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Abstract

We propose in this work a unified formulation of mixed and primal discretization methods
on polyhedral meshes hinging on globally coupled degrees of freedom that are discontinuous
polynomials on the mesh skeleton. To emphasize this feature, these methods are referred
to here as discontinuous skeletal. As a starting point, we define two families of discretiza-
tions corresponding, respectively, to mixed and primal formulations of discontinuous skeletal
methods. Each family is uniquely identified by prescribing three polynomial degrees defining
the degrees of freedom and a stabilization bilinear form which has to satisfy two properties
of simple verification: stability and polynomial consistency. Several examples of methods
available in the recent literature are shown to belong to either one of those families. We
then prove new equivalence results that build a bridge between the two families of methods.
Precisely, we show that for any mixed method there exists a corresponding equivalent primal
method, and the converse is true provided that the gradients are approximated in suitable
spaces. A unified convergence analysis is also carried out delivering optimal error estimates
in both energy- and L2-norm.

2010 Mathematics Subject Classification: 65N08, 65N30, 656N12

Keywords: Polyhedral meshes; hybrid high-order methods; virtual element methods; mixed
and hybrid finite volume methods; mimetic finite difference methods

1 Introduction

Over the last few years, discretization methods that support general polytopal meshes have re-
ceived a great amount of attention. Such methods are often formulated in terms of two sets of
degrees of freedom (DOFs) located inside mesh elements and on the mesh skeleton, respectively.
The former can often be eliminated (possibly after hybridization) by static condensation, whereas
the latter are responsible for the transmission of information among elements, and are therefore
globally coupled. To emphasize the role of the second set of DOFs, these methods are referred
to here as “skeletal”. Skeletal methods can be classified according to the continuity property of
skeletal DOFs on the mesh skeleton. We focus here on “discontinuous skeletal” methods, where
skeletal DOF's are single-valued polynomials over faces fully discontinuous at the face boundaries.
Since this terminology is not classical in the sense of standard finite elements, we explicitly point
out that here single-valued means that interface values match from one element to the adjacent
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one. Discontinuous, on the other hand, refers to the fact that skeletal DOF's are discontinuous at
vertices in 2d and edges in 3d.

Let © < RY, d > 1, denote an open, bounded, connected polytopal set, and let f € L%(). To
avoid unnecessary complications, we consider the following pure diffusion model problem: Find
u : 2 — R such that

—Nu=f in Q,

1.1
u=0 on 0f). (1.1)

We introduce a unified formulation of discontinuous skeletal discretizations of problem (LIl) which
encompasses a large number of schemes from the literature. As a starting point, we define two
families of discretizations corresponding, respectively, to mixed and primal discontinuous skele-
tal methods. Each family is uniquely identified by prescribing three polynomial degrees defining
element-based and skeletal DOF's, and a stabilization bilinear form which has to satisfy two prop-
erties of simple verification: stability expressed in terms of a uniform norm equivalence, and
polynomial consistency. Several examples of methods available in the recent literature are shown
to belong to either one of those families. We then prove new equivalence results, collected in The-
orems [I7, I8 and R0 below, which build a bridge between the two families of methods. Precisely,
we show that for any mixed method there exists a corresponding equivalent primal method, and
the converse is true provided that the gradients are approximated in suitable spaces. A unified
convergence analysis is also carried out delivering optimal error estimates in both energy- and
L?-norms; cf. Theorems 22 and P4 below.

A fundamental and inspiring example is presented in Section B it refers to the well-known
equivalence between the lowest-order Raviart—Thomas element and the nonconforming Crouzeix—
Raviart element on triangular meshes. In some sense, the framework presented in this paper
extends, with suitable modifications, this equivalence to recent methods supporting general poly-
topal meshes.

Polytopal methods were first investigated in the context of lowest-order discretizations starting
from several different points of view. In the context of finite volume schemes, several families
of polyhedral methods have been developed as an effort to weaken the conditions on the mesh
required for the consistency of classical five-point schemes. The resulting methods are expressed
in terms of local balances, and an explicit expression for the numerical fluxes is usually available.
Discontinuous skeletal methods in this context include the Mixed and Hybrid Finite Volume
schemes of [35] [39]. Continuous skeletal methods have also been considered, e.g., in [40].

Relevant features of the continuous problem different from local conservation have inspired
other approaches. Mimetic Finite Difference methods are derived by using discrete integration
by parts formulas to define the counterparts of differential operators and L?-products; cf. [13] for
an introduction. Discontinuous skeletal methods in this context include, in particular, the mixed
Mimetic Finite Difference scheme of [I8]. An example of continuous skeletal method is provided,
on the other hand, by the nodal scheme of [I6]. In the Discrete Geometric Approach [24], the
formal links with the continuous operators are expressed in terms of Tonti diagrams [45]. We also
cite in this context the Compatible Discrete Operator framework of [I5]. To different extents, all
of the previous methods can be linked to the seminal ideas of Whitney on geometric integration.
Other methods that deserve to be cited here are the cell centered Galerkin methods of [26] 27],
which can be regarded as discontinuous Galerkin methods with only one unknown per element
where consistency is achieved by the use of cleverly-tailored reconstructions.

The close relation among the Mixed [35] and Hybrid [39] Finite Volume schemes and mixed
Mimetic Finite Difference methods [I8] has been investigated in [36], where equivalence at the
algebraic level is demonstrated for generalized versions of such schemes; cf. also [46, Section 7] for
further insight into the link with submesh-based polyhedral implementations of classical mixed
finite elements. The results of [36] are recovered here as a special case. A unifying point of view for
the convergence analysis has been recently proposed in [37] under the name of Gradient Schemes.
Finally, the methods discussed above can often be regarded as lowest-order versions of more recent
polytopal technologies such as, e.g., Virtual Elements and Hybrid High-Order methods.

A natural development of polytopal methods was headed to increase the approximation order.



It has been known for quite some time that high-order polyhedral discretizations can be obtained
by fully nonconforming approaches such as the discontinuous Galerkin method. An exposition of
the basic analysis tools in this framework can be found in [31]; cf. also [28, [29] for polynomial
approximation results on polyhedral elements based on the Dupont-Scott theory [38] and [8] [2]
19] for further developments. Particularly interesting among discontinuous Galerkin methods is
the hybridizable version introduced in [20, 23], which constitutes a first example of high-order
discontinuous skeletal method.

Very recent works have shown other possible approaches to the design of high-order polytopal
discretizations combining element-based and skeletal unknowns. A first example of arbitrary-order
discontinuous skeletal methods are primal [34] [30] and mixed [33] Hybrid High-Order methods.
Hybrid High-Order methods were originally introduced in [32] in the context of linear elasticity.
The main idea consists in reconstructing high-order differential operators based on suitably selected
DOFs and discrete integration by parts formulas. These reconstructions are then used to formulate
the local contributions to the discrete problem including a cleverly tailored stabilization that
penalizes high-order face-based residuals. A study of the relations among primal Hybrid High-
Order methods, Hybridizable Discontinuous Galerkin (HDG) methods, and High-Order Mimetic
Finite Differences [42] can be found in [22], where the corresponding numerical fluxes in the spirit of
HDG methods are identified. The hybridization of the original mixed Hybrid High-Order method
was studied in [I] (these results are recovered as a special case in this work).

Another framework including both continuous and discontinuous skeletal methods is provided
by Virtual Elements [9, [10]. Virtual Elements can be described as finite elements where the ex-
pressions of the basis functions are not available at each point, but suitable projections thereof
can be computed using the selected DOFs. Such computable projections are then used to approx-
imate bilinear forms, which also include a stabilization term that penalizes differences between the
DOFs and the computable projection. We are particularly interested here in mixed [1I7, [T [12]
and nonconforming [6] Virtual Elements, both of which are discontinuous skeletal methods.

The rest of this paper is organized as follows. In Section [2] we formulate the assumptions on
the mesh and introduce the main notation. In Section [3] we recall the classical equivalence of
lowest-order Raviart—-Thomas and nonconforming finite element methods. In Sections ] and Bl we
introduce the families of mixed and primal discontinuous skeletal methods under study, and provide
several examples of lowest-order and high-order methods that fall in each category. In Section
we show how to obtain, starting from a discontinuous skeletal method in mixed formulation,
an equivalent primal method. Conversely, in Section [, we show how to derive an equivalent
mixed formulation starting from a discontinuous skeletal method in primal formulation. Section 8l
contains a unified convergence analysis yielding optimal error estimates in the energy- and L?2-
norms.

2 Mesh and notation

Let H c R} denote a countable set of meshsizes having 0 as its unique accumulation point. We
consider refined mesh sequences (7;)nen where, for all h € H, T, = {T'} is a finite collection of
nonempty disjoint open polytopal elements such that Q = Urer, T and h = maxgeT, hr (hr
stands for the diameter of T'). For X < R? we denote by |X |y the N-dimensional Hausdorff
measure of X. A hyperplanar closed connected subset F of  is called a face if [F|4_1 > 0 and
(i) either there exist distinct 77,72 € T, such that F' = 071 n 01> (and F is an interface) or
(ii) there exists T' € Ty, such that F = 0T n 0Q (and F' is a boundary face). The set of interfaces
is denoted by Fi, the set of boundary faces by Fp, and we let Fj, := Fi U Fp. For all T € Ty, the
sets Fp = {F € F, | F < 0T} and Fi. := Fr n Fi collect, respectively, the faces and interfaces
lying on the boundary of T and, for all F' € Fr, we denote by nrp the normal to F' pointing out
of T. Symmetrically, for all F' € F,, Tp :={T €T}, | F < 0T} is the set containing the one or two
elements sharing F'.

We assume that (75)new is admissible in the sense of [31, Chapter 1], i.e., for all h € H, Tp
admits a matching simplicial submesh T}, and there exists a real number ¢ > 0 (the mesh regularity



parameter) independent of h such that the following conditions hold: (i) For all h € H and all
simplex S € T}, of diameter hg and inradius rg, phs < rg; (ii) for all h € H, all T € T, and all
S € Ty, such that S < T, phr < hg. We refer to [31, Chapter 1] and [28] 29] for a set of geometric
and functional analytic results valid on admissible meshes.

Let X be a mesh element or face. For an integer [ > 0, we denote by P!(X) the space spanned
by the restriction to X of d-variate polynomials of total degree I. We denote by (-,-)x and |-|x
the usual inner product and norm of L?(X). The index is dropped when X = 2. The L?-projector
mh : LY(X) — PY(X) is defined such that, for all v € L}(X),

(thv —v,w)x =0 Yw e P1(X). (2.1)
Let a mesh element T' € 7}, be fixed. For all integer [ > 0 we set
Gl = VPUT),  Tp:= {reP{D)*| (r,Vw)r =0 Ywe PHY(T)},

and denote by 7l ;- : L'(T)? — Gf, and TI'%,T : LYT)? — GZT the L2-orthogonal projectors on G,

and ElT, respectively. Clearly, we have the direct decomposition
PY(T)" = G @ Ty (2.2)
For further use, at the global level, we also define the space of broken polynomials
PY(Th) == {vn € L*(Q) | vy := vpr e PI(T) VT € Tp}.

Throughout the paper, to avoid naming constants, we use the abridged notation a < b for the
inequality a < Cb with real number C' > 0 independent of h. We will also write a ~ b to mean
a<b<a.

3 An inspiring example

In order to put the following discussion into perspective, we start by recalling an important
inspiring example, viz. the well-known equivalence between lowest-order Raviart—Thomas element
and nonconforming Crouzeix—Raviart element on triangular meshes.

The Raviart—Thomas element [44] is widely used for the approximation of problems involving
H (div; Q) when T, is a matching triangular mesh. A popular implementation of the Raviart—
Thomas scheme makes use of a hybridization procedure, introducing a Lagrange multiplier in
order to enforce the continuity of the normal component of vectors from one element to the other.
As a starting point, problem (I.TJ) is written in mixed form as follows: Find the flux o € H(div; Q)
and the potential u € L?(£2) such that

(o,7) + (divr,u) =0 V7 e H(div; ),
—(dive,v) = (f,v) Yo e L(Q).
Taking the Raviart-Thomas finite element space RT’(7;,) < H (div; Q) for the flux and the space of

piecewise constants P°(7;,) < L?(2) for the potential, its discretization reads: Find o, € RT°(7)
and uy, € P°(7y,) such that

(o’h,‘rh)+(div‘rh,uh) =0 VThE[RWO(ﬁ),

—(divern,vn) = (f,vn) Yoy, € PY(Th). 51

The hybridized version of ([B1]) consists in introducing the space A}, of piecewise constants on the
internal portion of the mesh skeleton, and in solving the following problem which involves the



discontinuous Raviart—Thomas space [RTFO’d(Th): Find oy, € [RTTO’d(ﬁ), up € PO(Th), and A\, € Ay
such that

(O'h,‘l'h) + (div‘rh,uh) + 2 Z (Th~nTF, )\h)F =0 V1, € [RTIO’d(E),
TeTh FeFi,
—(divon,vn) = (f,on) VYo € P(Th), (3.2)
Z Z (@nnrr, in)r =0 Yun € Ap.
TeTh FeFL

The usual way of solving problem ([B.2]) is to invert the (block-diagonal) mass matrix corresponding
to the variables in RT®9(7;,) and to consider a statically condensed linear system of the form

AN=F (3.3)

where A is symmetric and positive definite.

Let now NC(7},) be the nonconforming Crouzeix—Raviart space of [25] on the same mesh Ty; i.e.,
the space of piecewise affine functions which are continuous on the midnodes of the interelement
edges. Denoting by NCq(7r) the subspace of NC(7) with DOFs lying on 02 set to zero, the
approximation of problem (LIJ) reads: Find wuj, € NCo(77) such that

(Vhun, Vivn) = (f,on)  Yon € NCo(Th), (3.4)
where V), denotes the broken gradient operator on 7. The matrix form of (B3] is
BU =G

with B symmetric and positive definite. It is now well understood that the matrices A and B are
identical, as well as the corresponding right hand sides F and G. This important equivalence is a
consequence of the results of [5], 3], [4, 2], and has been reported in this form in [46].

A natural question is whether results of this type can be obtained for higher order schemes
on general polytopal meshes. The results that we are going to present aim at describing a uni-
fied setting where the equivalence of primal, mixed, and hybrid formulation can be proved. For
a discussion of lowest-order Raviart—Thomas and Crouzeix—Raviart elements in the framework
introduced in the following section, we refer to Examples [ and [I3] respectively.

4 A family of mixed discontinuous skeletal methods

In this section we introduce a family of mixed discontinuous skeletal methods and provide a few
examples of members of this family.

4.1 Local spaces

For a given integer k > 0 corresponding to the skeletal polynomial degree, we let [ and m be two
integers such that
max(0,k—1) <I<k+1, m € {0, k}. (4.1)

Let a mesh element T € T} be given. We define the following space of flux degrees of freedom
(DOFs):
=™ = (65 @Br) x ( X [Pk(F)) (4.2)
FE]'-T

For a generic element 74 of zg’l’m we use the notation 7, = (77, (Trr)Fer,) With 70 = 76,1 +
75 p. For a fixed Lebesgue index s > 2, we let X% (T) := {7 € L*(T)? | divr € L*(T)} and define

the local flux reduction map lngm . SH(T) - L™ such that, for all 7€ X7 (T),

lngmT = (WE%T + 7T (W%(T"I’LTF))FE}.T ). (4.3)



The space Zg’l’m is equipped with the L?(T)%like norm |-|s 7 such that, for all 7, € E?l’m,

lrrlzr o= lrel3+ Y. helrrelk
, FeFr , , (44)
= |rerlr + Irerl? ++ >, helrrel?,
FeFr

where to pass to the second line we have used the orthogonal decomposition (Z2). Finally, we
define the following space of local potential DOF's:

UL = PY(T). (4.5)

4.2 Local reconstruction operators

The family of mixed discretizations of problem (II]) relies on operator reconstructions defined at
the element level. Let T € Tj,. The discrete divergence D : z?l’m — UL is such that, for all
Tr € Zlqc: l,’m,
(Dfrr@)r = —(t0,Va)r + Y, (rrr,@)r Vg€ Up. (4.6)
FeFr

The right-hand side of (L8] resembles an integration by parts formula where the role of the vector
function represented by 7, in volumetric and boundary integrals is played by the element-based
and face-based DOF's, respectively.

The local reconstruction P%. : E?l’m — G4 of the irrotational component of the flux is such

that, for all 7, € Z;’l’m,

(Phzy, Vw)r = —(Dhzp,w)r + Y| (rrp,w)r Yw e PETY(T), (4.7)
FeFr

where again the right-hand side is designed to resemble an integration by parts formula where
the continuous divergence operator is replaced by D%, while the role of normal trace of the vector
function represented by T is played by boundary DOFs.

Remark 1. The flux DOFs 75 1 € G do not intervene in the definitions of either D} nor P%.

Finally, we define the full vector field reconstruction S& : Zg’l’m — P*(T)4 such that, for all
Tr € E?’l’m,

STy = PrTy + TE (4.8)

The following properties hold:
DlTlgl;"T =7h(divr)  VreXT(T), (4.9)
P%lg’lfT =T V1 € G, (4.10)

Defining the space
G} if m=0

ghm.—{ T ’ 4.11
T {[Pk(T)d it m =k, (4.11)

it follows from (£I0) together with the orthogonal decomposition ([Z2)) and the definitions (@3])
of the reduction map I g’f’Tm and ([8) of S% that

Skrblme — 7 vresh™, 4.12
T=T T

which expresses the polynomial consistency of S?.



4.3 Local bilinear form

Let T € T,. We approximate the L?(T)%-product of fluxes by means of the bilinear form mr :
zg’l’m X E?l’m — R such that

mr(er,7r) = (Shor, Shrr)r + ss,r(@r, Tr) (4.13a)

= (Prar, Phry)r + (05,0, Tor)r + sn.r(or, T7), (4.13b)
where the right-hand side is composed of a consistency and a stabilization term.

Assumption 1 (Bilinear form sx 7). The symmetric, positive semi-definite bilinear form sx 7 :
z?l’m X E?l’m — R satisfies the following properties:

(S1) Stability. Tt holds, for all T, € %:"™  with norm |-|s 7 defined by (@4),

HITan,T i=mp(Ty, Tr) ~ HITH2E,T;

(S2) Polynomial consistency. For all x € S?’m, with local flux reduction map lngm defined

by @3),

k,l,m k,l,m
SE,T(lgyT XaIT) =0 VIT € ZT .

4.4 Global spaces and mixed problem
We define the following global discrete spaces for the flux:

~ k,l,m m m ~ k,l,m i
ISR € Y- LD YA {Ih ey, ‘ >, mrp=0 VFe ]-“h}. (4.14)
TeTh TeTr

>kl .
The restriction of a DOF vector 7, € 3, ™ to a mesh element T € T, is denoted by 7 € Z?l’m,
. oKkbm km . 2 d 1 .
and we equip 3,  (hence also X,"""™) with the L?(€)%like norm (cf. ([&4) for the definition of
Il=,r)

HIhH%J,h = Z HITH2E,T' (4.15)
TeTh

The global space for the potential is spanned by broken polynomials of total degree [:
Ul = PYTy). (4.16)

~ k,l,m
The global L?(Q)?like product on X, is defined by element-by-element assembly setting, for
k,l,m

all ¢y, 1), € &),

3

mp(ay, ;) = Y, mr(er, Tr). (4.17)
TeTh

<kl <kl
We also need the global divergence operator D! : 3, " U} such that, for all T, € 3, "

(Dhry)r =Dyry VT € Th.
Problem 1 (Mixed problem). Find (&, us) € Z)'"™ x U}, such that,
my (e, 7y) + (un, D7) =0 V1, e Zph, (4.18a)
—(Dhay,vn) = (fvn)  Von € Uy, (4.18Db)

Using standard arguments relying on the coercivity of mj (a consequence of (S1)) and the
existence of a Fortin interpolator (cf. (£9])), one can prove that problem (£Ig]) is well-posed; cf.,
e.g., [14].



Ref. Name k l m Ss,T
[44] RT° Finite Element 0 0 0 Eq @E2)
[18] Mimetic Finite Difference

[36] Mixed Finite Volume 0 0 0 FEq @20
[24] Discrete Geometric Approach 0 0 0 Eq. [(@246)
[33] Mixed High-Order =0 k 0 Eq. (@27
17 Mixed Virtual Element >1 k-1 0 Eq @2)
12 Mixed Virtual Element >0 k k  Eq. (@29)

Table 1: Examples of methods originally introduced in mixed formulation.

Remark 2 (Hybridization and static condensation). Various possibilities are available to make the
actual implementation of the method (£I8)) more efficient. A first option consists in implementing
the equivalent primal reformulation (6.I6]) described in detail below; cf. also Remark[I0l Another
option, in the spirit of [3], consists in locally eliminating element-based flux DOFs and element-
based potential DOF's of degree > 1 by locally solving small mixed problems. The resulting global
problem is expressed in terms of the skeletal flux DOFs plus one potential DOF per element.

4.5 Examples

We provide in this section a few examples of discontinuous skeletal methods originally introduced
in a mixed formulation which can be traced back to (£I8). Each method is uniquely defined by
prescribing the three polynomial degrees k, [, and m (in accordance with ([&1])) and the expression
of the local stabilization bilinear form ss r for a generic mesh element T € 7j,. A synopsis is
provided in Table [

Example 3 (The Mimetic Finite Difference method of [I8] and the Mixed Finite Volume method
of [36]). The Mimetic Finite Difference method of [I8] and the Mixed Finite Volume method of [36]
Section 2.3] (which is a variation of the one originally introduced in [35]) correspond to the choice
k =1=m = 0. We present them together since an equivalence result was already proved in [36].
In the lowest-order case, explicit expressions can be found for both DY and S = P5.: For all
Tr € 22’10705

1
T4

1

DYr, = =
= T']a

0 0
Z |F|d717'TF; STIT = PTIT =
FeFr

Z |Fla—17rr(zr —27), (4.19)
FeFr

where xp is the barycenter of F' and xr is an arbitrary point associated with 7" which may or
may not belong to T'. The stabilization is parametrized by a symmetric, positive definite matrix

B” = (BLp)rrers:

ssr(aror)= Y, Y, (Starnrr — orr)Bhp (S§Trnre — o). (4.20)
FeFr F'eFr

It is worth noting that the original Mixed Finite Volume method of [35] does not enter the present
framework as the corresponding stabilization bilinear form sx; r (o, ) = ZFE}-T hr|F|ag—10rpTTF
violates (S2) (it is, however, weakly consistent).

Example 4 (The lowest-order Raviart—-Thomas element). We assume that T is an element from
a matching simplicial mesh 7y, and consider the lowest order Raviart-Thomas space RT?(T) :=
PO(T)? + xP°(T) of [44]. Clearly, the vector space %" contains the standard DOFs for RT’(T)

defined by the flux reduction map I %%O as the average values of the normal components on each

face. It can be checked that RT’(T') = span (¢7})
and F' € Fr, respectively,

FeFyp where, with &7 and xp barycenters of T’

| Fla-a

T |F|d—1
) =
‘PF( ) |T|d

d|Tq

(kp —x7) + (x — 1) Ve eT,



and it holds (¢f-nrp)p = 1 and (¢p-nre)p = 0 for all F' € Fp\{F} (in d = 2, this formula
is a variation of [7 Eq. (4.3)]). Let tr € RT%(T) and 7 = (7rr)rer, = lgg?’TOtT, so that
tr =Y, FeFy <pleTT . Straightforward computations show that

. 0 0 0 0
divtr = D7y, wrtyr = ST = Prrop,

with explicit expressions for D% and S% = P% given by (EI9). Hence, we can rewrite the L2-
product of two functions sr,tr € [RTTO(T) with DOFs o, = l%?’TOHT and T, = l%%otT as
follows:

(sp,tr)r = (WgﬁT,W%fT)T'F (5T—7T%5Ta tr —W%tT)T = (SOTQTa SOTIT)T +SE,T(£TaIT)a (4.21)

where, observing that (L — 7.¢L)(x) = %(m —x7),

Flg-1|F’|a—
se,r(@r,Tr) = Z Z Bl OTFTTEY Bip = %J |z — ®r|3de. (4.22)
FeFr F'eFr 713 T

From (LZ1)) it is clear that sy  verifies both (S1) and (S2).

Example 5 (The Discrete Geometric Approach of [24]). Denote by xr an arbitrary point in T,
and assume that T is star-shaped with respect to T. The Discrete Geometric Approach of [24] is
a lowest-order method corresponding to kK = [ = m = 0 based on the stable flux reconstruction
such that, for all T, € Z%O’O,

Sy = Y. |GlasiTra®re: (4.23)
GE]'-T

where, for all G € Fr, the restriction of the basis function ¢, to any pyramid Prr of apex xr
and base F' € Fr satisfies, denoting by @ the barycenter of F' and setting hrp = dist(xr, F),

(xg — xT) ((iBF —x7)@nrE dra )
= 4 — I T —xa), 4.24
Pr6IPre T4 |T|abrr Gla—1bre ° (@r —@¢) 429

where dpg = 1 if F' = G, 0 otherwise. The local bilinear form my is then defined setting, for all
or, €3y,

mr(er, Tr) = (S5 a7, SF1r)r. (4.25)
Plugging ([£24)) into (£23]), and using the second formula in (£19), we can identify in the expression
of SdTga two L2(T)%-orthogonal contributions observing that, for all 7, € Z%O’O and all F'e Fr, it
holds

dga _ Q0 —1 0
(S7°Zr)Pre = STTr + brp (ST e — TrR) (T — TF),

where the first term in the right-hand side represents the consistent part of the flux, while the

second acts as a stabilization. Hence, a straightforward computation shows that the bilinear form
my defined by [@25) can be recast in the form ([@I3a) with stabilization bilinear form

|ler — xr|3

- (SYarnrr — orp, SYTrnTE — TrE)E (4.26)

SE,T(QTv IT) = Z

FeFr

2
Note that this expression can be recovered from [{@20) taking BY = diag (HZTT;%) :
FE]‘—T

Example 6 (The Mixed High-Order method of [33]). The Mixed High-Order method of [33]
corresponds to the choice | = k and m = 0, for which S% = P4 holds. The stabilization term is
defined by penalizing face-based residuals in a least-square fashion:

ssr(or,Tr) = Z hp(Shornrp — orp, Shrrnre — 7rr)p. (4.27)
FE]‘—T

When k = 0, this stabilization bilinear form coincides with @20) with BT = diag(hr|F|4—1) rery-



Example 7 (The Virtual Element method of [I7]). Let d = 2. We consider the Mixed Virtual
Element method of [I7] when the diffusion tensor (denoted by K in the reference) is the 2 x 2
identity matrix I. In this case, while the DOFs for the flux [I7, Eq. (3.8)] do not coincide with
the ones in (£Z), the resulting method [I7, Eq. (6.1)] can be recast in the form ([IF]) (note,
however, that this is no longer true for more general diffusion tensors). For a given integer k > 1,
the underlying finite-dimensional local virtual space is

SV T := {tr € H(div;T) n H(rot; T) |
divt7 € P*"1(T), rot t7 € P*"1(T), and tr|pnrp € PF(F) for all F e Fr},

where rot t; := 01ty 2 — Oatr 1. Observing that, when K = I, for all t; € 6vem’1(T), rot tr does
not contribute to defining div t7 nor the projection on G defined by [I7, Eq. (5.5)], it can be
showed that the stabilization term in [I7, Eq. (5.6)] actually enforces a zero-rot condition on the
discrete solution. Hence, we can equivalently reformulate the method [I7, Eq. (6.1)] in terms of
the zero-rot subspace

&V (roty; T) 1= {tr € & ™ (T) | rot ty = 0}.

This equivalent reformulation corresponds to the mixed form (@I8) with polynomial degrees

l =k —1, and m = 0, and stabilization bilinear form ss r defined as described hereafter. We

preliminarily observe that the reduction map I ng_ L0 (¢f. [@3) defines an isomorphism from

&Y™ (rotg; T) to ZF10. Assume that a basis for 25" 10 has been fixed (a scaled mono-
vem,1

mial basis is proposed in the original reference), and denote by Sy 7>~ the bilinear form on

SV (rotg; T) x &Y™ (roto; T) represented by the identity matrix in this basis. The stabi-
lization bilinear form is then given by

ss.r(ar,Tr) =Sy (Prar — s7,Proy — tr)r, (4.28)
where s and fr are the unique functions of 6vem’1(rot0;T) such that o = I ;kf LOg and
T =1 ;k{ L0¢,. This stabilization essentially corresponds to penalising in a least-square sense
the high-order differences TréTTQ (Phry — Tor) and (Phrpnrp — mrr), F € Fr.

Example 8 (The Virtual Element method of [12]). A different Virtual Element method in dimen-
sion d = 2 was presented in [I2] in the context of more general elliptic problems featuring variable
diffusion as well as advective and reactive terms. In the pure diffusion case (which, in the original

notation from the reference, corresponds to k = Is, b = 0, and v = 0), the method corresponds
to the choice | = m = k with £ > 0. The underlying virtual space is, this time,

SV AT := {tr € H(div;T) n H(rot; T) |
div t7 € P*(T), rot tr € P*"1(T), and (tr-nrp)r € PF(F) for all F e Fr}.

The local flux reduction map I:%* defines an isomorphism from &*™? to £%** which contains

the DOF defined by [12, Eqs. (16)—(18)]. The stabilization bilinear form is defined in a similar

. . . o1 2 .
manner as in the previous example: Given a bilinear form S§” on &Y™ 2(T) x &Y*™?(T) with

the same scaling as the L?(T)%inner product of fluxes, we set

ser(gr, Tr) = S;:e,nTlg(S%QT ST, Sng —tr)r, (4.29)

where s and t7 are the unique functions of 6vem’2(T) such that o = I g’kT’kﬁT and T, =

I ;ka tr. This stabilization essentially corresponds to penalising in a least-square sense the high-

order differences 7\’{&_; (P, — 1o.r) and (Shrpnor — 7rr), F € Fr. For further developments
on H (div; Q)- and H (curl; Q)-conforming Virtual Elements we refer to [I1].
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5 A family of primal discontinuous skeletal methods

We introduce in this section a family of primal discontinuous skeletal methods and provide a few
examples of members of this family.

5.1 Local space

Let a mesh element T € 7;, and three polynomial degrees k, [, and m as in 1) be fixed. We
define the following local space for the potential:

Ur' = U x ( X Pk<F>> ,
FeFr
where, recalling [@LH), UL = PY(T). The local potential reduction map l’f]lT : HYT) — Q%l is
such that, for all v e H'(T),
l];j,lT’U = (Tré“U’ (ﬂ-%’U)Fe]‘—T)' (51)

We define on Qg’l the H(T)-like seminorm |||y 7 such that, for all v, € Q?l,

lozltr = IVorlz + D) he'lve —vr|, (5.2)
FeFr

and observe that, by virtue of a local Poincaré inequality, the map |||y, 7 defines a norm on quotient
space
kil . prkd k.l
Ury=Up /lU,T[PO(T)a (5.3)

where two elements of U’ ?’l belong to the same equivalence class if their difference is the interpolate
of a constant function over T'. Clearly, dim(g?l*) = dim(g?l) -1

5.2 Local gradient reconstruction

Let T € T. The family of primal methods hinges on the local gradient reconstruction operator
Gk .Ukl - sk (cf. @II)) defined such that, for all vy € US',

(GI%QT,T)T = —(vp,divr)r + Z (vp, TnTFR)F V1 e S?m, (5.4)
FE]‘—T

where the right-hand side is devised so as to resemble an integration by parts formula where the
role of the function represented by v, inside volumetric and boundary terms is played by element-
and face-based DOF's, respectively.

Remark 9 (Polynomial degree m). The polynomial degree m does not intervene in the defini-
tion (B.I) of the local space of potential DOFs. Its role is to determine the arrival space for the
discrete gradient operator G which, recalling (@), is either G4 (if m = 0) or P¥(T)? (if m = k).

Adapting the arguments of [34, Lemma 3] (cf., in particular, Eq. (17) therein), it can be
checked that the following commuting property holds: For all v € H(T),

GhIGw = w8V, (5.5)

where ﬂg’? denotes the L2-orthogonal projector on S?m and the potential reduction map I ];JZT is
defined by (&.1]).
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5.3 Local bilinear form

We define, for all T' € T, the local bilinear form ar : Q?’l X Q?l — R as follows:

ar(ur, vr) = (G]%QTv GI;“QT)T + su,r(ur, vr), (5.6)

where, as for the bilinear form mr defined by ([@I3al), the right-hand side is composed of a
consistency and a stabilization term.

Assumption 2 (Bilinear form sy 7). The symmetric, positive semi-definite bilinear form sy p :
Q%l x U ?l — R satisfies the following properties:

(S1') Stability. Tt holds, for all vy € Uk' with seminorm ||y defined by (G2,
HQTHiT = ar(vp,vr) & HQTH%J,T'

(S2') Polynomial consistency. For all w € P*1(T), with local potential reduction map ffle

defined by (&),
SU,T(l’fj,lTw,yT) =0  VupeUy

5.4 Global space and primal problem

We define the following global spaces of potential DOF's with single-valued interface unknowns:

Ur't = U} x ( X [P’%F)) . Upoi= {yh eUP |vp=0 YFe f};}, (5.7)
FeFy,
where the subspace QZ:ZO embeds the homogeneous Dirichlet boundary condition. For a generic

DOF vector vy, € QZ’Z we use the notation v;, = ((vr)reT;,, (VF)Fer,), and we denote by v € Q?l
its restriction to 7. We also denote by v, € P!(7;) the piecewise polynomial function such that
vpp = vy for all T € Tp,. On QZ’Z, we define the global H!(Q)-like seminorm ||y such that, for
all v, e UP,

HQhHQU,h = Z HQTHQU,Ta (5.8)
TeTh

with |-|ur given by (52]). Following a reasoning analogous to that of [32, Proposition 5], it can be
easily checked that the map ||y, defines a norm on Q’,zlo We will also need the global potential

reduction map llf]’fh s HY(Q) — QZ’Z such that, for all v e H (),

k.l
1U V= ((WZTU)TeTM (WfrU)Fefh)-

)

Clearly, the restriction of [ g’fh to a mesh element T € T}, coincides with the local potential reduction
map defined by (&]). Also, [ ?]’lh maps elements of H}(Q) to elements of U Zlo Finally, we define
the global bilinear form ay, : U Z’l x U Z’l — R by element-by-element assembly setting

an(wp;vp) = Z ar (ur, vp)-
TeTh

Problem 2 (Primal problem). Find v, € Qﬁ’,lo such that

an(up,v,) = (foon) Vo, e URY. (5.9)

Remark 10 (Static condensation). In the actual implementation of the method (59)), element-based
DOFs can be locally eliminated by static condensation. The procedure is essentially analogous to
the one described, e.g., in [22] Section 2.4], to which we refer for further details.
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Ref. Name k l
0

39 Hybrid Finite Volume 0 Eq. (&I1)
30 Hybrid Finite Volume 0 0 Eq. (&I3)
4 Eq. GI8)

[
[
[
l
l
[

]
]
1]  Hybridizable Discontinuous Galerkin >0 k+1
]
]
]

cocooxxo oS

22 Hybridizable Discontinuous Galerkin =~ >0 Eq. (£1) Eq. (&15)
34 Hybrid High-Order =0 k Eq. (515)
22 Hybrid High-Order >0 Eq. (&I Eq. (&I3)
[42, [6] High-Order Mimetic >0 k—1 Eq. (&19)

Table 2: Examples of methods originally introduced in primal formulation. * The High-Order
Mimetic method enters the present framework only for k£ > 1.

5.5 Examples

We collect in this section a few examples of discontinuous skeletal methods originally introduced
in a primal formulation which can be traced back to (B9)). Each method is uniquely defined by
prescribing the three polynomial degrees k, [, and m (in accordance with (&1])) and the expression
of the local stabilization bilinear form sy 7 for a generic mesh element 7" € 7. A synopsis is
provided in Table

Example 11 (The Hybrid Finite Volume method of [39] and its generalization of [36]). The
Hybrid Finite Volume method of [39, Section 2.1] corresponds to k = [ = m = 0. In this case, an
explicit expression for the gradient operator G- defined by (5.4) is available: For all v, € Q%O,

Z |F|d_1’UF’I’LTF. (510)
FE]'-T

1
Grup = =
Tl |T|d
For every element T € T}, the stabilization bilinear form is such that
Ui
su,r(ur, vr) = Z |F|d—1—5%FQT5%FQTa (5.11)
FeF: hTF
T

where 7 > 0 is a user-dependent stabilization parameter, hrp as in Example Bl and the face-based
residual operator 6% Q%O — PO(F) is such that, denoting by @ the barycenter of F' and by
o7 an arbitrary point associated with 7" which may or may not belong to T,

6% pup i= vr + Grup-(xp — @) — VF. (5.12)
In [36] Section 2.2], the following generalization of (B.I1]) is proposed: For a given positive definite
matrix BT = (B},I:?F/)F,F'E}-T;
su,r(up, vr) = Z 2 87 pur B p/ 87 prog. (5.13)
FeFr F'eFr

Example 12 (The Hybrid High-Order method of [34] and the variants of [22]). The original
Hybrid High-Order method of [34] corresponds to the choice | = k and m = 0. In [22], variants
corresponding to [ = k — 1 (when k > 1) and [ = k + 1 have also been proposed. Let an element
T € Ty be fixed, and define the potential reconstruction operator p?“ : Q?’l — P*1(T) such
that, for all v, € U,

Vp];flyT = G?QT and (p?“yT —vp, )y =0. (5.14)

Note that the first condition makes sense since, having supposed m = 0, G]%QT € GIT. The
stabilization bilinear form is defined as follows:

su,r(Up, ) = Z hg‘l(é‘%FﬂTa(sg‘FyT)Fa (5.15)
FE]‘—T
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where, for all F' € Fr, the face-based residual operator ok, Q%l — P¥(F) is such that, for all
Vr € Q?lv
O0fpor = Th (P;HQT —UF — ﬂé“(p];j_lQT - UT)) : (5.16)

As already observed in [34] Section 2.5], in the lowest-order case k = 0 the face-based residuals

defined by (BI2)) and (EI6) coincide, and the stabilization (B.I5) can be recovered from (B.I3])
selecting BT = diag(hp!|F|a—1)rer, (the only difference with respect to (GIT)) is the change of
local scaling hrp < hp).

Example 13 (The Crouzeix—Raviart finite element). Let T be an element belonging to a matching
simplicial mesh 7;, with barycenter @, and consider the Crouzeix—Raviart element NC(T') of [25].
We study the solution of problem (5.9) using the Hybrid Finite Volume method of Example [T
(or, equivalently, the Hybrid High-Order method of Example [2] with k = [ = m = 0) but with

right-hand side discretized as
> (f,prur)T,s (5.17)

TeTh

where the potential reconstruction pk is defined according to (5.14]) but with average value on T
set to # ZFG}-T vp (here, hrp is the orthogonal distance of xp from F). We start by noticing

that it holds n%ptv, = pruyp(xzr) = vp for all vy € Q;*l and all F € Fr with £z barycenter of
F. As a consequence, for the face-based residual operator (5.12) it holds for all v € US" that

§ppvp = —Tp(Prur — vr) = vr — prup(TT).

Then, observing that element-based DOFs do not contribute to the consistency term in (G.6]) nor
to the right-hand side, we infer that the stabilization term is actually enforcing the condition
prup(xr) = vy for all T € Tp. As a result, denoting by u,, € Qg’% the solution of problem ([G.9])
with right-hand side modified as in (5IT), the piecewise affine field equal to prur inside each
mesh element 7" € Tj, coincides with the Crouzeix—Raviart solution ([B.4]).

Example 14 (The Hybridizable Discontinuous Galerkin method of [41] and the variants of [22]).
The Hybridizable Discontinuous Galerkin originally proposed in [41, Remark 1.2.4] corresponds
to the case [ = k + 1 and m = k and stabilization

sur(up,vp) = Y. hp'(wh(ur — up), 7 (vr — vp))F. (5.18)
FeFr

As pointed out in [22] Remark 2], this stabilization coincides with (G.I5) when [ = k + 1. Moti-
vated by this remark, variants corresponding to the choices | = k— 1 (when k > 1) and I = k and
m = k are proposed therein. It is worth noting here that the original Hybridizable Discontinuous
Galerkin method of [20, 23] does not fit in the present framework since the corresponding stabi-
lization bilinear form is only polynomially consistent up to degree k, i.e., it does not satisfy (S2').
Correspondingly, the orders of convergence are reduced (cf. [22, Table 1] for further details).

Example 15 (The High-Order Mimetic method of [42] [6]). The High-Order Mimetic method
of [42] (subsequently referred to as Nonconforming Virtual Element method in [6]) provides a
high-order generalization of the concepts underlying Mimetic Difference Methods (cf., e.g., [13]).
Its lowest-order version, corresponding to the case k = 0 and [ = —1, violates ([@.1l), and therefore
does not enter our unified framework. For k > 1, on the other hand, it corresponds to the choices
l=k—1and m = 0. To write the corresponding bilinear form, define the finite-dimensional local
virtual space

UNT) := {op € HY(T) | Avp € PF"Y(T) and (Vor)pnrp € PF(F) for all F e Fr}.

Clearly, P*+1(T) < U*(T), and it can be proved that I ’5’}}71 defines an isomorphism from $(*(7T")
to Q?kil. Denote by Shem : $(¥(T) x U*(T) — R a bilinear form whose representation in the
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canonical basis of U¥(T) is spectrally equivalent to the unit matrix. The stabilization bilinear
form is obtained setting, for all up, v, € Q?l,

su,r(ur,vr) = h%_Qsl%om(PgﬂuT - uTva UT —vor), (5.19)

where up and vy are the unique functions in 4*(T') such that uy = I¥ T7 up and vy = 1% kT Yo,

while the operator kar1 is defined by (&.14). The stabilization (5.19) essentially corresponds to pe-
nalizing in a least-square sense the high-order differences 7k (ph vy — vr) and 7k (ph v, — vp),

F € Fr, with scaling factor choosen so that the uniform equivalence in (S1’) holds.

6 From mixed to primal methods
In this section we obtain from (@IJ) an equivalent primal problem by hybridization. The pri-

mal hybrid problem is then shown to belong to the family (59]) of primal discontinuous skeletal
methods.

6.1 Mixed hybrid formulation of mixed methods

k lm ~ k,l,m
We define the bilinear form by, : x Ukt (Witlh spaces 3, and UN" defined by (@I4)
and (B.71), respectively) such that, for all (1,,v,) € X)) " Qi’l,

bu(Th,v) = Y, br(zrur),  brlzrur) = Orzpor)r — ) (rre,ve)r. (6.1)
TeTh FeFr

For further use, we note that it holds for all T' € T, all T € Z?l’m, and all vy € Qg’l,

br(tp,vp) = — (76,1, Vor)r + 2 (TrF, v —VF)F, (6.2)
FE]‘—T

as can be easily checked replacing DlT by its definition (£ and accounting for Remark [l Hence,
using the Cauchy—Schwarz inequality and recalling the definitions (@4) and (52) of |-|xr and
|-lv. T, we infer the following boundedness result for byp:

br (T, vr)| < | (6.3)
< klm
Problem 3 (Mixed hybrid problem). Find (g,,u,) € ¥, X QZ:ZO such that,
VI'€Th,  mr(op p) +br(zy, up) =0 Vo e 2y, (6.4a)
—bu(@yv) = (fron) Yoy € Upy, (6.4b)

Compared to the mixed problem ([IJ), the single-valuedness of interface flux unknowns is
enforced here by Lagrange multipliers (corresponding to the skeletal DOFs in UZ lo) instead of
being embedded in the discrete space. Equation (G.4al) defines a set of local constitutive relations
connecting flux to potential DOF's inside each mesh element. Equation (6.4b]), on the other hand,
expresses local balances and a global transmission condition. In what follows, we will eliminate flux
unknowns by locally inverting (G-4al), ending up with a problem in the hybrid potential unknowns
only.

6.2 Mixed-to-primal potential-to-flux operator

For all T' € Ty, we define the local mixed-to-primal potential-to-flux operator g?l e Q?’l — E?l’m
such that, for all vy € Q;l,

mr(sy v, ) = —br(Trvp)  Vope DT (6.5)
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Recalling the reformulation ([6.2)) of by, (G.H) equivalently rewrites

v, 7r) = (Vor,Ter)r + ), (vr —vr,7re)r  Vrpe gt (6.6)
FeFr

k,l,m
mr(Sy

We next state some useful properties for the potential-to-flux operator.

Lemma 16 (Properties of the mixed-to-primal potential-to-flux operator). Let a mesh element
T €Ty, be given and let ss 7 be a bilinear form satisfying Assumption[ll Then, the corresponding

potential-to-flur operator sl%’l’m given by ([6.3]) is well defined and has the following properties:

1) Stability and continuity. For all vy € Q%l, it holds

k,l,
ls7" " vrlsr ~ |orlor, (6.7)

with norms ||-|s,r and |-|ur defined by (E4) and [B.2), respectively.

2) Commuting property. For all w € P*+1(T), we have

klmykl  rklm
st Lypw = Iy V. (6.8)

) Link with the discrete gradient operator. It holds, with operators G4 and Sk defined by (54)
and ([L38)), respectively, that

Gk = STogglm (6.9)

Proof. Problem (G.5]) is well-posed owing to assumption (S1) expressing the coercivity of mr. As
a result, ¢&:"™ is well defined.

1) Stability and continuity. Using (S1) followed by the definition ([6.5]) of g?l "™ and the bound-
edness (6.3) of by, we infer, for all v, € Q%l,

k,l,m k,l,m k,l,m

k.,
ls7" " vrlsr < lsg " vrlh e = —br(sy v, vr) < sz " vrls v v (6.10)

To prove the converse inequality, let 7, € Zg’l’m in (66) be such that 70 = Vour and 7pp =
h;l(vp — o) for all F' € Fr, and observe that

k,l,m

ki,
HQTH?J,T =mr(sy "vp, Tr) < s

k,l,m

vrlsrlrrlsr = sy vrlsrlorlor, (6.11)

where we have used the Cauchy—Schwarz inequality together with (S1) to bound mr and the
definitions (£4) of |-|x,r and (&) of ||-|u,r to infer |Tr|s1r = |vr|vr and conclude.

2) Commuting property. Let w € P**1(T). Using the definition [3) of ¢%"™ with v, = IU 7w
and recalling (6], we infer, for all 7, € g?’ m

mp (s " I w, ) = —(rpw, Dhzy)r + > (rhw, re)F
FE]'-T
l . (6.12)
= _(waDTIT)T + Z (w;TTF)F = (vwaPTIT)Ta
FE]'-T

where we have used the definitions (1)) of 74 and 7% to pass to the second line and the defini-
tion (@Z) of P4 to conclude. On the other hand, using the definition (@I3al) of my followed by

the polynomial consistency [@I2) of Sk together with (S2), for all T, € Ek’l’m we have that
my (I557"Vw, 17) = (SEIS Vw,Shrp)r + ser (L5 Vw, ) 613
= (Vw, STIT)T = (VU}vPTIT)Tﬂ

where the last equality follows from the definition (£8)) of S? together with the orthogonal de-
composition ([ZZ). Subtracting (E.I3) from ([E12), we infer, for all 7, € ZhH™,

k,lm yk,l k.,
mT(CT mIUT — Iy mvw Tr) =0,

from which (E8) follows since my is coercive on E?l’m owing to (S1). O
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3) Link with the discrete gradient operator. Let vy € Q?l, TE S?m, and set T, = lgl’%nT

Recalling the definition (ZI3a) of mz, and using the polynomial consistency @I2) of S% together
with (S2), it is readily inferred that
wr(sp " vg, Tr) = (ST o "™ up, 7). (6.14)

On the other hand, recalling the definitions (@3] of I ]gf’Tm and (G1) of by, we get

br(Tr,vr) = (v, Dhxr)r — Y, (0, 7re)r

FE]'-T
= (vr, 7p(divT))r — Y (vp, Tp(TmrE)) R (6.15)
FE]'-T
= (vp,divT)r — Z (vp, Tnrp)F = —(Ghwy,, 7)1,
FE]'-T

where we have used the commuting property (£9) of DlT in the second line and the definition ([2.1I)
of mb, and 7% and (54) of G% in the third. To conclude, plug (6I4) and (BI3) into the defini-

tion (B3] of k™.
6.3 Equivalent primal formulations of mixed methods

We start by showing a link among problems ([@IJ)), ([€4), and the following

~ k,l,m

Problem 4 (Primal hybrid problem). Find (g,,u,) € ¥, x Uj'g such that
or=sy"Mur VT €Ty, (6.16a)
with potential-to-flux operator Sé’l’m defined by (6.5) and w,, solution of
an(up,v,) = (foon) Yo, e URY, (6.16b)

where the bilinear form ap on U Z’l X Qﬁ’l is such that
k,l,m

kL,
an(up,vp) = 2 ar(ur,vr), ar(ugp, vy) == mr(sy " ur, s7 " vr).- (6.17)
TeTh

The well-posedness of (616D) is an immediate consequence of point 1) in Theorem [I8 below.

Theorem 17 (Link among the mixed, mixed hybrid and primal hybrid problems). For allT € Ty,
~ k,l,m
let s 1 satisfy Assumption. Let (o}, up) € X)X QZ’,ZO, and let up, € U,ZL be such that upr = ur

for all T € Tp. Then, the following statements are equivalent:
(i) (o}, uy,) solves the mized hybrid problem (G4);
(i) o, € Eﬁ’l’m and (o},,up) solves the mized problem ([EIR);
(i11) (o, uy,) solves the primal hybrid problem (E.14).

Proof. The equivalence (i) <= (ii) classically follows from the theory of Lagrange multipliers.
Let us prove the equivalence (i) <= (iii). We first show that if (g, u,,) solves the mixed hybrid
problem ([G.4), then it solves the primal hybrid problem (6.I6]). Equation (GIGa) immediately
follows from (6.4al) recalling the definition (6.5) of the potential-to-flux operator. As a consequence,
it holds for all T € T;, and all vy € U,

—br(ar,vp) = —br(si ™ up, vy) = mr (s ug, s vr) = ar(ug, vp),
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where we have used the definition (63 of the potential-to-flux operator together with the sym-
metry of mr in the second equality and the definition ([GI7)) of the bilinear form ar to conclude.
This implies that (6.40) is equivalent to (G.I6D). By similar arguments, we can prove that if
(o, uy) solves the primal hybrid problem (G16]), then it solves the mixed hybrid problem (©.4)),
thus concluding the proof. O

We close this section with our main result, viz. the existence of a primal method belonging
to the family (59) whose solution coincides with that of the mixed method [IF) for given
stabilization bilinear forms satisfying Assumption [l In the light of Theorem [T it suffices to
state the equivalence with respect to the corresponding mixed hybrid formulation (6.4]).

Theorem 18 (Link with the family of primal discontinuous skeletal methods). For all T € Tp,
let ss 7 satisfy Assumption[dl and set with S?l’m defined by (G.H):

k,l,m

su,r(ur,vr) = ssr(sy 2. (6.18)

Ur, S
Then,

1) Properties of sy, . The stabilization bilinear forms sy, T € Ty, satisfy Assumption 2

2) Link with primal methods. wu, € Q’,% solves the primal problem ([B9) with stabilization as

~ k,l,m m
in (6I]) if and only if (o, u) € X, X QZ’}) with &, such that o7 = ¢&"up for all T € Ty,
solves the mixed hybrid problem (G.4]).

Proof. 1) Properties of syr. Let T € Tp. The bilinear form sy is clearly symmetric and
positive semi-definite. It then suffices to prove conditions (S1’) and (S2"). To prove (S1’), observe
that for all vy € Q;*l we have

k,l,m

; k,l,
lvglar = ST "

Vr|mr ~ |7 " vr|s e ~ |vr|vr,

where we have used the definition ([GIT) of ap, (S1), and the stability and continuity (€1) of

Gmb™ et us prove (S2). Letting w € PF+1(T), for all vy € Uk we have

k,l k,lm 7k, k,lm k,l,m k,l,m
SU7T(1U,T’LU’QT) =sx,7(S7 L rw, s vy) = SE,T(IE,T Vuw,s7""vp) =0,

where we have used the definition (6I8) of sy, the commuting property ([G.8]), and (S2).

2) Link with primal methods. Compare the primal hybrid formulation (GI6) with the primal
formulation (B.9) and recall the equivalence with the mixed hybrid formulation (6.4]) stated in
Theorem [I7 O

7 From primal to mixed methods

In this section we show that the primal discontinuous skeletal methods of Section [Bl with m = 0
can be recast into the mixed formulation introduced in Section Bl This enables us to close the
circle and show a precise equivalence relation between the family ([@I8]) of mixed discontinuous
skeletal methods and the family (29 of primal discontinuous skeletal methods.

7.1 Primal-to-mixed potential-to-flux operator

We assume from this point on that, for a given integer k > 0,  is as in (@I]) and
m = 0.

The crucial ingredient is the primal-to-mixed potential-to-flux operator g?’l : Q?’l — Z?’l’o such
that, for all w, € Q?l, SI;JIQT solves

—br(sp'wy, vy) = ar(wr,vp)  VYop e UG (7.1)
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The use of a similar notation as for the mixed-to-primal potential-to-flux operator is motivated
by the fact that these two operators share the same properties (compare Lemmas [0 and [[9) and
play very much the same role.

Lemma 19 (Properties of the primal-to-mixed potential-to-flux operator). Let a mesh element
T € Ty, be given and let sy be a bilinear form satisfying Assumption[d Then, the corresponding

potential-to-flur operator S?I given by ([63) is well defined and has the following properties:

1) Stability and continuity. For all vy € U ?l,

by @A) and (B2), respectively,

7 vl ~ v (72)
2) Commuting property. For all w € P*+1(T), we have
o L = 15V w3

3) Link with the discrete gradient operator. It holds, with operators G?, P;, and S? defined

by (B4), @1, and @), respectively, that

G]% = P]% osl%’l = ST o gl%l. (7.4)

Additionally, &' defines an isomorphism from Q?’f* (cf. B3)) to ZHHO.

Proof. Let T € Ty,. To show that gé’l is well defined we prove the following inf-sup condition: For
all 7 € BHL0,

br(zr,vr)

lTrlsr <S:= sup (7.5)

ETGQ?,Z*\{QU,T} HQT HU’T

Let Uy € Uk’l be such that Vv, r = 77 and v p — v, 7 = hFTTF (v, T is defined up to an

element of I;; kl +P%(T), coeherently with the fact that we write Uk T , in the supremum). It can be
checked that HU.,_ rlur = |Trlsr and it holds, recalling the reformulation (6.2) of the bilinear
form b,

HITH22,T = —br(Tr, v, 1) < S|y,

which proves (). To prove the well-posedness of problem (7)) it only remains to observe that,
for all vy € L ]fJ’fT[PO(T), equation (TI)) becomes the trivial identity 0 = 0, which can be intepreted
as a compatibility condition. Finally, the fact that Sg’l defines an isomorphism from U %l* to E?l’o
follows observing that Sg’l is injective as a result of (ZH]) and dim (U ;l*) = dim(zg’l’o).

1) Stability and continuity. Combining the inf-sup condition (ZH) with the definition (1)) of
Sg’l, and using the Cauchy—Schwarz inequality followed by (S1), we get for all v, € U ?’l that

- br(shtvr, wr) ar (vp, wy)
ls7 vrlsr < sup — = sup == =T

MTEQ?,l*\{QU,T} HwT H ur MTGQ?,Z*\{QU,T}

On the other hand, (S1) followed by the definition (Z.I) of %" and the boundedness (B3) of the
bilinear form bp yields

k,l k,l
HUTHUT < ar(vp, vp) = _bT(ST U, V) < HST QTHE,THQTHU,Ta

which concludes the proof of ([Z.2)).
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2) Commuting property. Let w e P**1(T). For all vy € Q?l it holds

_bT(Sg’ll]&lTwaﬂT) = aT(l]I?,lTw’yT) = (Vw, GITC‘QT)T = _bT(lgfﬁvwaﬂT)a

where we have used the definition (1)) of ¢:" in the first equality, the definition (5.8) of a together
with (S2) in the second equality, and concluded recalling the definitions (5.4) of G&., [@3) of I ngO ,

and (610 of br. As a consequence,
k,1,0 Kkl pk,l _ k,l
bT(lzyva — ST lUﬁTw;QT) =0 Yur € Ur,

which, accounting for the inf-sup condition (75]), implies (7.4).
3) Link with the discrete gradient operator. Let vy € Ql%’l and w € P**1(T). Recalling the
definitions (61)) of by and (&) of I ’f]lT, we infer that

—br (s vr, Iipw) = —(Dhsy vr, hw)r + Y (SF'or)re, Thw)r
FE]'-T
= —(DhsFvp,w)r + Y] (S5'vr)re,w)r = (P o s5 vy, V),
FE]‘—T

where we have used the definition (1)) of 7%, and 7% to pass to the second line and the defini-
tion ([@T) of P% to conclude. On the other hand, by the definition (58] of ar together with the
polynomial consistency of G (a consequence of (5.5)) and (S2'), we have

ar (vp, I w) = (Ghup, Vw)r.
k,l

Substituting the above relations into the definition (ZI) of ¢’ we infer that GXuv, = PA o ghl.
Additionally, since we have supposed m = 0, we also have S? = P?, thus concluding the proof. O

7.2 Equivalent mixed formulation of primal methods

We close this section by showing the existence of a mixed method belonging to the family (EIg])
whose solution coincides with that of the primal problem (59]). In the light of Theorem [I7 we
state the equivalence result in terms of the corresponding mixed hybrid formulation (G.4]).

Theorem 20 (Link with the family of mixed discontinuous skeletal methods). For all T € Ty, let
su,r satisfy Assumption[d and set, for all op, 71 € 2%1,07

ssr(er, 1) =sur((sy) e, () 1), (7.6)

where it is understood that (S%Z)AIT and (sl%’l)*l

Then,

o are defined up to an element Ofl];jle[PO(T).

1) Properties of s p. The stabilization bilinear forms ss, 1, T € Ty, satisfy Assumption [}

< k,1,0
2) Link with mixed methods. (o,,u,) €X, X QZ:ZO solves the mized hybrid problem (64) with
stabilization as in (CB) if and only if w,, solves the primal problem ([9) and, for all T € Tp,

op = silug with <& defined by ().

Proof. 1) Properties of ssr. Let T € Tp. The bilinear form sy 7 is clearly symmetric and
positive semi-definite. It then suffices to prove conditions (S1) and (S2). Let us start by (S1).
Recalling the definition [@I3al) of the bilinear form my, property (Z4) for the potential-to-flux
operator ggl defined by (1), and (Z6)), we infer for all wp, v € Q?’l that

my(sy'wr, §y'vr) = ar(wr, vr)- (7.7)
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Let now 7, € Z?’l’o be such that 7, = SI;JZQT with vy € Q?l (the existence of such v, defined
up to an element of [ ];JZT PO(T), follows from Lemma [I9). We have that

~ |

where the first norm equivalence follows from ([2)), the second from (S2'), and the last one
from (T7)). Property (S1) follows.

Let us now prove (S2). Let x € G& be such that x = Vw with w € PF+1(T)). For all vy € UR! it
holds,

= |z lw.r,

|77l ~ v

k,1,0

serI%Px, ' vr) = sur((sy') T IR

k.l
I rx:vr) =svr(Llyrw,op) =0,
where we have used the definition (T.6]) of sx 7, the commuting property (73], and concluded
using (S2').
~ k,1,0 . .

2) Link with mized methods. We let (o),u,) € X, X Q’,% solve the mixed hybrid prob-
lem ([64)) with ssr given by (78, and we show that u,; solves (£9) and g, = gg’lgT for all
T € Tp. Making 7, = SI;JIQT with vy € Q];Jl in ([G4al), it is inferred

k,l k,l k,l k,l
0 =mr(ar, sy vr) + br(sf v, ur) = mr(gr — S ur, S5 vr).
k1,0 _ kl k,l . . . . Bl o
Since Xy Ur'" as a result of Lemma [I9 and vy is arbitrary in Us", this means that
or=sylup VT ET,, (7.8)

Plugging this relation into (6.41), and recalling the definition (7)) of g%l, we infer that it holds
for all v;, € Uh 09

(fsvn) = Z br(or, vp) = Z bT(S?lﬂTaﬂT) = an(Up,vp);
TeT TeTh

which shows that w;, solves the primal problem ([G.3)). Following a similar reasoning one can prove
that, if u, solves (B9), then (g, u;) with o = SI;JZQT for all T € Ty, solves (6.4)). O

8 Analysis

In this section we carry out a unified convergence analysis encompassing both mixed and primal

discontinuous skeletal methods. Recalling Theorems [[7, I8 and 20, we focus on the mixed hybrid
~k,lm
problem (6.4]). Let three integers k > 0 and I, m as in (1)) be fixed, set XZ’l’m = Zh QZ:ZO,

and define the bilinear form Ay, : X’Z’l’m X Xi’l’m — R such that

An((@p,wp); (Th,vp)) = mn(@p, Tp) + bu(Tp, wp) — balgy, vy)- (8.1)
. . . . . Zk.lm k,l
Problem (G.4]) admits the following equivalent reformulation: Find (o,,u;,) € X,  x U’ o such
that,
Vk l m k,l
An((@p,up), (Thsvp)) = (f,0n) V(Tp,vp) €2, X U (8.2)

8.1 Stability and well-posedness
We equip the space Xi’l’m with the norm |[|-| x j such that, for all (z,,v;,) € XZ’I”",

H(Ihvﬂh)H_QX,h = HIhHQE,h + HQ}LH2U,hv

ksl .
with norms [|-||s,, on X, ™ and |l on Qﬁ’l defined by (£I5) and (5.8)), respectively.
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Lemma 21 (Well-posedness). For all (x,,w;,) € Xi’l’m it holds

‘Ah((lhawh)a (Ihvgh))

(x> wn)lxn < sup (8.3)
X, S P F2R P
Consequently, problem ([B2) is well-posed.
Proof. We start by proving the following inf-sup condition for by: For all v, € U l}%’
b
loaloa s sup  2nlTwta) (8.4)
S o, ) Tmlma
Us h

< k,l,
Fix an element v, € Q’,%, and let T, ), € X, "™ be such that, for all T' € Ty, Ty,r = Vur and
7o rF = hp' (vp — vr). Denoting by S the supremum in (§4) from (G2) it is inferred that
2
lvpln = bu(Ty novn) < S|z nlsn,

and ([B4) readily follows observing that, by the definitions [@4]) and (&2) of the local norms,
|z, r|sr = |vr|vr. The inf-sup condition (B3] on A, and the well-posedness of problem (6.4))
are then classical consequences of the |-|s n-coercivity of my (itself a consequence of (S1)) and
the inf-sup condition [84) on by; cf., e.g., [14]. O

8.2 Energy error estimate

We estimate the error defined as the difference between the solution of the mixed hybrid prob-

. . ~ ~ hd k,l,m k.l .
lem (64) and the projection (g,,,4,) € X, x U, of the exact solution defined as follows:

A arhlme v ~ kI
o = lZ,h Vitp VT € Ty, Up = lUﬁhua

where i, € P**1(7y,) is such that, for all T € Ty, tp = tUp|r is the local elliptic projection of u
satisfying
Vir = 7qu37TVu and (4r —u,1)r =0, (8.5)

~kl, .
while I gl;lm is the global flux reduction map on 3, ™ Wwhose restriction to every mesh elements T' €

Tr coincides with I ngm defined by (£3). Optimal approximation properties for %y on admissible
mesh sequence are proved in [34] Lemma 3] and, in a more general framework, in [29].

Theorem 22 (Energy error estimate). Let uw € Hg () be the weak solution of problem (L)), and
assume the additional regularity w € H**2(Q). Then, it holds

I = Gnowy, = @) xn < Wl ey, (8.6)

k.l
Proof. The following error equation descends from ([82): For all (7,,,v,) € X, "xU Z:lo’

An((@y, — @y, — Uy), (Th,0p)) = En(Th,vp),
with consistency error
En(Th,vp) = (f,vn) +br(@p,vy) — mp(@y, T1) — bi(Ty, Uy, ). (8.7)

Recalling the inf-sup condition (83]), we then have that

~ N & ,
l(@n — Bt — )l S sup n(Zn; L) (8.8)

(o)Xt 0y ) |(Tho L)l
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To conclude, it suffices to bound & (7}, v;,). Denote by 1, ..., %, the addends in the right-hand
side of (81). Recalling that f = —Aw a.e. in Q, integrating by parts element-by-element, and
using the fact that the normal component of Vu is continuous across all interfaces F € F. and
that vp vanishes on boundary faces F' € }“,E , we have that

T = 2 ((VU,V’UT) + Z (VU'TLTF,’UF — UT)F) .

TeTh FeFr

Using the commuting property ([J) of D} to infer D@, = Alr, and integrating by parts
element-by-element, we have that

Ty =— Z ((Vu, Vor)r + 2 (Virnrp,vp UT)F) ’

TeTh FeFr

where we have used the definition (83 of tr to write Vu instead of Vi in the first term. The
Cauchy—Schwarz inequality yields

3 3
|1 + T < ( > hF|V(U—5T)|%> x < D1 hp'or —UT@) < W ] grrea oy g Jons
FeFr FeFr
(8.9)
where we have used the optimal approximation properties of @ to conclude.
Recalling the definition (#I3B) of m7, using the polynomial consistency EI0) of P4 together
with (S2), and expanding P%7, according to its definition @7) (with w = &r), it is inferred that

Ty =— > (Vir,Phry)r = ), ((ﬂT,DlTIT)T -y (aT,TTF)F> _

TeTh TeTh FeFr

Recalling (62) together with the definitions (&) of I ]leT and (1) of 7} and 7k, we get that

Ty = Z <—(u,DlTIT)T+ Z (u,TTF)F>.

TETh FeFr

Using the Cauchy—Schwarz inequality, we then obtain

1 1
2 2
T3+ Tl < lz (hTQIU—ETIQTJrZ hFllu—ﬂTlfw)] X lz <h%|DlTIT|2T+Z hFITTFI%)}

TeTh FeFr TeTh FeFr
< WYl grese oy |zl = 70
(8.10)
where we have used the optimal approximation properties of %7 and the inverse inequality | D17 <
hit|Tr| s, to pass to the second line. Combining () with (8I0), we infer the bound
En(zh,0n)| < Rl gz 1 (Ths 00) | X s

which, plugged into ([B.8]), yields the desired result. o

8.3 L2-error estimate

In this section we prove a sharp L2-error estimate on the potential under the following usual
elliptic regularity assumption: For all g € L?(£2), the unique solution z € H}(Q2) of the problem

(Vz,Vv) = (g,v)  Yve Hy(Q), (8.11)

satisfies

|2 52(0) < Calglrz@), (8.12)
with real number Cq > 0 only depending on 2. In the proof we will need the following consistency
property for the bilinear form by,.
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Proposition 23 (Consistency of by,). For all x € H(div;Q) such that x| € SH(T) for allT € Ty,
it holds
br(I%5" X v,) = (divx,v)  Vuy, € Uy, (8.13)

Proof. Recall the expression (G.1]) of by, and use commuting property () for D} together with
the fact that x has continuous normal components across interfaces F' € }“}L and vp = 0 on all
Fe Fp. O

Theorem 24 (L2-error estimate). Let the assumptions of Theorem hold true, and further
assume elliptic reqularity, f € H**O(Q) with § =1 if k€ {0,1} and | = 0, § = 0 otherwise. Then,
it holds

[ = unll < P52l grea (@) + P22 f | grss o) (8.14)

Proof. Let z solve (8I1)) with g = uj, — @y, and set, for the sake of brevity,
X, = lgf}lsz, Zp = lg’fhz.

Then, we have

[an = unl® = (u—un, £2) = =(f,2) = br(X 0 up), (8.15)
where for the first addend we have integrated by parts twice and used the fact that —Au = f,
while for the second addend we have used the consistency property ([RI3) of by, with x = Vz
and v, = u;,. Using (6.4a)) we get, denoting by gk LM the global mixed-to-primal potential-to-flux

operator whose restriction to every mesh element 1" € 7}, coincides with g?’l’m defined by (G3)),

_bh(XT’ ﬂh) = mh(XT’ Uh)

= mp(X, — Ch’ " Zhan) T an(Zy, ) (8.16)

~ kl,m kl,m

:mh(XT_Sh Zh, 0y, — )+mh(X —Sh Zn,ap) + (f,2n),

where we have inserted +¢5""'2, and used the fact that a7 = ¢}"""u,, together with the defini-
tion (G.I7) of the primal hybrid bilinear form a; to pass to the second line, and we have inserted
+5, and used (6.I6D) (with v, = Z,,) to conclude. Plugging (818]) into (8.I5), and observing that
(f,2n) = (! f,z) with ! denoting the L2-orthogonal projector on U} (cf. (EI6)), we arrive at

k,l,m~

~ ~ ~ klma -
[ —un|? = (mhf = fr2 = 7h2) + ma(Xy — S5 " 2ho @p — 84) + (X — S 20, 8- (8.17)

Denote by T1,To, T3 the terms in the right-hand side of [8IT). For Ty, if k€ {0,1} and | = 0, we
have

IZa] < i f = Flllz = mhzl < B2 f a2l o), (8.18)

while, in all the other cases,

1Tu| < Imhf = flllz = mhzl < B2 fl oy 2] 2 g0 - (8.19)

For To, the Cauchy—Schwarz inequality followed by (S1) and the energy error estimate (8.6
yields

~ kma
T2l S Xy — 0 " Enlznlen — Enllmn S B2 20 [l mere ) (8.20)

To estimate the quantity X, — b2, s in B20), let %, € PF1(7;) be the broken ellip-
tic projection such that Zp := Z|p is defined as in (83) with u replaced by z, observe that

k,lm dm gkl oy .
Ig;" Viin =s) "I, % by (G68), and use (6.7) to infer

sty k,l, ~ A k,l
1%, = i 2l < LSS (V2 = Vag)lsn + i L5 (2 = 20) |0

< |1 . (V2= VaZ)sn + 1L (2 = 2 lun < hlzlr2),
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where the conclusion follows from the stability of the L2-projector and the optimal approximation
properties of Zj,.
For T3, recalling the definitions (I7) of my, [@I3al) of mr, and (S2), we have

k(< Emos kA
T3 = Z (ST(KT —sr"2r), 818 r)T
TeTh

Z (P7X,. — Vi, Viir)r
TeTh

Z <(V(Z — \Z/T), VHT)T + Z (W%(VZ’FLTF) — VZ-’I”LTF,{L/T)F>
TETh FeFr

Z Z (W’;;(VZ’I’LTF) — VZ"I’LTF,’UT — U)F,
TeTy, FeEFT

where we have used the definition 8] of S% together with the orthogonal decomposition (22
and the fact that (S% o ¢%"™)2, = GEZ, = VIp (cf. 63) and (53)) to pass to the second line,
the definition @) of P% (with 7, = X, and w = Ur) together with the fact that DITXT =Nz
and an integration by parts to pass to the third line, and concluded in the fourth line using the
fact that Zr is a local elliptic projection to cancel the first term together with the fact that the
quantity (W’;;(VZ-’I’LT r) — Vznrp) is single-valued on every interface F € .7:}I and u = 0 on all
F € FP to insert u into the second term.

Using the Cauchy—Schwarz inequality and the optimal approximation properties of 7% and ur,
we conclude

1 Ts| < A5 Jul gz 2] 20 - (8.21)
Using (BI8)-(@2I) to estimate the right-hand side of (8IT) followed by the elliptic regular-
ity 8I2) to bound |z||g2(q) < |Un — ual|, the desired result follows. O
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