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Abstract
Image registration is part of a large variety of medical applications including 
diagnosis, monitoring disease progression and/or treatment effectiveness and, 
more recently, therapy guidance. Such applications usually involve several 
imaging modalities such as ultrasound, computed tomography, positron emission 
tomography, x-ray or magnetic resonance imaging, either separately or combined.

In the current work, we propose a non-rigid multi-modal registration 
method (namely EVolution: an edge-based variational method for non-rigid 
multi-modal image registration) that aims at maximizing edge alignment 
between the images being registered. The proposed algorithm requires only 
contrasts between physiological tissues, preferably present in both image 
modalities, and assumes deformable/elastic tissues. Given both is shown to 
be well suitable for non-rigid co-registration across different image types/
contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved 
using a variational scheme that provides a fast algorithm with a low number 
of control parameters. Results obtained on an annotated CT data set were 
comparable to the ones provided by state-of-the-art multi-modal image 
registration algorithms, for all tested experimental conditions (image pre-
�ltering, image intensity variation, noise perturbation). Moreover, we 
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demonstrate that, compared to existing approaches, our method possesses 
increased robustness to transient structures (i.e. that are only present in some 
of the images).

Keywords: non-rigid registration, multi-modal registration, variational 
method

(Some �gures�may appear in colour only in the online journal)

1. Introduction

Image registration is the process of aligning two or more images of the same scene acquired 
at different time instants, using different sensors and/or from a different point-of-view. 
Although initially proposed in the �eld of digital photography and video sequence process-
ing, as medical imaging technologies progressed, it has become an increasingly important 
pre-processing step for medical image analysis. Currently, image registration is part of a large 
variety of medical applications including diagnosis, monitoring disease progression and/or 
treatment effectiveness and, more recently, therapy guidance (Mani and Arivazhagan 2013). 
Such applications usually involve several imaging modalities such as ultrasound (US), com-
puted tomography (CT), positron emission tomography (PET), x-ray or magnetic resonance 
imaging (MRI), either separately or combined. Whether one or more imaging modalities are 
employed, image registration algorithms can be divided in two categories: mono-modal and 
respectively multi-modal. A variety of each has already been proposed in the medical image 
processing literature (Hill et�al 2001). Mono-modal registration algorithms typically rely on 
the assumption that an anatomical structure is present in all images included in the registration 
process and also that the structures preserve, to a certain extent, their gray-level intensities. 
Such algorithms are well suited, for example, for tumor growth monitoring and intervention 
veri�cation (Maintz and Viergever 1998). Multi-modal algorithms relax the gray-level inten-
sity conservation constraint. Moreover, a certain variety do not even require a structure to be 
present in all images. Cross-modality registration algorithms are more suitable for diagnostic 
purposes, since different imaging modalities usually provide complementary information. For 
example, the excellent anatomical information provided by an MRI image could be comple-
mented by the physiological information present in a PET scan, each modality having, in 
general, more vast capabilities than the other in terms of the speci�ed provided information 
(Mani and Arivazhagan 2013). Compared to mono-modal algorithms, multi-modal methods 
are usually more complex and require additional computational resources.

A particular variety of registration algorithms are the so-called variational methods which 
aim at minimizing a cost function in order to �nd the transformation between the registered 
images (Weickert et� al 2003). Since rigid/af�ne transformations have a limited (although 
important) purpose in medical image registration, the focus in this paper will be on deform-
able transformations. While different in nature, all variational methods usually employ cost 
functions that include two components: a data �delity term and respectively a regularization 
term. The data �delity term measures the similarity between the images undergoing the regis-
tration process, while the regularization term imposes constraints on the estimated deforma-
tion, since the minimization of the data �delity term alone is usually an ill-posed problem. 
Variational methods are a particularly attractive solution for medical image registration since 
they require a low number of input/control parameters and typically involve fast numerical 
schemes (Ries et�al 2010, Denis de Senneville et�al 2015). Whether they are able to cope with 
images acquired through different modalities depends mostly on the similarity measure used 
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by the data �delity term. While for mono-modal registration algorithms the sum of squared 
differences (SSD) applied directly on the images might suf�ce (Horn and Schunck 1981, 
Denis de Senneville et�al 2011), such a measure is highly unsuitable for registering across 
modalities. Modality independent similarity measures are thus necessary.

Previous studies have addressed the cross-modality registration problem by pre-processing 
the input images into modality-independent scalar representations of themselves. Once pre-
processed, the SSD was used as a similarity metric between the images under the new repre-
sentation. Examples of modality independent scalar representations include the local phase, 
local entropy or gradient orientation (Mellor and Brady 2005, Haber and Modersitzki 2006, 
Wachinger and Navab 2012). While indeed showing a good performance in both registration 
quality and computational demands, these methods are hampered by the fact that for more 
challenging multi-modal registration tasks, the features present in the images under the new 
representation might not be discriminative enough.

Another broad category of multi-modal registration algorithms makes use of the mutual 
information (MI) (directly or variations) as an image similarity measure. Initially proposed 
independently by Viola and Wells (Viola and Wells 1997) and respectively by Maes et� al 
(1997), mutual information-based multi-modal registration algorithms were met with great 
interest by the medical image registration community, triggering a long series of studies show-
casing the great potential of such approaches (Pluim et�al 2003). However, MI is inherently a 
global measure, making its local estimation a rather challenging task. For this reason, while 
having excellent performance for multi-modal rigid/af�ne realignment tasks, it becomes more 
dif�cult to apply when estimating local deformations. In addition, optimizing the mutual 
information between two or more images is computationally more complex and slow com-
pared to an SSD-based similarity measure.

Recently, a novel cross-modality registration algorithm has been proposed by Heinrich 
et�al based on so-called modality independent neighborhood descriptors (MIND) (Heinrich 
et�al 2012). The method transforms the input images into a vectorial representation such that 
a descriptor is associated to each voxel, re�ecting its relationship to the surrounding voxels. 
The descriptors are constructed based on the notion of self-similarity as initially proposed by 
Buades et al in the design of their non-local �ltering method (Buades et�al 2005). This results 
in a registration algorithm that is sensitive to structural information rather than intensity. For 
the test cases considered in the original paper, the MIND algorithm has shown increased 
performance over several other popular multi-modal registration methods. Moreover, since 
the similarity criterion uses the SSD to measure the distance between the descriptor images, 
it allows for fast optimization numerical schemes to be employed. However, the method is 
prone to the same limitations as the non-local means �lter (Buades et�al 2005): it is sensitive 
to several parameters such as the local estimate of the noise variance, the patch size around the 
central voxel used to compute each element of the descriptors, the number of voxels included 
in the computation of the descriptors, and it is affected by low contrasts. In addition, if the 
structural information is different from one image to the other, for example, if an area that is 
smooth in one image and textured in the other, then the descriptors cannot be compared reli-
ably. More precisely, the method hypothesizes that each anatomical structure in one image has 
its counterpart in the other. This may not be the case in several situations, including transient 
structures occurring in the �eld-of-view as a result of peristaltic activity (in case the analy-
sis is conducted in the abdomen), the appearance/disappearance of pathologies within the 
analyzed organ and/or parts of the region-of-interest or its surroundings entering/exiting the 
�eld-of-view.

A different approach to cross-contrast registration are algorithms that maximize the edge 
alignment between the registered images. Various metrics that quantify the extent to which 
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the edges are aligned have already been proposed in the literature. The methods were dedi-
cated to registering either video sequences acquired with different sensors or medical images 
acquired through different modalities (Pluim et�al 2000, Sun et�al 2004, Sutour et�al 2015). 
In this approach, the underlaying assumption that needs to be full�lled is that the boundaries 
and details of physiologic structures show image contrast to the surrounding tissue with both 
image modalities. However, the studies have only gone so far as to estimate rigid/af�ne or 
coarsely deformable transformations (using splines). In the current paper, by using the prin-
ciple behind the edge alignment methods, we propose EVolution: an edge-based Variational 
algorithm for multi-modal image registration. Our contribution is four-fold:

 � By construction, the algorithm is designed to increase the robustness of the registration 
process against structural information variations from one image to the other.

 � A patch-based approach is designed to leverage limitations arising from the above men-
tioned scalar representation, especially for highly challenging multi-modal scans.

 � Since a variational approach is employed, the method requires a reduced number of input 
parameters that need to be calibrated. Moreover, the cost function we propose also renders 
itself compatible with fast numerical schemes, while providing a dense voxel-by-voxel 
deformation �eld.

 � The bene�t of using multi-CPU and GPU (graphics processing unit) architectures is 
evaluated.

2. Method description

2.1. Proposed EVolution method

The equations�provided in the current paper refer to the 3D implementation of the algorithm. 
An image J is registered to the reference position given by I using a variational image registra-
tion method as follows.

2.1.1. Proposed data �delity term.  Let I
�
�  and J

�
�  be the gradient of the reference image I and 

the image to register J, respectively. We de�ned the following patch-based criterion (a patch 
consists in a cubic subset of the image domain, denoted by � , centered on one single voxel):
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T r r r

T r r r
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 (1)

with T u v w, ,( )�  the spatial transformation from I to J, u, v and w the displacement vector 
components, and r�  the spatial location.

The expression C(T) can also be rewritten under the following form:
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where w rT( )�  and rT( )���  are calculated from the magnitude M and the orientation � of the 
image gradient (computed using a Sobel �lter) at location r�  as follows:

( ) ( ( )) ( )
( ) ( ( )) ( )

� � �

� � �� � �
�

� � �
w r M T r M r

r T r r
T I J
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Intuitively, the term rcos T( ( ))���  in equation�(2) favors the transformations that align the 
edges, regardless any possible contrast reversals: due to the absolute value of the cosine, 
both parallel and anti-parallel edges are considered to coincide irrespective of the gradient 
direction. In addition, when dealing with multi-modal images, some discontinuities may only 
appear in one of the two modalities, so the weight w rT( )�  favors strong edges that occur in 
both modalities. The denominator of equation�(2) performs a weighted average of the score 
obtained for each edge.

Since, for image registration using variational methods, a minimization of the functional is 
mandatory, we de�ned the following patch-based similarity criterion D(T ):

D T e C T( ) ( )� � (4)

D(T ), which is computed individually at each spatial location r� , is a strictly positive num-
ber, which decreases as long as the alignment of I and J is improved within the local neigh-
borhood � . In this manner, D(T ) can be employed as a data �delity term for the proposed 
variational registration method.

2.1.2. Optimized variational functional. We propose minimizing the energy E given by:

�
�

� � � � � � �
�

E T D T u v w r
2

d2
2

2
2

2
2( ) ( ) (� � � � � � )

� � � �
 (5)

where �  is the image coordinates domain, � a weighting factors designed to link both the data 
�delity term D(T ) and the motion �eld regularity (right part of equation�(5)).

At this point, it is important to underline that two user-de�ned parameters may impact the 
performance of the registration process:

 � The parameter � which infers the regularity of the estimated motion �eld.
 � The patch size p (noted p) which may infer the robustness against different structural 

information from the image to register to the reference (for example, on an area that 
is smooth on one image and textured on the other). Simultaneously, p also infers the 
regularity of the estimated motion �eld.

Throughout the rest of the manuscript, a special attention will be paid to the impact of these 
two parameters on the overall registration results.

2.1.3. Implemented optimization scheme. By applying the Euler�Lagrange equations�on a 
voxel-by-voxel basis, one can derive the following system of equations�for each r� � � :
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where �  denotes the Laplacian operator.
From here, we have a set of 3 � �  non-linear equations�with common unknowns u, v and w.  

The latter can be found iteratively through the following explicit �xed-point scheme:
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where k  �  1 denotes the new iteration and T u v w, ,k k k k( )� . Each operator .( )�  was numer-
ically computed using a 3 3 3� �  Laplacian kernel (Gonzalez and Woods 2006). For each 
voxel, the partial derivatives of the data �delity term along each displacement component 
were computed using the following �nite difference schemes:
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where Sx
� , Sy

�  and Sz
�  denote the forward shifted image transformations by one voxel along 

x-, y- and z- directions, respectively. Sx
� , Sy

�  and Sz
�  being the corresponding backward shifted 

image transformations. For example, T Sk x
��  reads as: �a translation of x y z x y z, , 1, ,( ) � ( )�  

followed by the spatial transformation Tk�.
It was considered that the numerical scheme in equation�(7) converged when the aver-

age variation of the motion magnitude from one iteration to the next was smaller than 10� 3 
voxels.

2.1.4. Coarse-to-�ne scheme.  A coarse-to-�ne strategy was carried out, which iterated the 
registration algorithm from a downsampled image (4-, 8- and 16-fold downsampled images 
were employed for nominal original image dimensions of 128, 256 and 512 voxels, respec-
tively), step by step to the original image resolution. To achieve a global motion regularisation, 
the estimate arising from lowest resolution levels (noted T u v w, ,g k

g
k
g

k
g( )� ) was added in the 

regularisation term (i.e. in the right part of equation�(5)). The system of equation�(7) was thus 
simply rewritten as follows:
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(9)

2.2. Experimental setup

The proposed EVolution method was evaluated on three data sets:

 (i) one set of thorax inhale and exhale CT-scans, for which gold-standard landmark displace-
ments are available,
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 (ii) one set of MR-scans capturing the expansion of the bladder in a healthy volunteer, for 
which a silver-standard motion is constructed,

 (iii) one set of paired head CT/MR-scans, for which gold-standard spatial transformations are 
available.

2.2.1. Thorax inhale and exhale CT-scans. We used a set of ten CT-scan pairs, freely provided 
by the DIR-Lab4 at the University of Texas (Castillo et�al 2009, Castillo et�al 2010a, 2010b). 
Each scan pair was acquired on the thorax and upper abdomen of patients treated for esopha-
gian cancer, between inhale and exhale phase of the breathing cycle. For each CT-scan, 300 
anatomical landmarks have been annotated by experts (inter-observer errors below 1 mm).

Four reliability tests were conducted in order to evaluate the registration performance 
under various experimental conditions:

Reliability test #1. Registration was directly applied between each pair of the original CT-
scans. Major challenges arise from possible contrast variations between tissue and air induced 
by lung compression, motion discontinuities at the lung/rib cage interface, as well as large 
deformations of small features such as lung vessels, airways (Castillo et�al 2010a).

Reliability test #2. Registration was applied on the original data set, each image being previ-
ously �ltered using Gaussian �lter (kernel 3 3 3� � , 0.5� � ). In this manner, the impact of 
�ltered anatomical structures on the overall registration accuracy is assessed.

Reliability test #3. A prior intensity perturbation was applied between I and J in order to 
challenge the registration against intensity contrast variation. For this purpose, the image to 
register J was replaced by its negative contrast in the registration process, the reference image 
remaining identical to the original one.

Reliability test #4. The robustness against noise was investigated by adding a Gaussian white 
noise ( 10%� �  of the maximum image intensity) on both I and J, prior to the registration 
process.

2.2.2. Bladder �lling MR-scans.  A series of 3D MR-images were acquired on a healthy 
volunteer, capturing the expansion of the urinary bladder over time. In order to sample the 
shape and size of the bladder from void to partially full in a relatively short amount of time, 
a volunteer preparation protocol was devised. The volunteer was instructed not to consume 
any liquids 6 h prior to the MR-acquisition session such that, at the time of the study, they 
would be mildly dehydrated. Before the start of the experiment, the volunteer was allowed to 
drink a self-chosen quantity of water (�350 ml). It was speculated that the mild dehydration 
would stimulate renal activity, leading to a rapid expansion of the bladder. Approximately 
every 7 min, a pair of 3D T1-T2-weighted images was acquired on the lower abdomen of the 
volunteer, over a total duration of  �40 min. The MR-acquisition sequences were optimized 
to mitigate the fact that each anatomical structure in the T1-weighted images has its counter-
part in the T2-weighted ones. The T1-weighted sequence employed the following parameters: 
TE  �  2 ms, TR  �  4.3 ms, image matrix 192 192 100� � , 10�  �ip angle, with an isotropic 
voxel size of 2 2 2mm3�� � . For the T2-weighted acquisition, the employed parameters were 
as follows: TE  �  130 ms, TR  �  1000 ms, reconstructed image size 512 512 133� � , 90�  
�ip angle, with a voxel size of 0.5 0.5 1.5 mm3�� � . Out of the entire data set, two pairs of 

4 www.dir-lab.com
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T1-T2-weighted images (�30 min apart) were selected for the role of reference and respec-
tively image to register. A silver-standard motion �eld was estimated using a common contrast 
for both the reference and the image to register (the T1-weighted images were employed) 
using the following mono-modal optical �ow (OF) functional:

� �� � � � � � � � � �
�

E T I u I v I w I u v w rdx y z tOF 2
2

2
2

2
2( ) (� � � � � � )

� � � �
 (10)

where Ix,y,z,t are the spatio-temporal partial derivatives of the image voxel intensity. A com-
plete description of the associated non-rigid registration framework can be found in Zachiu 
et�al (2015). The obtained OF-motion �eld was taken as a reference for the evaluation of the 
proposed EVolution method applied on cross-contrast images (the T1- and respectively the 
T2-weighted images were employed for the reference and the image to register).

2.2.3. Paired head CT/MR-scans. We used a set of two CT/MR-scan pairs, freely pro-
vided by the retrospective image registration evaluation project (RIRE)5 at the National 
Institutes of Health, Vanderbilt University (West et�al 1996, 1997). For this purpose, three 
3D images of the head of a common volunteer were employed: a CT-scan (voxel size of 
0.65 0.65 4mm3�� � , image matrix 512 512 29� � ) and a pair of T1-T2-weighted MR 
images (voxel size of 1.25 1.25 4 mm3�� � , image matrix 256 256 26� � ). The performance 
of the proposed EVolution method for CT/T1-MRI and CT/T2-MRI registrations was assessed 
using goldstandard spatial transforms de�ned using a prospective, marker-based technique, as 
described in Fitzpatrick et�al (1998).

2.2.4. Implementation of the MIND non-rigid registration algorithm.  The identical exper-
imental setup was also applied on the MIND non-rigid registration method (Heinrich et�al 
2012). We recall that the latter is a modality invariant local image descriptor based on the 
notion of self-similarity derived from the NL-means algorithm. A descriptor, based on the 
local similarities, is associated to each voxel r�  of the image I:

I r
n

D I r r

V I r
MIND , ,

1
exp

, ,

,
p( )
( )

( )
�

� �
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�

�
�

�

�
��
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� �

�
 (11)

where n is a normalization constant, � � �  de�nes a search region in which the patches are 
compared, Dp is the voxel-wise square distance between patches of size p, and V I r,( )�  is an esti-
mation of the local variance in order to account for noise perturbations. The MIND descriptor 
associates a vector of size �  to each pixel of the image I. The descriptors of each modality can 
subsequently be compared in order to provide the following voxel-wise data �delity metric:

S T I r J r
1

MIND , , MIND , ,( ) ( ) ( )� �� � ��
�

�
� ��

 (12)

This data-�delity term is then combined to a L2 regularization term, similarly to equa-
tion�(5). The implemented non-rigid registration framework was identical to the one described 
in Heinrich et�al (2012). However, in order to make a proper comparison with the estimates 
provided by our proposed EVolution algorithm, we employed the same coarse-to-�ne scheme 
and convergence criterion as described in section�2.1.4. Note that, for the purpose of this study, 

1;1 3 3[ ] �� � � �  and p 3 3 3� � �  were found to be a good compromise between algo-
rithm computational performance and quality of the motion estimates (the interested reader 
is referred to Heinrich et�al (2012) for a complete analysis of the two parameters �  and p).

5 www.insight-journal.org/rire/
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2.2.5. Assessment of the motion estimation process. Concerning the data set of thorax CT-
scans, the performance were assessed using the target registration error (TRE) of anatomical 
landmarks as follows (Maurer et�al 1997):

x u r x y v r y z w r zTRE I I J I I J I I J
2 2 2( ( ) ) ( ( ) ) ( ( ) )� � �� � � � � � � � � (13)

where r x y z, ,I I I I( )� �  and r x y z, ,J J J J( )� �  denote the anatomical landmark coordinates in I and 
J, respectively.

Concerning the data set of bladder MR-scans and the paired head CT/MR-scans, the qual-
ity of the estimated motion was assessed using the voxel-wise error in �ow endpoint (FEP) 
computed as follows (Baker et�al 2011):

u u v v w wFEP ref
2

ref
2

ref
2( ) ( ) ( )� � � � � � (14)

u v w, ,ref ref ref( ) being the reference OF-motion estimate.

2.3. Hardware and implementation

Our test platform was an Intel 2.5 GHz i7 workstation (8 cores) with 32 GB of RAM. The 
GPU was a Quadro K2100M card with 2 GB of dynamic random-access memory (NVIDIA, 
Santa Clara, CA, USA). Both CPU and GPU implementations of the proposed EVolution 
algorithm were realized and tested. The CPU implementation was performed in C�� and par-
allelized through multi-threading. The GPU implementation was realized using the compute 
uni�ed device architecture (CUDA) (NVIDIA 2008).

3. Results

3.1. Thorax inhale and exhale CT-scans

A visualization of a registration result can be seen in �gure�1 (empirically established values 
of 0.5� �  and p  �  11 were employed). In this visualization, the source image is shown in 
magenta while the reference image is shown in green. Where the images align a gray scale 
image emerges. In the unregistered case on the top, magenta and green areas can clearly 
be seen indicating that the morphology is not aligned. In the registered case to the bottom, 
these colored areas have almost disappeared indicating that the images have been successfully 
registered.

Figure 2 shows cumulative distributions of the target registration error (TRE) over 3000 
landmarks (300 landmarks for 10 CT-scans) obtained before and after registration, during 
the �reliability test #2� (common default values of 0.5� �  and p  �  11 were again employed 
for the EVolution method, and 0.1� �  was used for the MIND algorithm, as advised by 
Heinrich et�al (2012)). Staircasing effects are observable on the curve obtained before regis-
tration, due to the voxel precision of the expert landmark positioning. However this was not 
the case for the curves associated to the MIND and the proposed EVolution methods, due to 
the real number precision of the motion estimates. Only a marginal difference can be observed 
between the MIND and the proposed EVolution methods for all tested experimental condi-
tions. This tendency is con�rmed for all tested experimental conditions, as shown in table�1. 
For both algorithms, no negative impact was observed when the image to register was replaced 
by its corresponding negative contrast image (�reliability test #3�). It is also noticeable that 
both algorithms performed better on pre-�ltered images (�reliability test #4�). For comparison 
purposes, table�2 provides several �ndings reported in Heinrich et�al (2012) using various 
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Transversal (Before registration)

(a)

Sagittal (Before registration)

(b)

Coronal (Before registration)

(c)

Transversal (After registration)

(d)

Sagittal (After registration)

(e)

Coronal (After registration)

(f )

Figure 1.  Example of the registration of a thorax CT-scan (CT-scan #5) using the 
proposed EVolution method. Top: before registration and bottom: after registration 
using the proposed EVolution method. The target image is displayed in green and the 
source image in magenta (complementary colour).
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Figure 2.  Registration of 10 cases of CT-scans. The plot shows the cumulative 
distribution of target registration error.
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existing registration methods and the identical set of CT-scans (the interested reader is also 
referred to Heinrich et�al (2012) for a complete description of the associated non-rigid regis-
tration framework employed to generate the results). It can be observed that the TRE obtained 
using our implementation of the MIND algorithm are on average almost identical to the ones 
reported in the original paper (2.18 mm for our implementation against 2.14 mm for the origi-
nal). The standard deviation of the TRE was even marginally improved using our implementa-
tion (3.45 mm against 3.71 mm). We believe that this is due to the fact that our convergence 
criterion, which had to be similar to the one employed for the proposed EVolution method (see 
section�2.1.3), is more severe in our implementation.

Figure 3 analyzes the sensitivity to parameter � of the MIND algorithm and respectively 
the proposed EVolution method. It is important to indicate that, for 0.1� � , high instabilities 
of the numerical schemes were observed for both the MIND and the EVolution approaches. 
It can be observed that the performance of the MIND algorithm deteriorates as � increases. 

0.1� �  was thus found the optimal calibration for the MIND algorithm, which matches the 

Table 1.  Target registration error (in millimeters) obtained over the 10 cases of thorax 
CT-scans for all tested experimental conditions (reliability tests #1�4).

Reliability test

Target registration error (mm)

MIND EVolution

Original data �2.33 3.54 �2.07 3.23
(Reliability test #1) (0.81, 1.18, 1.91) (0.78, 1.17, 1.85)

Filtered data �2.18 3.45 �1.96 2.99
(Reliability test #2) (0.78, 1.14, 1.77) (0.78, 1.16, 1.80)

Cross-contrast �2.33 3.55 �2.08 3.24
(Reliability test #3) (0.81, 1.18, 1.91) (0.78, 1.18, 1.85)

Noisy data �2.33 3.55 �2.01 3.14
(Reliability test #4) (0.81, 1.18, 1.91) (0.77, 1.16, 1.82)

Note: The �rst line of each cell reports the mean  �  standard deviation of the TRE, and the second 
line provides the �rst, second and third quantiles (0.25, 0.5, 0.75).

Table 2.  Summary of several �ndings reported in the litterature using the employed set 
of 10 CT-scans.

Registration method
Target registration 
error (mm)

Before �8.46 6.58
(3.11, 6.97, 12.55)

Sum of squared differences (Pluim et�al 2003) �2.73 3.72
(0.89, 1.44, 2.85)

SSD of entropy images (Pluim et�al 2003) �2.86 4.91
(0.86, 1.33, 2.33)

Normalised mutual information (Pluim et�al 2003) �2.97 4.22
(0.91, 1.42, 2.67)

Conditional mutual information (Loeckx et�al 2010) �3.06 4.10
(1.00, 1.59, 2.85)

MIND (Heinrich et�al 2012) �2.14 3.71
(0.77, 1.16, 1.79)
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�ndings reported in Heinrich et� al (2012). 0.1� �  was thus employed as a default value 
throughout the manuscript for the MIND algorithm. Using the EVolution method, the TRE, as 
a function of �, exhibits a �at zone: a range of values for � allowing an accurate registration 
could thus be determined. This justi�es our choice to set a value of 0.5 as a default parameter 
for � for the proposed EVolution algorithm in the scope of this study.

Figure 4 analyzes the impact of the patch size on the performance of the proposed approach. 
The TRE was calculated over the 10 cases of the CT-scan data set (300 expert landmarks per 
case). The mean and standard deviation of the TRE can thus be directly compared to the values 
reported in tables�1 and 2. It can be observed that the performance of the EVolution method 
could be further improved for all tested experiment conditions by simply reducing the patch 
size. It is also important to indicate that a patch restrained to the dimension of one voxel 
resulted in high instabilities in the employed numerical scheme.
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Figure 3.  Example (CT-scan #5) of the sensitivity to the � parameter of the MIND and 
the EVolution algorithms. We recall that the size of the patch for the EVolution method 
was �xed to cover a dimension of � �11 11 11 voxels.
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Figure 4.  Analysis of the impact of the patch size on the performance of the EVolution 
method. We recall that the regularization parameter � was here �xed to a value of 0.5.
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3.2. Bladder �lling MR-scans

Figure 5 illustrates the �rst step of the experimental protocol designed to assess the pro-
posed EVolution algorithm on the bladder �lling MR-data set: a sliver-standard motion is 
constructed using an optical �ow (OF) algorithm (equation (10)) applied on the T1-weighted 
data for both the reference and the image to register. The inserts in �gures�5(d)�(f) show a 

(a) (b) (c)

(d) (e) (f )

(g) (h) (i )

Figure 5.  Construction of a sliver-standard motion for the cross-contrast MR-data set: 
an OF-based algorithm was applied on the T1-weighted data for both the reference and 
the image to register. Manually de�ned ROI encompassing the bladder and the thorax 
are illustrated using red and green dashed lines in order to improve the visual inspection 
of the quality of the OF registration. The inserts in (d)�(f) depict the estimated OF-
motion �eld vectors within the bladder.
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Figure 6.  Cross-contrast registration of the T2-weighted bladder image (the reference 
image being the T1-weighted image displayed in �gures�5(a)�(c)). The coronal image 
is displayed before registration (left column), using the EVolution method (middle 
column, � � 0.5, patch size � � �11 11 11 voxels) and using the MIND algorithm 
(right column, � � 0.1). (a)�(c) Display the anatomical images. Manually de�ned ROI 
encompassing the bladder (arrow (1)) and the thorax outline (arrow (2)) are shown 
using red and green dashed lines in order to improve the visual inspection of the quality 
of the cross-contrast registration. (d)�(f) Display the corresponding voxel-wise FEP 
maps.
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Figure 7.  Impact of the � parameter on the performance of the proposed EVolution (a) 
and the MIND (b) algorithms for the bladder �lling MR-scans.
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spatially regular motion �eld. Moreover, a good correspondence has been found between the 
bladder on the registered volumetric image of �gures�5(g)�(i) and the region of interest manu-
ally de�ned on the reference data.

A visualization of cross-contrast registration results can be seen in �gure�6. Default cali-
bration parameters were employed for both the MIND and the proposed EVolution methods.

This visualization shows a close correspondence of the contour of the co-registered bladder 
with the manually de�ned bladder boundary when the proposed algorithm is employed (see 
�gures�6(a)�(c)). The averaged FEP in the bladder decreased from 6.33 mm before registration 
to 3.12 mm and 4.34 mm using the proposed EVolution and the MIND algorithm, respectively 
(see �gures�6(d)�(f)).

Figure 7 shows the impact of the parameter � on the registration within the bladder (blue 
curve) as well as the complete image �eld-of-view (green curve), using the EVolution method 
(�gure 7(a)) and the MIND algorithm (�gure 7(b)). It can be observed that the behavior of 
both algorithms in the bladder was similar than the one reported in �gure�3. Using the MIND 
algorithm, the default value of 0.1� �  optimized locally the results in the bladder but also 
provided the worst global performance within the complete image �eld-of-view. Moreover, 
while high � values improved the accuracy on the complete image �eld-of-view (wherein the 
high motion smoothness then coped nicely with the small global motion of the abdomen), 
this also had an opposite impact in the bladder (wherein the mean FRE necessarily converged 
toward the one obtained before registration). On the other hand, using the proposed EVolution 
method, a range of values could be found which optimized results in both the complete �eld-
of-view as well as locally in the bladder (see arrows (1) and (2) in �gure�6(b) and corre-
sponding locations in the error map of �gure�6(e)).

Figure 8 shows the impact of the patch size on the performance of the proposed EVolution 
method. The behavior of these two curves match closely the behavior of the green and the blue 
curves displayed in �gure�7(a). It is important to mention that a patch restrained to the dimen-
sion of one voxel resulted in high instabilities in the employed numerical scheme.

3.2.1. Paired head CT/MR-scans. A visualization of a CT/MRI registration result can be 
seen in �gure�9 (default values of 0.5� �  and p  �   11 were used). The employed visualiza-
tion is identical to that described in section�3.1. In the registered case shown on the right, it 
can be observed that the skull, which features a hyper-intense signal in the CT-scan (magenta), 
matches closely the spacial location of the scalp and the brain, the latter being visible only in 
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Figure 8.  Impact of the patch size on the performance of the proposed EVolution 
method for the bladder �lling MR-scans.
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the T1-weighted image (green). This indicates that the images have been successfully regis-
tered. This visual inspection is con�rmed by the table�3, which analyses of the voxel-wise error 
in the �ow endpoint for the two CT/MRI paired scans. For each CT/T1 and CT/T2 scenario, an 
average FEP below the voxel-size was obtained, indicating a sub-voxel registration accuracy.

3.2.2. Benchmark. A benchmark of our CPU and GPU implementations of the proposed 
EVolution method for different patch size is provided in table�4. As compared to the CPU 
implementation, a great acceleration could be obtained using the GPU, especially for high 
patch size. It is interesting to note that less than a minute was necessary to register two vol-
umes of 128 128 128� �  voxels (i.e. the Bladder MR-scan).

Transversal (Before registration)

(a)

Transversal (After registration)

(b)

Sagittal (Before registration)

(c)

Sagittal (After registration)

(d)

Coronal (Before registration)

(e)

Coronal (After registration)

(f)

Figure 9.  Example of CT/T1-MRI registration of the brain using the proposed EVolution 
method. Left: before registration and right: after registration using the proposed 
EVolution method. The CT-image is displayed in magenta and the T1-weighted MRI in 
green (complementary colour).
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4. Discussion

Using variational image-based registration methods, the negative impact of appearing/disap-
pearing anatomical structures (for example induced by speci�c anatomical structures featured 
by the involved imaging modalities, peristaltic activity or any potential image artifacts) can 
typically be circumvented by increasing the weight of a spatial motion regularization term 
(see the improvement of the FEP with increasing � values on the green curves of �gures�7(a) 
and (b)). This, however, may have a negative impact on locally moving structures (see the 
deterioration of the FEP with increasing � values on the blue curve of �gures�7(a) and (b)). 
Using our method, the robustness against structure appearance/disappearance is, by construc-
tion, not only taken into account by the motion regularization term, but also in the proposed 
data �delity term. The reason is that our criterion converts the image into an �edge representa-
tion�, and only strong edges that occur in both modalities are favored, due to the use of the 
weight w rT( )�  in equation�(2).

It can be observed in �gure�9 that the skull is properly registered by the EVolution algo-
rithm, although it features hyper- and hypo-intense signals in CT- and MR- images, respec-
tively. This arises from the fact that the absolute value of the cosine in equation�(2) favors 
the alignement of both parallel and anti-parallel edges, irrespective of the gradient direction. 
As a consequence, in this particular example, the strong contrast of the cortical bone in the 
CT-image and the hyperintense signal of the subcutaneous fat layers in the MR-images domi-
nate the overall convergence process of the variational algorithm.

Table 3.  Motion estimation error (in millimeters) obtained for the registration of the 
two paired head CT/MR-scans (i.e. CT/T1-MRI and CT/T2-MRI).

Registered image modalities 
(Modality #1/Modality #2)

Motion estimation error (mm)

Before registration EVolution

CT-scan/T1-weighted MRI �41.24 2.66 �3.30 1.84
(39.27, 41.27, 43.27) (1.93, 2.98, 4.24)

CT-scan/T2-weighted MRI �49.32 2.54 �3.87 2.24
(47.34, 49.25, 51.24) (2.04, 3.42, 5.36)

Note: The �rst line of each cell reports the mean  �  standard deviation of the FEP, and the second 
line provides the �rst, second and third quantiles ([0.25, 0.5, 0.75]).

Table 4.  Computation time in seconds obtained using our implementation of the 
proposed EVolution method on our test platform (multi-CPU and GPU implementations) 
for different patch size (see section�2.3).

Patch size  
(voxels)

Thorax CT-scan #5 
( )� �256 256 106

Bladder MR-scan 
( )� �128 128 128

CPU GPU CPU GPU

� �3 3 3 106 68 34 19
� �5 5 5 195 98 56 22
� �7 7 7 331 134 114 29
� �9 9 9 693 219 179 41
� �11 11 11 1094 320 300 59
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In order to mitigate the fact that the image features under the new representation might 
not be discriminative enough (especially in the calculation of the partial derivatives of equa-
tion�(8)), the de�ned normalized criterion performs a weighted average of the score obtained 
for each edge that occur in both modalities within patches. The patch size is thus a free param-
eter which can be increased to improve the robustness against anatomical structure without 
counterpart between the image to register and the reference one. However, it must be also 
underlined that, similarly to the parameter �, the patch size also impacts the spatial regularity 
of the estimated motion �eld. Decreasing these tow parameters generallt results in a poor esti-
mation of the displacement, due to numerical instabilities. Identically, for values increasing 
toward in�nity, the tested reliability criteria indicated a poor estimation of the displacement, 
as the smoothness of motion constrains the velocity amplitude estimation. As a consequence, 
a good compromise of the choice of both parameters is essential for a reliable and accurate 
co-registration. Using the proposed default user-de�ned parameters (i.e. 0.5� �  and a patch 
size of 11 11 11� �  voxels), results obtained using the proposed method were comparable 
to those obtained using the MIND algorithm, and this for all tested experimental conditions 
(image pre-�ltering, image intensity variation, noise perturbation). It is interesting to note in 
�gure�4 that the proposed EVolution method could systematically be further improved, how-
ever for this speci�c 10 CT-scans data set, by simply decreasing the patch size. Using default 
calibration parameters, the proposed method outperforms the existing MIND algorithm on the 
bladder �lling scenario, for which structures in the image to register haven�t counterparts in 
the reference image.

It can be noticed that the addition of noise perturbation somewhat improved registration 
results, especially for high patch size (see the blue curve in �gures�4(a) and (b)). The presence 
of noise indeed alleviated possible divisions by values close to 0 in equation�(1) which, in turn, 
slightly stabilized the numerical process. A typical alternative method to get around this would 
be to add a very small positive constant � in the denominator of equation�(1) (0.1��  provided 
results similar to the ones reported by the blue curves of �gure�4).

5. Conclusion

An image registration tool box including complementary multi-modal algorithms is a neces-
sary prerequisite in the �eld of medical imaging, with respect to the ever growing need to align 
images of a same scene acquired at different time instants, using different sensors and/or from 
a different point-of-view.

In the current work we proposed a non-rigid multi-modal registration method that aligns 
edges in both modalities using a variational scheme that provides a fast algorithm with a 
low number of parameters to tune. Using the proposed default user-de�ned parameters (i.e. 

0.5� �  and a patch size of 11 11 11� �  voxels), results obtained using the proposed EVolution 
method were comparable to those obtained using the MIND algorithm, and this for all tested 
experimental conditions (image pre-�ltering, image intensity variation, noise perturbation). 
This demonstrates that both methods performed with comparable accuracy and precision for 
the general case. Using identical calibration parameters, it was also demonstrated that the 
proposed method outperforms existing approaches on a speci�c scenario for which structures 
in the image to register do not have counterparts in the reference image.

It must be underlined that, in their excursion due to respiration, the lung, liver and kidneys 
slide on the thoracic and abdominal walls which, by comparison, manifest a reduced amount 
of motion. The impact of the arising shearing effects on the motion regularization term may 
not be negligible, and will need to be addressed in future works. Moreover, future studies will 
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challenge the proposed method for various non-rigid multi-sensor registration scenarios (e.g. 
MRI/echography, PET/MRI, etc...).
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