
HAL Id: hal-01365335
https://hal.science/hal-01365335

Submitted on 8 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Proteomic comparison of the EWS-FLI1 expressing cells
EF with NIH-3T3 and actin remodeling effect of

(R/W)9 cell-penetrating peptide
Séverine Clavier, Françoise Illien, Sandrine Sagan, Gérard Bolbach,

Emmanuelle Sachon

To cite this version:
Séverine Clavier, Françoise Illien, Sandrine Sagan, Gérard Bolbach, Emmanuelle Sachon. Proteomic
comparison of the EWS-FLI1 expressing cells EF with NIH-3T3 and actin remodeling effect of (R/W)9
cell-penetrating peptide. EuPA Open Proteomics, 2016, 10, pp.1-8. �10.1016/j.euprot.2015.10.002�.
�hal-01365335�

https://hal.science/hal-01365335
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


EuPA Open Proteomics 10 (2016) 1–8
Proteomic comparison of the EWS-FLI1 expressing cells EF with
NIH-3T3 and actin remodeling effect of (R/W)9 cell-penetrating peptide

Séverine Claviera,b, Françoise Illienb, Sandrine Saganb, Gérard Bolbacha,b,
Emmanuelle Sachona,b,*
a Sorbonne Université, UPMC-Univ Paris 6, Ecole Normale Supérieure, PSL Research University, Département de Chimie, CNRS, UMR7203 Laboratoire des
BioMolécules, 4 Place Jussieu, Paris Cedex 05, 75252 Paris, France
b Sorbonne Université, UPMC—Univ Paris 6, Plateforme de Spectrométrie de Masse et Protéomique-IBPS, cc41, 7-9 Quai Saint Bernard, Paris Cedex 05, 75252
Paris, France

A R T I C L E I N F O

Article history:
Received 1 June 2015
Received in revised form 25 August 2015
Accepted 25 October 2015
Available online 30 October 2015

Keywords:
EWS-FLI1
Actin cytoskeleton remodeling
Passive dissemination
Cell-penetrating peptide
SILAC quantitative proteomic approach

A B S T R A C T

EWS-FLI1 expression in NIH-3T3 fibroblasts has a profound impact on the phenotype, resulting in the
cytoskeleton and adhesive capacity disorganization (EF cells). Besides this, (R/W)9, a cell-penetrating
peptide (CPP), has an intrinsic actin remodeling activity in EF cells. To evaluate the impact of the
oncogenic protein EWS-FLI1 on proteins expression levels, a quantitative comparison of tumoral EF and
non-tumoral 3T3 proteomes was performed. Then to see if we could link the EWS-FLI1 oncogenic
transformation to the phenotype reversion induced by (R/W)9, (R/W)9 influence on EF cells proteome was
assessed. To our knowledge no such “CPPomic” study has been performed before.
Biological significance: Up to now very few global quantitative proteomic studies have been published to
help understand the oncogenic transformation induced by EWS-FLI1 fusion protein and leading to Ewing
sarcoma development and dissemination. The comparison we did in this study between a model tumoral
cell line EF and its non-tumoral counterpart (3T3) allowed us to highlight several features either common
to most tumor types or specific to Ewing sarcoma. Particularly, lack of actin cytoskeleton organization
could very likely be explained by the down-regulation of many important actin binding proteins. These
results are in accordance with the hypothesis of a passive/stochastic mode of dissemination conferring
Ewing sarcoma tumoral cell a high metastatic potential.
ã 2015 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Ewing tumors, first described by James Ewing in 1921 [1], are
the second most frequent tumor type and are generally developing
around or in bones but can also affect soft tissues (extra-osseous
Ewing sarcoma). James Ewing first suggested an epithelial cells
origin as Ewing’s tumors were showing similarities with angio-
endothelial tumors [1]. Other origins were further proposed:
hematopoietic cells [2], fibroblastic cells [3] or mesenchymal stem
cells [4]. Today, the question of the origin of Ewing sarcoma tumor
cells remains open.

Ewing sarcoma presents a remarkable characteristic: its
oncogenesis is generally accepted to be initiated by a simple
* Corresponding author at: Sorbonne Université, UPMC-Univ Paris 6, Ecole
Normale Supérieure, PSL Research University, Département de Chimie, CNRS,
UMR7203 Laboratoire des BioMolécules, 4 Place Jussieu, Paris Cedex 05, 75252
Paris, France.

E-mail address: emmanuelle.sachon@upmc.fr (E. Sachon).

http://dx.doi.org/10.1016/j.euprot.2015.10.002
2212-9685/ã 2015 The Authors. Published by Elsevier B.V. on behalf of European Proteom
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
genetic event that is a chromosomal translocation between
chromosomes 11 and 22 which fuses the EWS gene of chromosome
22 to the FLI1 gene of chromosome 11. The t(11; 22) chromosomal
translocation juxtaposes the 50 sequences from EWS with the 30

sequence from a member of the ETS transcription factor family
(FLI1 gene in 85% of cases) [5]. Fusion of EWS to FLI1 gene yields an
oncoprotein EWS-FLI1. EWS-FLI1 acts as a transcriptional regulator
to modulate expression of hundreds to thousands genes [6].

The oncogenic transformation resulting from EWS-
FLI1 expression was reproduced in a NIH-3T3 fibroblasts cell line
[7]. These NIH-3T3 fibroblasts were stably transformed by the
transduction of EWS-FLI1 fusion gene, giving birth to the so-called
EF cell line. EWS-FLI1 expression has a profound impact on cell
phenotype as it is causing a loss of their cytoskeleton organization
and adhesive capacity. Cell cytoskeleton is made of actin micro-
filaments, intermediate filaments and microtubules. Actin micro-
filaments result from the polymerization of monomeric actin
molecules (actin-G) and are called actin-F. The actin cytoskeleton is
a highly dynamic assembly regulated by a huge number of actin
ics Association (EuPA). This is an open access article under the CC BY-NC-ND license
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binding proteins (ABP). Up to now about 150 proteins have been
shown to have an actin binding domain and to be able to influence
its polymerization state [8]. The different classes of proteins
involved in the regulation of actin polymerization include actin
monomer sequestration proteins [9] such as thymosin b4 and
profilin, nucleation proteins such as Arp2/3 and WASP family
[10,11], capping proteins such as gelsolin [12] as well as filament
depolymerizing or, on the contrary, filament stabilizing proteins
such as tropomyosin or caldesmon [13,14].

As a result of their actin cytoskeleton disorganization, EF cells
display small, round cell morphology. The striking loss of actin
stress fibers and focal adhesion prevent the formation of
protrusions (filapodia, invadopodia . . . ) commonly used for the
spreading of tumoral cells [15–17]. This lead Chaturvedi et al. to the
hypothesis that, contrary to most tumoral cells, cells expressing
EWS-FLI1 may disseminate via a “passive/stochastic” model [18].
This original behavior and phenotype of Ewing sarcoma tumoral
cells is however not yet well characterized at the proteome level.

It was particularly interesting to perform this proteome study
as a previous study reported that (R/W)9, a polycationic and
amphiphilic cell-penetrating peptide (CPP) of sequence NH2-
RRWWRRWRR-CONH2 (amidated at the C-terminus), able to
internalize ubiquitously in eukaryotic cells, displays actin remod-
eling activity in EF cells [19]. After a few hours of incubation with
(R/W)9 peptide, a change in EF cells morphology (already visible
using an optical microscope) and a significant reappearance of
stress fibers were indeed observed by immunofluorescence. In
addition, a decrease in EF cells motility was observed by
videomicroscopy. Finally, the ability of EF tumoral cells to grow
without anchorage was also shown to be impaired in the presence
of the peptide. These results indicate a possible reversion of the EF
cells tumoral phenotype in the presence of (R/W)9 CPP [19].

To help filling the gap in proteomic data for Ewing sarcoma and
to progress in the understanding of (R/W)9 mode of action on EF
tumoral cells, we performed two sets of quantitative differential
proteomic experiments. First, we compared tumoral EF and non-
tumoral 3T3 cells to see how the oncogenic protein EWS-FLI1 was
affecting proteins expression levels. Then to see if, in terms of
protein expression, we could link the EWS-FLI1 oncogenic
transformation to the phenotype reversion induced by (R/W)9
CPP, we assessed (R/W)9 influence on EF cells proteome.

The comparisons between EF and 3T3 cells proteomes and
between EF cells treated by (R/W)9 and untreated EF cells were
performed using a robust global differential proteomic strategy
based on SILAC quantification technique [20]. One should notice
here, that the CPP (R/W)9 used in the work of Delaroche et al. (NH2-
RRWWRRWRR-CONH2) was slightly modified in the present study
to incorporate a benzophenone moiety: Biot(O2)-G5-K(pBz)-
RRWWRRWRR-CONH2 and therefore renamed photo(R/W)9. The
photoactivable benzophenone should allow complementary stud-
ies such as the search of CPP interacting partners. The biotin should
help purification of these partners. Both the biotin tag and the
photoactivable probe will not be of interest for the present work
but these modifications have required a biological validation to
ensure that photo(R/W)9 behaved similarly to (R/W)9, in particular
regarding the actin remodeling activity.

2. Experimental

2.1. Photo(R/W)9 peptide synthesis and biological validation

2.1.1. Peptide synthesis
Biot(O2)-G5-K(pBz)-RRWWRRWRR-CONH2 (photo(R/W)9) was

automatically synthesized (Fmoc strategy) as previously published
[21] with some modifications. Briefly, the biologically active
(R/W)9 peptide sequence NH2-RRWWRRWRR-CONH2 was first
synthesized with a peptide synthesizer (Applied Biosystems,
Darmstadt, Germany, model 433A) using a solid phase butylox-
icarbonyl (Boc) chemistry in the 0.1 mmol scale, starting from a p-
methylbenzhydrylamine resin (MBHA resin). Standard protocols
were used, with DCC/HOBt activation (10 eq. excess for standard
Boc amino acids). After the removal of the last Na-Boc protecting
group, the synthesis was manually completed by adding the
protected Lysine residue (Boc-Lys(Fmoc)-OH). The resin was dried
in vacuo and separated into two batches for the manual addition of
the 5 Boc-Gly-OH followed by the addition of the biotinyl sulfone
group. This biotin is oxidized to biotin sulfone (biot(O2)) to avoid
further oxidation during the sample preparation which would
dilute the MS signal (more species with lower intensity each). The
biotin moiety is separated from the (R/W)9 sequence via a string of
5 Gly to ensure flexibility of the spacer arm. The Lysine(Boc-Arg
(Tosyl)-OH) and tryptophan (Boc-Trp(Formyl)-OH) residues were
then deprotected using 20% piperidin. Then, the carboxybenzo-
phenone was coupled to the lateral chain of the deprotected lysine
residue. Finally, both peptidyl-MBHA-resins were treated with
liquid HF at 0 �C (2h30) under stirring, in the presence of anisole
and dimethylsulfide. After evaporation of HF and of the solvents in
vacuo, the resins were washed three times with Et2O and then
subsequently extracted three times with 10% AcOH. Lyophilization
of the extracts gave crude peptides, which were purified by HPLC
and purity was checked by UV (> 95%) and by MALDI-TOF MS.

2.1.2. Cytotoxicity evaluation
The cytotoxicity of photo(R/W)9 for EF cells was tested with a

cell counting kit (CCK-8) commercialized by Dojindo (Dojindo
Laboratories, Kumamoto, Japan). 20,000 cells were harvested in a
96 wells plate 24 h before the beginning of the peptide treatment.
Cells were incubated with photo(R/W)9 or (R/W)9 with concen-
trations range from 1 to 30 mM. The percentage of cell viability is
directly related to the absorbance at 450 nm (Fluostar optima
microplate reader, BMG labtech, Offenburg, Germany) of the WST-
8 formazan solution and was evaluated after 2 h, 3h30 and 5 h
incubation with peptides. Triplicates were performed for each
condition (concentration and type of peptide), which were
repeated independently at least twice.

2.1.3. Internalization measurements
After a 75 min incubation at 37 �C with a extracellular

concentration of 5 or 7.5 mM, internalization capacity of photo
(R/W)9 was quantified with a mass spectrometry quantification
protocol using the deuterated version of the photo(R/W)9 as the
internal standard as previously described [22].

2.1.4. Biological activity
The actin remodeling activity of photo(R/W)9 was assessed by

immunofluorescence as previously described [19]. 10,000 cells
were harvested on thin 12 mm glass slides coated with gelatin 24 h
before treatment with the peptide. These cells were submitted to a
16 h incubation with 5 mM photo(R/W)9. Cells were then washed
with PBS, fixed with paraformaldehyde 3%, permeabilized with
Triton X-100 0.4% and incubated with phalloïdin FITC and DAPI to
label actin stress fibers and cell nuclei (chromatin) respectively.
Cells were observed using fluorescence microscopy (Eclipse,
TE2000-S, Nikon, Tokyo, Japan).

2.2. 3T3 and EF cell line production

3T3 cells are embryonic mouse fibroblasts. EF cells correspond
to a monoclonal cell line obtained by transfection of 3T3 by the
cDNA encoding the protein EWS-FLI1 under the influence of the
LTR internal promoter of the murine leukemia Moloney virus in a
retroviral vector p-BABE-puro containing EWS-FLI1 cDNA and a
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puromycin resistant gene allowing for the selection of the
transformed cells. The cell line NIH 3T3 transformed by the
EWS-FLI1 oncoprotein (EF cells) as well as the corresponding
control cell line transfected with an empty vector (3T3 cells) have
been provided by Dr. J. Ghysdaël (Institut Curie/CNRS UMR 3306/
INSERM U1005).

3T3 and EF cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% newborn calf serum (Invitrogen),
penicillin (100,000 IU/l), and streptomycin (100,000 IU/l) (PAA
Laboratories) and selected with 25 mg/ml puromycin (Sigma).

2.3. Stable isotope labeling with amino acids in cell culture (SILAC)

EF and 3T3 cells were grown in A14431-DMEM (high glucose,
no glutamine, no lysine, no arginine) media with 10% dialyzed NCS
(new-born calf serum), 1% penicillin-streptomycin, 4 mM gluta-
mine and either 146 mg/l L-lysine-2HCl and 84 mg/l L-arginine-HCl,
or 146 mg/l 13C6 L-lysine-2HCl and 84 mg/l 13C6

15N4 L-arginine-HCl
for six passages, and incorporation efficiency was determined by
mass spectrometric analysis. All cultures materials were from Life
Technologies and amino-acids (isotopically labeled or not) were
from Pierce (Both Thermo Fisher Scientific brands, Waltham, MA,
USA).

2.4. Sample preparation

Cells were grown in 10 cm plates making sure that the two cell
populations were at the same density and that both were at about
80% confluence on the sample preparation day. EF cells treatment
with photo(R/W)9 CPP was performed during the night preceding
the sample preparation adding 25 ml of a 1 mM solution of photo
(R/W)9 CPP in order to have a 5 mM final concentration in the 5 ml
of culture medium. Cells were washed, trypsinized, counted
(glasstic slide 10 with grids, Hycor Biomedical, Indianapolis, IN,
USA) and mixed at a ratio of 1:1 (2.106 cells of each condition). Cells
were washed, spinned down and lysed using 100 ml of lysis buffer
(100 mM Tris–HCl, 100 mM DTT, 4% SDS). Protein concentration
was measured using a BCA assay from Pierce. 100 mg of proteins
were separated by 1D-SDS polyacrylamide gel electrophoresis
(10%) and stained with Coomassie blue. The gel was sliced into
10 gel bands prior to reduction, alkylation and overnight trypsin
digestion at 37 �C (1:30 (w:w) protease-to-protein ratio).

2.5. Nano LC–ESI–MS/MS analysis

Protein digests were analyzed by nano-LC (Ultimate 3000,
Dionex,Thermo Fisher Scientific) coupled to an ESI-LTQ-Orbitrap
(LTQ Orbitrap XL, Thermo Scientific, Bremen, Germany) mass
spectrometer. Tryptic peptides were injected by the autosampler
and concentrated on a trapping column (Pepmap, C18, 300 mm
� 5 mm, 5 mm, 100 Å, Dionex) with water containing 2% acetoni-
trile (ACN) and 0.1% formic acid (solvent A). After 10 min, the
peptides were eluted onto the separation column (Pepmap, C18,
75 mm � 500 mm, 2 mm 100 Å, Dionex) equilibrated with 98%
solvent A. Peptides were separated with a gradient 0–50 min 2–
40% solvent B (98% ACN + 0.1% formic acid), 50–60 min 40–60%
solvent B, and 60–70 min 60% solvent B at a flow rate of 200 nl/min.
The LTQ-Orbitrap mass spectrometer is outfitted with a nano ESI
interface. Electrospray emitters were 360/20 mm o.d. �10 mm i.d.
fused-silica tips (PicoTip Emitter, Standard Coated SilicaTip, New
Objective, Woburn, MA, USA). The heated capillary temperature
and spray voltage were 200 �C and 1.5 kV, respectively. Orbitrap
spectra (automated gain control (AGC) 2.105) were collected from
m/z 500–2000 at a resolution of 30,000 in the profile mode
followed by data dependent sequential CID MS/MS spectra of the
ten most intense ions with a normalized energy of 35. A dynamic
exclusion time of 60 s was used to discriminate against previously
analyzed ions.

2.6. Data treatment, statistical analysis and interpretation

The peptides were identified and quantified using the Proteome
Discoverer 1.3 software (Thermo Scientific) with carbamidome-
thylation (C), oxidation (M), 13C6 (K) and 13C6

15N4 (R) as variable
modifications. The database used for protein identification is the
Uniprot protein database for the taxonomy Mus musculus (down-
loaded on http://www.uniprot.org/, 30th October 2013,
74,249 entries). False Discovery Rate (FDR) calculated at the
peptide level with a decoy database (reversed peptides sequences)
was set to 1%, MS tolerance was 10 ppm and MS/MS tolerance was
0.8 Da. Protein ratios were corrected using the median protein ratio
normalization.

The statistical analysis of the proteins lists obtained for each
experiment was performed with MyProMS software [23]. The
threshold values for absolute fold change in protein expression and
p-value for the ratio calculation were determined with a control
experiment mixing identical EF cells grown in light and heavy
medium at a ratio of 1:1. Proteins were found to be significantly
over- or under-expressed from an absolute fold change of 1.3 and a
p-value < 0.05. Three biological replicates of the experiment
comparing (1) EF versus 3T3 and (2) EF treated with photo
(R/W)9 versus EF untreated were performed.

Only proteins with a ratio corresponding to a fold change
greater than 1.5, with a p-value < 0.05 and quantified in at least two
of the three replicates with at least two peptides were kept for data
interpretation.

Analysis of the protein networks for significantly over- or
under-expressed proteins was performed using the STRING
software available online (http://string-db.org/) [24,25].

3. Results and discussion

3.1. Biological validation of the actin remodeling activity of
photo(R/W)9 peptide in tumoral EF cells

Cytotoxicity assays with photo(R/W)9 on EF cells have shown
that this CPP affects the cell viability above 7.5 mM extracellular
concentration (Fig. S1-A). Photo(R/W)9 is more cytotoxic than (R/
W)9 for which no cell viability decrease was observed until 30 mM
(not shown)[19]. However it should be noted that this higher
cytotoxicity can very likely be explained by a much higher
internalization capacity, about six times more efficient for photo
(R/W)9 compared to (R/W)9 (�3 pmol versus �0.5 pmol, respec-
tively at 5 mM extracellular concentration) (Fig. S1-B). For the
comparison of EF cells treated with photo(R/W)9 CPP untreated EF
cells, a 5 mM extracellular concentration was further used to
prevent any cytotoxicity effect. (For photo(R/W)9 this corresponds
to about 2.106 CPP molecules internalized in each cell, taking into
account an estimated cell volume of 1.5 pl [22]). Finally immuno-
fluorescence experiments indicated that the addition of the
photoprobe and the biotin tag to the (R/W)9 sequence did not
affect its actin remodeling activity. Photo(R/W)9 thus proved to be
a suitable model to investigate the actin remodeling effect
previously observed for (R/W)9 [19] (Fig. S2).

3.2. Comparison of tumoral (EF) and non-tumoral (3T3) cell
proteomes, using a SILAC experiment

EF cells have been labeled with heavy Arg and Lys whereas
3T3 cells were grown with light amino-acids. Quantification of the
protein levels (heavy/light) was done using the software Proteome
Discoverer 1.3 (Thermo Fisher Scientific) (Supplemental file S9)

http://www.uniprot.org/
http://string-db.org/
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and the statistical analysis of the lists of under- or over-expressed
proteins obtained for each quantification experiment was per-
formed using MyProMS software [23]. Based on the filtering
criteria determined with control experiments (fold change >1.5, p-
value < 0.05 and presence in at least two of the three replicates
experiments) we were able to obtain a list of 94 proteins (among
1700 proteins quantified) with a significant variation of expression
level between EF and 3T3. Among these 94 proteins, 43 were over-
expressed and 51 under-expressed in EF compared to 3T3. The
volcano plot obtained for the comparison of EF versus 3T3
proteome is presented in Fig. 1 while the lists of proteins with
significantly modified expression levels are presented in Fig. 3-A
and -B.

These differences are compiled in Fig. 2 which summarizes the
results obtained and described in details in the following para-
graphs. The common features of tumoral cells are highlighted as
well as features specific to Ewing sarcoma tumors.

3.3. Proteins significantly over-expressed in EF cells compared to
3T3 cells

3.3.1. Glycolysis increase
For the upregulated proteins network, the most densely

populated interaction node corresponds to proteins involved in
glycolytic processes (Fig. S4).

This increase of glycolysis is a quasi-universal property for
primary tumor or metastatic cells [26,27]. Actually, in addition to
the ATP necessary for homeostatic cell activity, cancer cells need
supplemental energy to sustain their rapid growth. Moreover it has
been shown that tumoral cells, instead of producing ATP via a
classical aerobic and efficient two-steps process involving glycol-
ysis and the Krebs cycle (36 ATP molecules produced per glucose
molecule), are performing anaerobic glycolysis (10 ATP molecules
Fig. 1. Volcano plot obtained using MyProMS software [21] for the comparison of tumor
corresponds to a protein. The three colours, orange, pink and black are referring to the t
heavy labelled amino acids (13C6

15N4 L-arginine and 13C6 L-lysine) or classical amino acid
scale while the y axis corresponds to the p-value for the protein H/L ratio determined usin
the 1.5 fold change in protein expression level. The horizontal red line corresponds to a p-v
(not shown) for which no protein was found with a p-value < 0.05 and a fold change ab
modified expression between EF and 3T3 cells: on the left are proteins under-expresse
produced per glucose molecule). This metabolic phenotype is
known as the Warburg effect [28].

Therefore, to compensate this energy loss and to ensure a
greater and faster ATP production, tumoral cells have to consume a
larger quantity of glucose, which explains the up-regulation of
several proteins involved in the glycolysis process.

3.3.2. Increase of biosynthetic processes
Among the 43 significantly up-regulated proteins (Fig. S3-A),

13 are directly involved in biosynthetic processes (monosacchar-
ides, nucleotides, amino acids biosynthesis pathways . . . )
(Fig. S5). Tumoral cells which are characterized by a greater
growth rate actually need more “building blocks” to sustain their
proliferation [29]. Increase in biosynthetic processes requiring
high amount of energy is thus directly linked with the increased
glycolysis.

3.3.3. Oncogenic proteins
One can also notice the up-regulation of proteins known to be

involved in oncogenic processes such as moesin whose over-
expression was found necessary to the epithelial-mesenchymal
transition (EMT) of tumoral cells leading to metastasis formation
[30]. Another example is the insulin like growth factor 2 (IGF-2), a
mitogenic peptide of 7.5 kDa over-expressed in several cancers and
generally associated with a poor diagnosis [31,32] .The proliferat-
ing cell nuclear antigen (PCNA) which is a marker of cell
proliferation [33] and the Y-box protein 1 also known as
nuclease-sensitive element-binding protein 1, a marker of tumor
aggressiveness [34] are also interesting markers to distinguish
tumoral EF from non-tumoral 3T3 cells.

3.3.4. Up-regulation of an actin stress fiber dissoluting protein
The protein STE20 like serine/threonine protein kinase (SLK)

plays a role in remodeling of actin cytoskeleton [35]. It was shown
al cells EF (heavy = H) and their non-tumoral counterparts 3T3 (light = L). Each spot
hree biological replicates. (H) and (L) indicate that the cells have been grown with
s, respectively. The x axis corresponds to the H/Lratio of quantified proteins in log2
g the different H/L peptides ratios for this protein. Vertical green lines correspond to
alue = 0.05. These threshold values have been determined with control experiments
ove 1.3. Outside the zone delimited by these lines are proteins with a significantly
d in tumoral EF cells and on the right the over-expressed ones.



Fig. 2. Scheme summarizing key features of EF cells (an Ewing sarcoma model cell line) evidenced by proteins expression level variations existing between tumoral EF and
non-tumoral 3T3 cells. These features are either common to other tumor types or specific to Ewing sarcoma cells.
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that over-expression of this protein causes the retraction of cells
from their substrate and thus inhibits their active migration along
this surface. This decreased adhesion is likely due to the
dissolution of actin stress fibers by SLK [36]. The SLK over-
expression observed in EF compared to 3T3 is thus in good
agreement with the “passive/stochastic” way of dissemination of
cells expressing EWS-FLI-1 described by Chaturvedi [18].

3.4. Proteins significantly under-expressed in EF cells compared to
3T3 cells

3.4.1. Decrease of the oxidation-reduction and respiration processes
Among the 51 under-expressed proteins, 11 are directly

involved in oxidation-reduction processes (Fig. S6). Tumoral cells
compared to normal cells are under oxidative stress conditions due
to an increased metabolic activity neglecting mitochondria and
respiration processes [37], as already described in the previous
section. This oxidative stress is characterized by an increased level
of reactive oxygen species (ROS). ROS include free radicals such as
superoxides (O2

�), hydroxyl radicals (HO�) as well as non-radical
molecules such as H2O2.

It was shown that this increase in ROS level could have
numerous beneficial consequences for the tumoral cells. Actually it
appears that ROS stimulate cell proliferation and contribute to
mutations and genetic instabilities responsible for cancer drug
treatment resistance [38]. However, the mechanisms resulting in
oxidative stress observed in numerous cancers are not yet precisely
understood. It is especially difficult to assess the threshold of ROS
concentration necessary to maintain a favorable situation for
tumoral proliferation and one threatening cell survival.

Expression level modifications of proteins involved in oxida-
tion-reduction processes are a common feature for tumoral cells.
[Cu–Zn] and [Mn] superoxide dismutases (SOD), glutathione-S-
transferase Mu1 and Mu2, cytoplasmic and mitochondrial NADPH
isocitrate deshydrogenases or peroxiredoxin-2 are proteins with
anti-oxidants properties we identified with significantly decreased
expression levels in EF cells (Fig. S3-B). In a majority of cancers,
expression levels of antioxidant proteins such as SODs are rather
increased, likely to prevent cells from reaching a cytotoxic
concentration of ROS [39,40]. However in other types of cancer,
expression levels of SOD are decreased [41,42] as we observed
herein. This suggests that the way cancer cells regulate their ROS
level is varying from one cell type to another, and that in Ewing
sarcoma the level of ROS necessary to preserve the cancer cells is
reached by decreasing the expression level of proteins with anti-
oxidant properties.

On the contrary, it is interesting to notice that the hypoxia up-
regulated protein 1 is significantly over-expressed in EF cells
compared to 3T3 indicating that EF cells are under hypoxic
conditions. Several studies [26,43] have shown that tumoral cells
can adapt to low oxygen conditions, a situation they have to face to
develop in invaded tissues before the setup of new blood vessels
(angiogenesis).

3.4.2. Down-regulation of actin binding proteins
Actin cytoskeleton has a fundamental role in the cell life and

cycle (cell division, migration, signals transmission . . . ) and
mechanisms regulating actin dynamics rely on a large number
of actin binding proteins. The expression levels of these proteins
are usually modified during oncogenesis [44,45]. However to our
knowledge, these modifications in actin binding protein levels
have not yet been described in details in the literature for the
oncogenic transformation caused by EWS-FLI1.

A careful analysis of the list of under-expressed proteins
(Fig. S3-B) allowed us to identify a total of 12 proteins known to be
involved in actin dynamics. These proteins are gathered in Table 1
as well as their expression level variations and biological processes
implications [13,14,46–52].

With the exception of destrin and gelsolin contributing to the
maintenance of a monomeric actin pool [48,50], all the other actin
binding proteins identified with decreased expression levels in EF
cells compared to 3T3 play a role in the stabilization of actin
filaments (tropomyosin, caldesmon) [13,14], in their assembly into
network or bundles (filamin, prelamin A/C, lamin B1, myosin II
subunit, calponin-3) [47,49,51,52] or in the membrane adhesion
(LASP-1) [46].

Most of these proteins are linked to “actin filament based
process” gene ontology (GO) term [53] that is significantly
enriched for this list of proteins as depicted in Fig. 3.

Consequently this comparison of tumoral EF with non-tumoral
3T3 cells indicates that the oncogenic transformation induced by
the presence of the fusion protein EWS-FLI1 is leading to a
significant decrease of several key actin binding proteins. This
result is against what is currently seen for tumoral cells which tend
to reinforce their actin network in order to disseminate by
migration via the formation of filipodia, lamellipodia, etc. [15–17].
Nonetheless, this conclusion is in good agreement with Chaturvedi
et al. study [3] who have evidenced an original behavior of Ewing



Table 1
List of actin binding proteins (ABP) identified among the list of proteins under-expressed in tumoral EF (H) cells compared to non-tumoral 3T3 (L) cells. The second column
indicates the average H/L ratio and the associated coefficient of variation (CV in percentage) obtained for the three biological replicates (Figure S7 gives details about the
different H/L values obtained). The third column describes the function of these proteins on actin cytoskeleton dynamics.

Actin binding proteins (ABP’s) Average H/L ratio
and associated
CV

Function References

LIM and SH3 domain protein 1 (LASP-1) 1/1.9 (�4%) Regulation of cellular functions associated with actin cytoskeleton reorganization
at the membrane. Part of focal adhesion points and associated with zyxin

[46]

Filamin (Flna) 1/2.1 (�16%) Actin filaments cross-linking and orthogonal actin networks building blocks [47]
Destrin (Dstn) (or Actin depolymerizing factor ADF) 1/2.1 (�15%) Sequestration of actin filaments and binding to actin monomers [48]
Prelamin A/C 1/2.4 (�5%) Role in actin bundling [49]
Lamin B1 1/1.5 (�4%) Role in actin bundling [49]
Gelsolin (Gsn) 1/2.6 (�18%) Actin filaments capping and monomers sequestration [50]
Myosin (myosin regulatory light chain 12B
(Myl12b) + myosin-9 (Myh9) + myosin light
polypeptide 6 (My16))

1/1.5 (�7%)
1/1.5 (�4%)
1/1.5 (�3%)

Part of Myosin II complex linked to actin and pivotal role in cellular adhesion,
migration and division. Down-regulation of myosin regulatory light chains A or B
(MYL12B/12A) induces important cell morphology changes and disappearance of
actin stress fibers

[51]

Tropomyosin 1/1.5 (�15%) Lateral stabilization of actin filaments [13]
Caldesmon (Cald1) 1/1.9 (�24%) Lateral stabilization of actin filaments [14]
Calponin-3 (Cnn-3) 1/2.2 (�22%) Role in actin stress fibers formation [52]
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sarcoma cells with a passive/stochastic dissemination rather than
an active migration. Thus, EF cell phenotype characterized by a
disorganized actin cytoskeleton lacking stress fibers, by a round
morphology and the absence of focal adhesion point appears to
result from the down-regulation of several key actin binding
proteins as the ones we identified in this study.

3.5. Assessment of photo(R/W)9 treatment on EF cells proteome

As previously mentioned in the introduction section, the cell-
penetrating peptide (CPP) (R/W)9 has been reported [19] to reverse
the tumoral phenotype of the EF cells to 3T3 non-tumoral-like
phenotype with the reappearance of actin stress fibers in EF cells
after a few hours incubation with this CPP. In order to examine
whether we can correlate the proteomic differences found
Fig. 3. Interaction network generated with the list of significantly over-expressed protein
red are corresponding to proteins known to be involved in actin dynamics and gathered u
term in this list (p-value � 1.10�3).
between EF and 3T3 cells with the phenotype changes observed
by immunofluorescence, we compared the proteome of EF cells
grown in a light medium treated overnight with photo(R/W)9
(5 mM) to the one of untreated EF cells grown with heavy Arg and
Lys medium.

As for the comparison of EF versus 3T3 cells, three biological
replicates were studied to assess the effect of photo(R/W)9 CPP on
the EF cells proteome (Supplemental file S10). Again the threshold
values for the absolute fold change and p-value determined in the
control experiment were used. However in this case, among the
1745 proteins identified (1% FDR) and quantified (2 peptides
minimum), none was found with an expression level significantly
and reproducibly modified (Fig. S8).

Therefore, the strong phenotype change of EF cells observed by
immunofluorescence (Fig. S2) and also simply with an optical
s in EF versus T3 using the open source STRING software [24,25]. Spheres coloured in
nder the actin filament-based process GO term which is one of the mostly enriched
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microscope after 18 h treatment with photo(R/W)9 peptide, does
not result from important modifications of the EF cell proteome.

In SILAC based quantitative proteomic experiments we have
access to the relative expression levels quantification for a
significant part of the cell proteins. However one should keep in
mind that even with efforts made in the fractionation of the cell
lysates as well as in the MS analysis we are still limited in the
number of proteins we are able to identify, notably because of the
great dynamic range of protein expression levels. Consequently we
are mostly looking at the proteins produced in large quantities by
the cells. In addition, even with isotope labeling, systematic error
in peptide relative quantification due to biology variability led us to
only consider important expression changes (>1.5 fold change).
The energetic cost for cells to increase the production of an
abundant protein by 50% can be more important than the one to
double or triple the quantity of less abundant proteins. Unfortu-
nately these weakly abundant proteins remain difficult to detect in
global proteomic approaches. Beyond these limitations of protein
abundance and range of expression variations, it has been
demonstrated that PTMs are crucial and can quickly boost a
protein activity [54] at constant expression level and may even
compensate a decrease in expression level. Consequently an in
depth study of PTMs such as phosphorylation might help
understanding photo(R/W)9 mode of action.

Another important option to consider in order to explain
phenotype changes at constant protein levels is protein organiza-
tion in the cells. Protein-protein interactions play a key role in
regulating signaling pathways and thus cellular functions. At 5 mM
extracellular concentration about 2.106 photo(R/W)9molecules are
internalized per cell. Although the number of photo(R/W)9
molecules internalized is about two orders of magnitude lower
than the number of actin monomers (estimated to be 5.108

molecules per cell) [56], photo(R/W)9 CPP molecules could disrupt
some actin related protein complexes or stabilize others. The
presence of photo(R/W)9 molecules could thus compensate the
down-regulation of key actin binding proteins evidenced in EF
versus 3T3 and lead to actin stress fibers formation through direct
interaction with actin [55] and to subsequent morphological
changes.

4. Conclusions

The gap between genome and phenotype has been evidenced
already a while ago and proteomics was shown to be an extremely
useful tool to help filling this gap [56]. The quantitative proteomic
experiments realized to compare tumoral EF and non-tumoral
3T3 actually help us to gain insight in the molecular changes drove
by EWS-FLI1 oncogene and offer a set of proteomic data to
biologists working on Ewing sarcoma. We can already say from
these data that EF cells expressing EWS-FLI1 protein exhibit some
characteristic features of tumoral cell at the proteome level such as
metabolic changes (bioenergetics, biosynthesis, redox status). In
addition, the down-regulation of several key actin-binding
proteins distinguishes Ewing sarcoma cells from the great majority
of tumoral cells and is here proposed to explain the peculiar
phenotype of EF cells as well as their particular mode of
dissemination.

The second objective of the study, that was to understand the
photo(R/W)9 mode of action on EF cells, revealed that a phenotype
change can not necessarily easily be seen using a global
quantitative proteomic approach. Moreover this study indicates
that even if proteomics has allowed a big step forward in the
correlation between a molecular perturbation and the associated
phenotype it is still not straightforward to link a phenotype change
and proteome. Especially, with these experiments we saw that
similar phenotypes can correspond to clearly different proteomes
and that a drastic phenotype change is not necessarily related to
important changes in proteins expression levels.
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