Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes

Abstract : We propose in this work a unified formulation of mixed and primal discretization methods on polyhedral meshes hinging on globally coupled degrees of freedom that are discontinuous polynomials on the mesh skeleton. To emphasize this feature, these methods are referred to here as discontinuous skeletal. As a starting point, we define two families of discretizations corresponding, respectively, to mixed and primal formulations of discontinuous skeletal methods. Each family is uniquely identified by prescribing three polynomial degrees defining the degrees of freedom and a stabilization bilinear form which has to satisfy two properties of simple verification: stability and polynomial consistency. Several examples of methods available in the recent literature are shown to belong to either one of those families. We then prove new equivalence results that build a bridge between the two families of methods. Precisely, we show that for any mixed method there exists a corresponding equivalent primal method, and the converse is true provided that the gradients are approximated in suitable spaces. A unified convergence analysis is also carried out delivering optimal error estimates in both energy- and $L^2$-norms.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52, pp.1-28. 〈10.1051/m2an/2017036 〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01365938
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : mardi 13 septembre 2016 - 18:13:16
Dernière modification le : mercredi 12 décembre 2018 - 11:39:58
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 15:16:26

Fichiers

umho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Boffi, Daniele Di Pietro. Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52, pp.1-28. 〈10.1051/m2an/2017036 〉. 〈hal-01365938〉

Partager

Métriques

Consultations de la notice

264

Téléchargements de fichiers

123