The organocatalytic ring-opening polymerization of N-tosyl aziridines by an N-heterocyclic carbene
Camille Bakkali-Hassani, Elisabeth Rieger, Joan Vignolle, Frederik R. Wurm, Stéphane Carlotti, Daniel Taton

To cite this version:

HAL Id: hal-01366486
https://hal.archives-ouvertes.fr/hal-01366486
Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License
ChemComm

COMMUNICATION

The organocatalytic ring-opening polymerization of N-tosyl aziridines by an N-heterocyclic carbene†

Camille Bakkali-Hassani, Elisabeth Rieger, Joan Vignolle, Frederik R. Wurm,* and Daniel Taton*

The ring-opening polymerization of N-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene as an organo-catalyst and an N-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridines) (PAz) and related PAz-based block copolymers.

Owing to their near unlimited structural diversity allowing their steric and electronic properties to be finely tuned, N-heterocyclic carbenes (NHCs) have revolutionized organometallic chemistry as ligands for transition metals in the last two decades.1 NHCs have also gained increasing popularity as true organic catalysts in molecular chemistry.1,2 Polymer synthesis has also greatly benefited from the potential of NHCs, providing a straightforward and metal-free synthetic strategy to a wide range of polymers.3 Cyclic esters (e.g. di-,lactide and lactones) have been by far the most investigated monomers for the NHC-organocatalyzed ring-opening polymerization (OROP).3,4,5 The range of monomers amenable to polymerization by NHC catalysis has also been expanded, not only to the ROP of other heterocycles6 (e.g. oxiranes, cyclic carbonates, carbosiloxanes), but also to the group transfer polymerization of alkyl (meth)acrylates;6 and to some step-growth polymerizations.7 Besides their role as catalysts, a few NHCs can also serve as direct nucleophilic initiators, for chain-growth polymerization reactions, either through ring-opening of heterocyclic monomers,8 such as lactide, N-carboxyanhydrides or lactams, or through 1,4-conjugate addition of some (meth)acrylates.9

In this communication, we demonstrate the first OROP of N-activated aziridines using an NHC, namely, 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene (Me5-Ipr). While aziridines and oxiranes are isoelectronic, the two types of monomers behave very differently in ROP. For instance, the simplest representative of each family, i.e. ethylene oxide and aziridine (or azacyclopropane) is polymerized by an anionic mechanism and a cationic mechanism, respectively. While poly(ethylene oxide) can be prepared by anionic means in a controlled fashion, the cationic ROP of aziridine is accompanied by chain transfer reactions to the polymer, forming hyperbranched poly(ethylene imine) (PEI) with a broad dispersity (D). Interestingly, Toste, Bergman et al. have reported in 2005 that 2-n-alkyl-N-sulfonylaziridines can be subjected to a controlled anionic ROP through monomer activation by N-tosylation.10 Typically, the ROP of the N-sulfonylaziridine is performed at 50 °C in DMF, in the presence of a 1:1 molar ratio of N-alkyl-methanesulfonamide : KHMDS as an initiating system, which affords substituted polyaziridines (PAz) of narrow molar mass distribution. The corresponding linear 2-n-alkyl substituted PEI derivatives can next be obtained upon depolymerization of the N-sulfonyl moieties, under mild conditions.10,11 Ensuing reports by Wurm et al. have resorted to the living anionic ROP pathway to achieve “in-chain” functional PAz incorporating vinyl or acetal moieties, from purposely designed functional N-sulfonyl aziridines.12

As mentioned, this N-sulfonylaziridine ROP method employs a stoichiometric amount of KHMDS rel. to the N-activated amine. Consequently, it also introduces metallic residues in the final PAz compounds. Here, the Me5-Ipr NHC is used in a true catalytic amount (10% mol rel to the amine initiator). Under these conditions, well-defined PAz were obtained (entries 1–4, Table 1 and Fig. S1, ESI†). While 100 eq.

---

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cc04323b

Acknowledgement

Financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement 638177) and from the German Research Foundation (DFG) is gratefully acknowledged. We thank M. Vaudry (University of Strasbourg) for fruitful discussions, as well as S. Alidadi for performing the MALDI-TOF mass spectrometry. C.B.-H. thanks the French Research Ministry for a PhD fellowship.

References

1. a) Me5-Ipr-mediated OROP method employs a facile OROP synthesis to well-defined metal-free PAz via a novel NHC catalytic pathway, as depicted in Scheme 1. We also report the first examples of all PAz-based block copolymers by sequential Me5-Ipr-mediated OROP of two different N-sulfonylaziridines. Both 2-methyl-N-p-toluenesulfonyl aziridine (1) and 2-phenyl-N-p-toluenesulfonyl aziridine (2) were investigated as monomer substrates for the Me5-Ipr-OROP. The polymerization of (1) was first carried out at 50 °C in THF -instead of DMF used in previous work10,12- in the presence of N-hexyl-p-toluenesulfonamide (3) as an initiator and Me5-Ipr as a catalyst (Scheme 1). Under these conditions, well-defined PAz(1) with excellent control over molar masses (up to 20 000 g mol−1) and low dispersities (D < 1.10) were obtained (entries 1–4, Table 1 and Fig. S1, ESI†). While 100 eq.

---

Accepted 5th July 2016

Cite this: Chem. Commun., 2016, 52, 9719–9722

© The Royal Society of Chemistry 2016
of 1 could be quantitatively converted within 24 h, 5 days were needed to reach completion of the OROP of 2, due to the effect of steric hindrance of the 2-substituent on the aziridine ring on monomer reactivity. Yet, PAz(2) exhibiting molar masses increasing with the initial \([2]/[3]_0\) molar ratio (entries 5–7, Table 1) were also achieved in this case. In contrast to PAz(1), however, a small shoulder progressively appeared in the high molar mass region of SEC traces of PAz(2) (Fig. S2 in the ESI†), as the initial \([2]/[3]_0\) was increased, i.e. for higher molar masses targeted.

The discrepancy noted between experimental and theoretical molar masses (Table 1) was attributed to the calibration of SEC with PS standards. Molar masses of PAz(2), as determined using \(^1\)H NMR spectroscopy (5200 and 27 000 g mol\(^{-1}\), entries 5 and 7, Table 1, respectively) indeed closely matched theoretical values. Fig. 1a shows a typical \(^1\)H NMR of a purified PAz(2) (entry 5), with the presence, in particular, of the characteristic signals of the hexyl group from the amine initiator at 0.7–1.3 ppm. The relative integration of these signals with those corresponding to the main chain protons (d) of PAz(2) allowed estimation of the PAz(2) molar mass (Table 1). The agreement between experimental and theoretical molar masses attested to the complete initiation of polymer chains by secondary amine 3. In the case of PAz(1), overlapping of both signals due to aliphatic protons and to the pendant methyl group in the backbone precluded an accurate determination of the molar masses of these compounds (Fig. S7 in the ESI†).

The presence of the N-hexyl-p-toluenesulfonylamino group from 3 in the -position could yet be evidenced by MALDI-ToF MS analysis of low molar mass PAz(1) (entry 1, Table 1). A single population, corresponding to cationized PAz(1), with a peak-to-peak mass increment of 211.3 g mol\(^{-1}\) corresponding to the molar mass of one monomer unit derived from 1, was indeed unambiguously observed, as shown in Fig. 1b and c.

In combination, characterization by SEC, NMR and MALDI-ToF MS is consistent with a controlled OROP of N-tosyl aziridines. This was also supported by the perfectly linear evolution of ln\([[M]/[M]]_0\) vs. time, when monitoring the \(\text{Me}_5\text{-Ipr}-\text{OROP}\) of 2 using real-time \(^1\)H NMR spectroscopy (Fig. S9 and S10, ESI†).

Based on the background literature regarding other examples of NHC-mediated OROP, \(3,3\) either a nucleophilic or a basic mechanism, i.e. through the aziridine or the amine activation by the \(\text{Me}_5\text{-Ipr}\) NHC, respectively (vide infra) could be operative (see Scheme S1 in the ESI†). The former mechanism would involve ring opening of the aziridine by direct attack by \(\text{Me}_5\text{-Ipr}\), forming an imidazolium amide zwitierionic intermediate that would be further displaced by the secondary amine (3). However, given the high basicity of \(\text{Me}_5\text{-Ipr} (pK_a = 24 \text{ in DMSO}^{13})\), in particular compared to that of the sulfonylamino group

Table 1: Polymerization of 2-alkyl-N-p-toluenesulfonyl aziridines 1 and 2 in THF at 50 °C (see Scheme 1)

<table>
<thead>
<tr>
<th>Run</th>
<th>R</th>
<th>([M]/[3]_0)</th>
<th>Time (h)</th>
<th>Conv. (a)</th>
<th>(M_n \text{calcd} (g \text{ mol}^{-1}))</th>
<th>(M_n \text{expd} (g \text{ mol}^{-1}))</th>
<th>(D^\prime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>10/1/0.1</td>
<td>24</td>
<td>100</td>
<td>2100</td>
<td>1880</td>
<td>1.07</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>20/1/0.1</td>
<td>24</td>
<td>100</td>
<td>4200</td>
<td>2500</td>
<td>1.06</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>50/1/0.1</td>
<td>24</td>
<td>100</td>
<td>10 600</td>
<td>6000</td>
<td>1.06</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>100/1/0.1</td>
<td>24</td>
<td>100</td>
<td>21 100</td>
<td>11 700</td>
<td>1.04</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>20/1/0.1</td>
<td>120</td>
<td>97</td>
<td>5300</td>
<td>2600</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>50/1/0.1</td>
<td>120</td>
<td>98</td>
<td>13 400</td>
<td>6250</td>
<td>1.12</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>100/1/0.1</td>
<td>120</td>
<td>99</td>
<td>27 000</td>
<td>10 800</td>
<td>1.15</td>
</tr>
</tbody>
</table>

(a) Determined by \(^1\)H NMR. (b) Theoretical molar masses: \(M_n \text{calcd} = ([M]/[3]) \times M_0 \times \text{conv.} (M_0 = \text{molar mass of one monomer unit}). (c) Determined by size exclusion chromatography in THF (PS calibration).
ChemComm Communication

In summary, we describe for the first time the “controlled/living” organocatalyzed ring-opening polymerization (OROP) of N-activated aziridines by an N-heterocyclic carbene (NHC), namely, 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene. Reactions can be conducted in THF at 50 °C in the presence of an N-activated secondary amine as an initiator to mimic the growing chains. This provides a straightforward access to structurally well-defined and metal-free polyaziridines (PAz) that can serve as precursors of linear 2-n-alkyl-substituted poly(ethylene imine)s after removal of the N-tosyl groups. This method can also be applied to achieve well-defined all PAz-based block copolymers by sequential OROP utilizing a carbene catalysis. Overall, this work further expands the monomer substrate diversity in NHC-mediated polymerization reactions.

The authors are grateful to the French Ministry of Education and Research for financial support of CBH and to the European Commission through project SUSPOL-EJD 642671.

Notes and references


