurite tracing pipeline incorporates image
potential in inferring connectedness of neuronal nodes without
greatly increasing computational cost. We have presented a
fully automatic framework combining marked point process
neurite model and fast marching for digital reconstruction of
3D neuronal morphology. Our proposed method outperforms
the existing automatic tracing algorithms and minimizes the
variability of interactive tracing.
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