ON UNBOUNDED SOLUTIONS OF ERGODIC PROBLEMS IN R^m FOR VISCOUS HAMILTON-JACOBI EQUATIONS

Abstract : In this article we study ergodic problems in the whole space R m for viscous Hamilton-Jacobi Equations in the case of locally Lips-chitz continuous and coercive right-hand sides. We prove in particular the existence of a critical value λ * for which (i) the ergodic problem has solutions for all λ ≤ λ * , (ii) bounded from below solutions exist and are associated to λ * , (iii) such solutions are unique (up to an additive constant). We obtain these properties without additional assumptions in the superquadratic case, while, in the subquadratic one, we assume the right-hand side to behave like a power. These results are slight generalizations of analogous results by N. Ichihara but they are proved in the present paper by partial differential equations methods, contrarily to N. Ichihara who is using a combination of pde technics with probabilistic arguments.
Type de document :
Article dans une revue
Communications in Partial Differential Equations, Taylor & Francis, 2016, 41 (12), pp.1985-2003. 〈http://www.tandfonline.com/toc/lpde20/current〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01366450
Contributeur : Guy Barles <>
Soumis le : mercredi 14 septembre 2016 - 15:54:50
Dernière modification le : jeudi 7 février 2019 - 17:15:41

Fichiers

EP-RN-2016-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01366450, version 1
  • ARXIV : 1609.04596

Citation

Guy Barles, Joao Meireles. ON UNBOUNDED SOLUTIONS OF ERGODIC PROBLEMS IN R^m FOR VISCOUS HAMILTON-JACOBI EQUATIONS. Communications in Partial Differential Equations, Taylor & Francis, 2016, 41 (12), pp.1985-2003. 〈http://www.tandfonline.com/toc/lpde20/current〉. 〈hal-01366450〉

Partager

Métriques

Consultations de la notice

192

Téléchargements de fichiers

66