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Abstract. This paper shows how to abstract networks of timed
automata in order to accelerate the analysis of quantitative properties
such as path or cycle duration, that would otherwise suffer from the state
space explosion. Two approaches are introduced, a single step strategy
and an iterative one, where a part of the network of timed automata
is merged and abstracted. As a consequence, the state space is reduced
and model-checking is simplified. These approaches are illustrated on a
case study, where the comparison is done by calculating the cycle time
of one automaton in the network, both on the real network and on the
two abstracted ones, showing that the method reduces significantly the
runtime, or simply renders feasible the analysis of the system.

Keywords: Timed automata - State space explosion - Duration -
Approximation

1 Introduction

Timed automata [1] are a powerful formalism useful to model and analyse real-
time concurrent systems. They extend finite state machines by adding real-valued
variables, called clocks, which evolve linearly and can be compared with integer
constants in states (yielding invariants), called here locations, and along transi-
tions (yielding guards), where some clocks may also be reset to zero; additional
(Boolean or integer) variables may also be introduced, checked in guards and invari-
ants, and updated along transitions. Networks are sets of timed automata, which
may synchronise through binary communication channels, meaning that a com-
munication involves exactly two components, one performing an emission k! and
the other one performing a reception k? on the same channel k. Model checking
may be performed on such models, in particular with tools like UPPAAL [9,12].

It is well known that the automated analysis of complex systems, with many
communicating components and different orders of magnitude in the used con-
stants, quickly faces a state explosion problem, making the analysis extremely



time and/or memory demanding, or even unfeasible. In such a context, this
paper focuses on the computation of upper/lower bounds for the travelling time
of various paths or loops in timed automata components. The objective here is
to determine if the timing characteristics of the considered system are satisfac-
tory or not, rather than to compute exact bounds (even if it may often lead to
tight bounds). We use approximations, which are based on the analysis of the
involved communication structure of the network and replace some parts of it
by suitable abstractions. We present two approaches (a one step and an iterative
one) accelerating and often simply making it possible to achieve these compu-
tations. We shall use as a running example a network of timed automata that
occurred in the field of mixed reality applications [2].

Related Work. The problems arising from the fragmentation of the state
space due to different orders of magnitude in the constants have already been
addressed, for various variants of timed automata, and the solutions have some-
times been incorporated in tools [8,10]. The problems due to the complexity
of some components have been handled in [6], for instance, where locations are
merged in such a way that the added behaviours do not impact the property at
hand, or in [7], where UPPAAL has been used in an industrial case study as a
“structured testing” tool in order to find bounds for some activities. By contrast,
the fact that the size of the state space of distributed systems increases in an
exponential way with the number of components is seldom considered, except
maybe in [11] where, in a very specific framework, two kinds of components may
be distinguished and each kind may be analysed individually, allowing to inject
the results in the analysis of the other kind, iteratively until convergence; and
in [3] where the authors exploit the specificities of a 2-level real-time scheduling
on a single platform. The idea we shall develop here is rather different: in order
to simplify the system and make it more adequate for quantitative analyses, we
shall consider subsystems and abstract the rest by simple computation nodes.

Paper’s Structure: The next sections present first the necessary definitions, then
introduces our running example and recalls how one may use UPPAAL to
analyse a network of timed automata. Section’ presents an abstraction strat-
egy, available when only a few components are out of reach of a direct analy-
sis. Section 6 shows how to proceed when no (or too few) components may be
analysed. The last section concludes and discusses some possible extensions.

2 Preliminaries

Syntactically, a timed automaton is an annotated directed (and connected)
graph, provided with a finite set of non-negative real variables called clocks;
additional (Boolean or integer) variables may also be introduced. The nodes
(locations) are annotated with invariants, (predicates allowing to enter or stay
in a location); they may also have some qualifiers, like an urgency indication. The
arcs are annotated with guards (predicates allowing to perform a move) or com-
munication actions, and possibly with some clock resets and variable updates.



We shall not detail here the exact syntax allowed for the predicates, adopting
the one used in UPPAAL. As usual, the empty predicate is interpreted as true.

In order to glue together the various components of a network of timed
automata, some arcs will be classically annotated with communication actions
(variable updating may also serve to materialise interactions between compo-
nents, but also inside a component) which may be either of the form k!, meaning
the emission of a signal on a channel k, or a complementary k7, meaning the recep-
tion of some signal on channel k, supposed to synchronise with a k!. A channel may
also have some qualifiers, like an urgency indication. The absence of synchronisa-
tion action on an arc indicates an internal activity of the automaton.

Definition 1. A timed automaton is a tuple A = (S,s°, X, K,V, E,I), where

~ S is a set of locations and s° € S is the initial one,

— X is the set of clocks,

— K is the set of communication actions,

-V is the set of variables,

- ECSx(KxBxUx?2%) xS is a set of arcs between locations, possibly
annotated with a communication action in K, a guard in B, a variable update
U, and a set of clock resets in 2%,

— I: S — B assigns invariants to locations.

Definition 2. A network of timed automata is a set A = {Ay,..., A,} where
each A; = (S;,8Y, X;, K;, Vi, Ei, I;) is an individual timed automaton, the sets
S; being disjoint.

The semantics of a network of timed automata is that of the underlying
timed automaton (synchronising together through channels and possibly also
interacting through common variables and clocks) as recalled below, with the

following notations. A location vector is a vector § = (s1,...,8,); the initial
location vector is 8% = (s,...,5%). We denote by si% s; the arcs between

locations, where k is a communication action (which may be absent), b a guard
(empty guard is interpreted as true), r is a set of clocks to be reset (possibly
empty), and u is an update of variables (also possibly empty). The invariant
predicates are composed of predicates over location vectors I(5) = A, I;(s;). We
write 3[s}/s;] to denote the vector where the ith element s; of § is replaced by s/,
and 5[s}/si, s}/s;] to denote the vector where the ith element s; of 5 is replaced
by s/ while the jth element s; of 5 is replaced by s;. A valuation is a function v
from the set of clocks to the non-negative reals, and from the set of variables to
Boolean or integer values. Let V be the set of all clock and variable valuations,
vo(y) = 0 for each clock or integer variable y, and v (b) = false for each Boolean
variable b. We shall denote by v F F the fact that the valuation v satisfies (makes
true) the formula F'. If r is a clock reset and u a variable update, we shall denote
by v[r,u] the valuation obtained after applying clock reset r and the variables
update u to v; and if d € Ryq is a delay, v + d is the valuation such that, for
any clock z, (v + d)(x) = v(z) + d, the variables being left unchanged.



Definition 3. The semantics of a network A = {A1,... A,} is defined as a
timed transition system (St, stg, —), where St = (S1x,... x Sp) X V is the set
of states, sty = (5°,1) is the initial state, and —C St x St is the transition
relation defined by:

— (silent): (3,v) — (8',V') if there exists Sian> s;, for some i, such that § =

S[st/si], vE b, v =v[r,u] and V' E I(5),

— (sync): (5,v) — (8',v') if there exist two arcs 81% st and 3]% s}
with i # j, such that v = b; Nb;, 8" = 3[si/si, s} /s;], V' = v[ri Urj,ui;uyl
(assuming the updates u; and u; commute) and V' E I1(5'),

- (timed): (3,v) — (3,v+d) if Ve € [0,1] : v+ x - d E I(3), there is no urgent
synchronisation possible (they have precedence on time passing), and there is
no urgent location in 3 (time may not progress in an urgent location).

3 Running Example

In order to illustrate our techniques, we shall use along the paper the running
example, originated from [2] and depicted in Fig.1 modelling an augmented
reality system with a sensor I (for inertial), two cooperating processing units
P (for priority) and L (for lower), a memory component M and two rendering
loops G (for graphical) and H (for haptical).

Component I, once initialised in sg, cyclically acquires data in s; and sends
it on channel k; to processing unit P. After initialisation (between sy and s3),
component P cyclically awaits synchronisations with components I (if available)
and L (mandatory), processes data in location s5 and sends its results to com-
ponent L on channel kp. Component L acquires data from component P, then
processes them in location s; (which takes at least 20 and at most 60 time units),
synchronises with memory M (on channel lock), writes data in it, which lasts
between 10 and 20 time units (in location s3), and unlocks M. Two render-
ing components G and H access cyclically M, read and update data in s; and
process them in ss.

The underlying communication/synchronisation scheme is represented in
Fig. 2.

This kind of system may be handled by UPPA AL. Note that in this example
all the communication channels are urgent, i.e., when one or more communica-
tions may take place, one of them must occur immediately, and we resume until
no more communication is allowed (but other moves may occur before the time
progresses): then the time may continue to progress. It is easy to see that no Zeno
phenomenon may occur here'. Each component is essentially looping, possibly
after an initialisation part. We shall here consider the timing characteristics of
components L and G, and in particular the bounds of durations for performing
their loops.

! j.e., a situation where infinitely many moves may/must occur in a finite/zero delay.
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Fig. 1. Network of timed automata of Example 1 (all clocks are local and all channels
are urgent).

Fig. 2. Communication/synchronisation schema of the running example. The nodes
represent components (individual timed automata) and the arcs the synchronisations
with the direction from emitting to receiving component.

4 Timing Analysis

Before starting an estimation of the time needed to reach some location s’ from
location s in a component C, we may first wonder if it may not happen that one
gets stuck during the travel (this phenomenon may have various causes - local
or global deadlock, starvation, infinite waiting — analysed in [2,5]). This may be
checked with a leads to property ¢ - -> ¢’, verifying if when ¢ is true it is certain
that ¢’ will eventually become true also, for which UPPAAL has an efficient
algorithm. One may thus use a query C.s- -> C.s’ to check if it is certain to
reach s’ from s in C. A variant of this kind of formula is C.s- -> —C.s, allowing
to check that we cannot get stuck in location s. Applying this kind of formula
to a loop needs however to instrument a bit the considered component, i.e., to
add some features which do not modify the component’s behaviour but allow
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Fig. 3. Some instrumented versions of L: L1 with added urgent location Sg, L2 with
added urgent location Sp, local clock y and Boolean variable b; L3 with added local
clock y, and Boolean variable b; and instrumented version G1 of G with added urgent
location $p and local clock y.

to analyse it. Indeed, the formula C.s- -> C.s will always return true, because
it is satisfied by the empty path, hence does not correspond to a true looping
behaviour. A general technique to solve this kind of problem is to introduce an
urgent location 5 (where time may not progress, represented in dark blue in the
figures) before the considered location s, with all the arcs to s redirected to s.
This technique is general, but even if it does not modify the original behaviour, it
increases the size of the state space since it introduces a new location. However,
in some circumstances, if there is a location s; such that it is not possible to
loop without visiting it, it is enough to check the pair of formulas C.s- -> C.s;
and C.s1- ->C.s.

As an example, the instrumented version L; of component L is illustrated in
Fig. 3, and the first three lines of Table 1 give the liveness results for L and L;.

In order to evaluate timing characteristics, we may use UPPA AL queries of
the kind sup{¢}: = to compute the supremum (respectively, inf{p}: x to com-
pute the infimum) of clock  when formula ¢ is true. Note that there may be
an asymmetry in their usage; for instance, sup{C.s}: C.z computes the supre-
mum of clock  when leaving location s in component C, while inf{C.s}: C.x
computes the infimum of clock x when entering location s in component C'.

However, to make a good use of those queries it may again be necessary to
instrument a bit the considered components. First, one should add new clocks
allowing to measure the interesting paths, with resets put on the arcs entering
the starting point(s), unless existing clocks already do the job. Next, one may
need to add urgent locations, for instance when we need to consider the maximal
time to enter a location and not the time to leave it. This may also be used to
differentiate the various ways to enter a location, when there are many ones.
Finally, one may introduce Boolean variables (initialised to false) to select paths
satisfying some constraints.



Table 1. Model checking results, and execution times observed for a system with Intel
Core i5 1.4 GHz and 4GB RAM. We denote by ex1-L;, for i = 1,2, 3, the specification
composed of all the automata of Example 1 where component L is replaced by its
instrumented version L, allowing to perform the desired request. The interpretation of
ex1-G1 is analogous.

Model | Query Result | Time [s] | Interpretation

ex1 L.so- -> L.sa true 208 first half loop of L feasible

exl L.sa-->L.sg true 139 second half loop of L feasible

exl-L1 | L1.s0- -> L1.50 true 345 loop feasible

ex1-Lo | inf{L2.50}: La.y >70 148 lower bound of looping time

exl-Lo |sup{L2.50}: L2.y < 2550 | 150 upper bound of looping time

ex1-Lo |inf{L2.50 A = L2.b}: Loy | > 1330|148 lower bound of the first loop

ex1-Lo | sup{L2.50 A =L2.b}: Lo.y | < 2550 | 157 upper bound of the first loop

ex1-Lo |inf{L2.50 A L2.b}: Loy > 70 158 lower bound of the next loops

ex1-Lo |sup{L2.50 A L2.b}: Lo,y | <950 |159 upper bound of the next loops

ex1-Lgz | inf{Ls.s2 A =L3.b}: Ls.y | > 1320|110 lower bound of sop—s2 in the
first loop

ex1-Lz | sup{Ls.s1 A —=L3.b}: Lg.y | < 1720|111 upper bound of sp—s2 in the
first loop

ex1-Lz | inf{Ls.s2 A L3.b}: L.y > 60 112 lower bound of s5—s2 in the
next loops

ex1-Lz | sup{Ls.s1 A L3.b}: Ls.y | <120 |113 upper bound of s5—s2 in the
next loops

ex1-G1 | inf{G1.50}: G1.y — int. 1h | lower bound of looping in G

ex1-G1 |sup{Gi.50}: G1.y - int. 1h | upper bound of looping in G

ex1-G1 | G1.50- -> G1.50 - int. 1h | loop feasible?

For instance, for the timing analysis of component L of Example 1, one
may consider its instrumented version Ly, as shown in Fig. 3, and use the pair
of queries inf{L2.50}: Lo.y and sup{L2.50}: La.y to get the lower and upper
bounds (respectively) of the looping time: this is also illustrated in Table 1.
However, since component P has an initialisation phase before entering its true
looping part, one may suspect that the first loop of L and the next ones behave
differently: this is confirmed by the next four queries in the table, where the
Boolean variable b in Ly allows to distinguish the first loop from the next ones
(it is also possible to unroll explicitly the first iteration(s) of the loop in order
to analyse them successively; this amounts for instance to replace a looping
structure o by a structure a(a*) if we want to isolate the first iteration from
the next ones; we shall not do it here, but a partial unrolling will be used in the
next two sections, for other reasons). For further use, we are also interested in
the time to go from s5 to so, and in the time to first enter so (from the initial
state); this may be analysed with the instrumented version L3 of L, also shown



on Fig. 3 and illustrated in Table 1: the Boolean variable b is used to distinguish
the first time one enters sz (from sg) from the next ones (from ss).

Similarly, the bounds of the looping times of components G may be obtained
from the instrumented version Gy, also shown on Fig.3, and the results are
detailed at the end of Table 1.

All the computations succeeded, except for the looping times of G, for which
the executions were stopped after 1 hour, and the accelerations by over/under-
approximations offered by UPPAAL do not help. It could happen that the
bounds for the looping time of G may be obtained by allowing more execution
time (and/or a much more powerful computer), but in any case this would likely
be considered unsatisfactory by the end user, who probably would like to analyse
many variants of the model.

Note that, to get bounds for the time needed to follow some path, one may
also add the bounds for sub-paths, but the result is generally less accurate than
the global estimation; this is due to the well known property that the inf(f; +
f2) > inf(f1)+inf(f2) and sup(f1 + f2) < sup(f1)+sup(fz) for any two functions
f1 and f3, the equality being only obtained if the two functions are independent,
or by mere chance, because the extrema are reached at the same points.

5 Direct Abstraction Strategy

We have seen in the previous section that the computation of timing character-
istics may blow up. This is usually due to a combination of a complex system,
in particular a highly distributed one, and ill balanced constants in the invari-
ants and guards. We shall now consider strategies allowing to get around this
unfortunate phenomenon in some circumstances, at least partly.

First, it may be observed that it is usually not necessary to know the exact
infima and suprema, but only to be able to assert that some traveling time is not
higher than some value, and possibly also not lower than some other value. Hence
it is sufficient to determine an (approximate) interval [min, mazx] encompassing
the traveling time under consideration, i.e., to get an over-approximation of the
true bounds. We here considered a closed interval, but sometimes we shall use
open or semi-closed ones, when it is known that some extremum may not be
reached.

Since one of the main sources of computation failure is the size of the system,
we shall delineate a subsystem including the component we want to analyse and
abstract away the interactions of this subsystem with the rest of the system, in
order to isolate the subsystem and make its analysis feasible. This subsystem
should be chosen with care: it should be small enough to allow the computations,
but not too small to avoid uselessly large approximations (knowing that the
travel time is in interval [0,00] is not very useful). This may also be used to
only keep in the subsystem components with similar constants. Also, we shall
assume that the only interactions of the subsystem with the exterior is through
rendez-vous on channels (no shared clock or variable), and that we are able to
analyse the times taken by these communications.



In such a subsystem, we may distinguish internal components, which do not
communicate with the exterior, and border components, which communicate
both with the subsystem and with the exterior. The intuitive idea behind the
method is then to replace those communications in the border components by one
or more computation arcs, of the kind illustrated in Fig. 5, over-approximating
the true time needed by those communications: guard z > min and invariant
x < max ensure a delay in the interval [min, max]. Strict inequalities are also
possible, for example guard x > min and invariant * < maz ensure a delay
in the interval (min,max), and analogously for other combinations. The values
min and max, as well as the choice between strict or weak inequalities, should
be provided by the analysis of the abstracted communication in the border com-
ponent behaving in the full system.

In our example, since we want to analyse component GG, we shall consider the
subsystem ss1 (with the interior composed of M, H and G, and border compo-
nent L), illustrated on top of Fig. 4. Note that the choice of the actual boundary
of ss1 is quite arbitrary provided that it contains G, does not communicate with
the rest of the system through clocks or variables, (which is the case here since
all the clocks and variables are local) and the border may be analysed in the full
system (which is the case in our example, as detailed in Table 1).

In general, if all the bordering components may be analysed in the full system,
in order to abstract away the interactions with the exterior of the subsystem, the

ssl
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x<1720© e > 1320 1

z > 60

lock! |z :=0

unlock' z > 10
z:=0

r <20

x < 120

Fig. 4. Subsystem ss1 of Example 1, depicted within the communication scheme, and
the border component La (obtained from L by abstracting the exterior of ssl, i.e.,
components I and P).
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Fig.5. A computation arc over-approximating (by an interval [min,maz] on some
‘computation’ clock ¢, with the guard b, the final clock resets r and the global variable
updates u) the traveling through a communication arc or phase. Clock c is reset on all
the incoming arcs to s and should not be reset by other components; it is in principle
a new clock introduced for the abstraction, but it may also be an existing one that is
available at that point. I materialises the invariants driving the other ways to leave s,
usually in the form of a disjunction of inequalities of the kind ¢ < max’ or ¢ < max’.

most direct technique is simply to replace each communication arc (k! or k7) with
the exterior by an adequate computation arc, i.e., with an interval [min, maz]
if we know from the analysis of the component that the communication takes
between min and maz time units. (see Fig. 5; note that constraints of the kind
0 < ¢ and ¢ < oo may be simply dropped, and that we assumed here to have
inclusive extrema, while they may be exclusive.) Also, as already noticed, in
order to avoid too large approximations due to an initialisation phenomenon, it
may be useful to unroll the first loop execution(s).

It may happen that a same communication arc allows to interact both with
the interior and the exterior of the subsystem (in our example, if the left border of
ss1 was shifted right so that the border becomes component M and component L
is now in the exterior, channels lock and unlock connect M both to the exterior
L and to the interior G and H). In this case, we should duplicate those arcs
in order to separate the communications (in our modified example, this would
mean replace the lock in M by a choice between lockl and lock2, lockl being
used in L and lock2 in G and H, and similarly for unlock).

The technique we just sketched is general but it uses the least possible gran-
ularity for the abstraction of the communications with the exterior of the sub-
system, which unfortunately multiplies the intermediate computations (to eval-
uate the min/maz values) and accumulates the propagations of approximations
(due to the fact already mentioned that the sum of two mins/maxs may be
lower /higher than the min/max of the sum). Hence, instead of abstracting away
the outside communication arcs individually, we may search the coarsest possible
abstraction. This amounts to search for the largest possible phases of commu-
nications with the exterior (see Definition 4) and to abstract each phase by a
computation arc of the kind described in Fig.5 for the individual abstractions.

Definition 4. A communication phase is a part of a component with a first
location s and a last one s’ (possibly the same) together with intermediate loca-
tions and arcs: the arcs are either computation ones or commumnications with the
exterior of the considered subsystem; they link locations of the phase, and all arcs
to/from the intermediate locations belong to the phase; moreover, all the inter-
actions with the exterior of the phase (through clock resets, variable updates and
guards) should be equivalent to what happens with a single arc, so that traveling
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through the phase may be over-approximated by a single computation arc of the
form described in Fig. 5.

For instance, for each clock reset during the phase, if its value is used outside
the phase (before a further reset), one must have a reset on each arc to s’ inside
the phase (hence terminating the phase): all those resets yield the reset r. For each
variable modified in the phase whose value is used outside the phase but in the
same component (before a further modification), the final modification must be
the same whatever the path from s to s’; if the value of the variable is used in
another component of the subsystem, the (same) modification should only occur
on all the arcs to s’ inside the phase: those final modifications yield the updates
u. Finally, the guard b used to summarise the guards inside the phase, should be
implied by all the guards on the arcs from s inside the phase, and its value should
not change during the rest of the phase. Note that we may have various phases
between the same end locations s and s, and that a single communication arc
always constitutes a phase by itself, but not often a maximal one.

For our example, in the (unique) border component L of subsystem ss1, the
outside channels are k7, and kp, and we may abstract the phase constituted by
the whole path from s5 to ss, by a single computation arc. However, since the
initial state is inside the abstracted path, we must also abstract the first time
the path from sg to s3 is ran; by the way, this also constitutes a partial unrolling
of the first loop. We thus get the abstracted component La illustrated on the
bottom of Fig. 4: the timing constraints for the computation arcs originating at
locations sg and s5 (depicted in blue) are those obtained by the analysis of Lz in
Table 1. The bounds for the looping time of G are then computed in the system
ssl-La (i.e., ssl with border component La). The results for the corresponding
queries are presented in Table 2.

Table 2. Model checking results of G with the direct abstraction method. Notations
for models are as in Table 1.

Model | Query Result | Time [s] | Interpretation

ssl-La | G1.s0- ->G1.50 | true 284 loop feasible

ssl-La | inf{G1.50}: G1.y | > 8100 16 lower bound of looping in G
ssl-La | sup{G1.50}: G1.y | < 11750 | 16 upper bound of looping in G

It may be observed that, while the computation of the looping time of com-
ponent G exploded for the full system, it becomes quite immediate in the sim-
plified and abstracted subsystem ssl. Of course, it is not sure that the bounds
we obtained are very tight with respect to the true infimum/supremum, but
they may be satisfactory with respect to the question the practitioner will ask
about the behaviour of G. In particular that means that there is no deadlock or
starvation phenomena.

11



Proposition 1. SOUNDNESS OF THE DIRECT STRATEGY

The direct strategy, consisting in replacing each arc or phase of the subsystem
communicating with the exterior of the considered subsystem by a computation
arc with an interval encompassing the actual delay needed to cross it in the full
system, provides a correct over-approximation of the subsystem.

Proof. Obvious since the true evolutions of the components in the subsystem
(in the full system) are compatible with the ones in the isolated subsystem. As
a consequence, if a traveling time in a component is larger than some constant
and/or smaller than another one in the isolated subsystem, this is also true in
the full system; in other words, the intervals obtained for the isolated subsystem
are over-approximations of the true ones, in the full system. Similarly, if it is
sure from some location to reach another one in the isolated subsystem, this is
also true in the full system, since this means it is not possible to escape visiting
the second location. a1

6 Iterated Abstraction Strategy

When one or more boundary components are too complex to be directly
analysed, the technique developed in the previous section may be inefficient,
because the only bounds we may use for them is [0, oc]. However, we may cir-
cumvent the problem by analysing their abstractions as viewed both from the
interior and the exterior of the considered subsystem.

Let us thus assume that, in a complex system to be model-checked, we con-
sider a subsystem ssl such that the direct analysis of some of its bordering
components fails. Besides subsystem ss1, we shall also consider the subsystem
ss2 composed of the components exterior to ssl and the bordering one(s), as
illustrated in the upper part of Fig. 6. If ss2 is still too complex, we may cut it in
the same way, and at the end we shall get a family of small subsystems covering
the whole system, with interior components, and with border ones communicat-
ing with at least two subsystems.

For each subsystem and each of its border components, we may then build
the abstracted version of the latter, as viewed from this subsystem, in a way
similar to what we have explained in the previous section.

The general idea of the iterated abstraction strategy is then to proceed in a
succession of rounds. In each round, we consider successively each subsystem in
some order, with each of its border components abstracting the exterior of the
considered subsystem, replacing the communications with each exterior subsys-
tem (arc or phase) by computational arcs, possibly after duplicating channels
and unrolling the main loop. If the border component is analysable, the bounds
and invariants will be derived as in the previous section; otherwise, they will be
parameterised, and those parameters will be initialised in such a way that we
are sure the induced behaviour encompasses the actual one (for instance we may
use the interval [0, oc]). When analysing this simplified component in its isolated
subsystem, we may then estimate bounds for the communications between the
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Fig. 6. Two subsystems ssl and ss2 of Example 1’ used for the iterated abstraction
strategies, and the two versions of component L, abstracted as viewed from ss2 (La2)
and from ssl (Lal). The superscripts for parameters min® and maz' refer to subsys-
tems, while subscripts identify different mins and maxs if necessary.

border component and this subsystem: this will be used to get better bounds
for the abstractions of the same component when viewed from the subsystems
to be considered next.

We proceed that way until no improvement is obtained when going from
one round to the next one, i.e., when no bound is improved when analysing the
various borders of the various subsystems, or when the practitioner considers
the approximation obtained up to now is satisfactory with respect to his needs
(in general, this means all the upper bounds are considered low enough), or
desperate (in general because one of the lower bounds is too high, so that the
situation will never be satisfactory, and it will be necessary to adapt the structure
of the system).

One then may estimate bounds for the looping times (or traveling times) one
is interested in. Note that, again, there is no guarantee that the obtained bounds
will be very tight: all we know is that the true interval will be inside the result.

This is summarised in Algorithm 1.

Proposition 2. SOUNDNESS OF THE ITERATED STRATEGY

Starting with [0, 00] intervals, Algorithm 1 terminates, and the successive
stages of the successive rounds produce correct over-approximations of the
original system.
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Proof. Let us assume that, at the end of the first round, the obtained intervals
are smaller or equal to the initial ones (this will in particular be the case if we
start with [0, 00] intervals). Then, since the intervals at the beginning of the
second round are the same than at the end of the first round, during the second
round the possible evolutions are compatible with the specifications of the first
round, so that at the end of the second round, the obtained intervals are smaller
or equal to the ones obtained at the end of the first round. Iterating the reasoning
we get that the successive rounds will yield a series of nested intervals.

If, moreover, the initial intervals encompass the ones in the original system
(again, this will in particular be the case if we start with [0, 00| intervals), the
same kind of argument as the one used in the proof of Proposition 1 shows
that, at each stage, the evolutions of the original system are compatible with
the approximate components (be it internal to a subsystem or a bordering one),
so that the bounds obtained for the latter are correct.

If the bounds stabilise, the algorithm terminates (possibly before, if a sat-
isfactory situation is reached). Since the bounds of each abstracted interval at
each stage are natural numbers (or co for the upper bound), the only way we
shall have non-stabilisation is when the successive values of an interval are of
the form [k;, 0o] with increasing but unbounded k;’s (this corresponds to a very
particular case where it is impossible to reach the end of an abstracted part).
But then the algorithm will terminate because the situation will be considered
as desperate by the end user at some point. (Note that in our experiences, we
always got stabilisation, and quite fast.) a2

In order to illustrate this technique, let us replace in our running example
the component G by a slower one; we shall thus consider a system Example 1°,
which is as Example 1 except for G which has been replaced by G’, in which the

Algorithm 1. Tterated abstraction method

Data: network of timed automata N, a property ¢ to be analysed in a
subsystem S of N

Result: analysis of ¢ in an approximated subsystem S

Construct a family of subsystems including S, covering N;

foreach subsystem do

Determine the bordering components of it and construct its abstracted

version ;

end

Choose the initial values of the min/max parameters;

Choose an ordering of the subsystems;

repeat

Analyse the subsystems cyclically, following the chosen ordering, and
determine new approximate values for the min/max parameters;

until no progress is made, or the situation is judged satisfactory or desperate by
the end user;

Analyse ¢ in the abstracted version of S, approximated with the final parameter
values;

14



computation interval for s; has been changed to [3100,4200), and that of s3 to
[5000, 7500). We also consider the instrumented version G, defined in the same
way as G.

Since automatic analyses are usually made complicated, even unfeasible,
when there are different orders of magnitudes in the constants of a system,
we may expect new difficulties with respect to the case of Example 1: indeed,
all the queries of Table 1 now blow up.

We shall use the decomposition in subsystems illustrated on top of Fig.6.
There is thus still a unique border, L, and its (parameterised) abstracted variants
as viewed by subsystems ss1 and ss2 are shown on the bottom of this figure.

The iteration then takes the form of rounds, which stabilise very fast:

Round 1:

Step 1: Since the problem arises from G’, we shall first consider subsystem
552, with L replaced by La2 (see Fig.6), with the initial parameters min? = 0
and max? = co (which amounts to drop the constraints on min?, maxz?). (Note
that we could have used min? = 10, since a closer look at L shows that at least
10 time units are spent between lock! and unlock!, but this will not be neces-
sary). We may then use the queries shown on top of Table3 to obtain a first

estimation of mini, maxl, mini and max}.

Step 2: With the bounds obtained in the previous step, analyse component
Lal in ss1, and search for the bounds min? and max? with the next two queries
in Table 3.

Round 2:

Step 1: With the bounds obtained in step 2 of round 1, analyse compo-
nent La2 in ss2, and search for the next estimation of the bounds mini, max1,
mins and maxl with the next four queries in Table3. Since no improvement
is obtained with respect to the results of round 1, we may stop the iterations,
and estimate the bounds for the looping time of G’ and Lal in ssl, as shown
by the last queries in Table3 (for L, we do not need true computations: the
approximate bounds for the loop, after some initialisation, is given by the sums
of the bounds of the two half-loops, from s5 to s5 and from s5 to s2).

We may observe that, while none of the components L and G were analysable
in the original system of Example 1’, with our iterated abstraction strategy no
computation took more than a few seconds (but the loop feasibility which takes
a few minutes), leading to bounds that satisfied the practitioners at the origin
of this kind of system.
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Table 3. Results and execution times of the
Example 1’. Notations for models as in Table 1.

iterative

abstraction process for

Round 1 | Stepl

model query result | time [s] | interpretation

ss2-La2 | inf{La2.s2 A ~La2.b}: La2.y |>1320 | <1 mini

ss2-La2 |sup{La2.s1 A ~La2.b}: La2.y <1720 | <1 mazi

ss2-La2 | inf{La2.s2 A La2.b}: La2.y | > 60 <1 ming

ss2-La2 |sup{La2.s1 A La2.b}: La2.y | <120 |<1 mazy

Round 1 | Step2

model query result | time [s] | interpretation

ssl-Lal |inf{Lal.ss}: Lal.y > 10 2 min?

ssl-Lal |sup{Lal.ss}: Lal.y <4280 |2 max?

Round 2| Stepl

model query result | time [s] | interpretation

ss2-La2 |inf{La2.s2 A ~La2.b}: La2.y | > 1320 | <1 min}

ss2-La2 |sup{La2.s1 A =La2.b}: La2.y <1720 | <1 maz}

ss2-La2 |inf{La2.s2 A La2.b}: La2.y | > 60 <1 ming

ss2-La2 |sup{La2.s1 A La2.b}: La2.y |<120 |<1 maxy

Final analysis

model query result | time [s] | interpretation

ssl-Lal | GY.so- -> G .50 true 2125 loop of G’ feasible

ssl-Lal |inf{G].50}: G1.y > 8100 |18 lower bound of looping
in G’

ssl-Lal |sup{G1.50}: G1.y < 11750 | 18 upper bound of looping
in G’

ssl-Lal | ming + min? > 70 0 lower bound of looping
in Lal

ssl-Lal | maxs + maz? <4400 |0 upper bound of looping
in Lal

7 Conclusion and Future Work

We proposed and showed the soundness of two abstraction methods allowing to
accelerate (or make possible) the model-checking analysis of timed properties of
components of networks of timed automata. We illustrated on a typical example
how the abstraction strategy may help in analysing the timing properties of a
network of timed automata when a state space explosion occurs. We also applied
our iterative strategy on the behaviour of component L in our first example,
with the same decomposition since the system has the same structure, and we
observed that only a fraction of second is necessary to analyse each of the three
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steps, compared to a few minutes in the direct analysis summarised in Table 1
(and in this case the obtained bounds are exactly the same).

Example 1 has not been chosen on purpose: it arose in one of our previous
works, as a solution to deadlock problems occurring in a small but realistic
model of augmented reality application, but we should of course examine how
our techniques apply to larger realistic systems. We should also derive good ways
to decompose a large system into subsystems of adequate size and characteristics.
Finally, in addition to local analyses like the loop or travelling time bounds, we
could be interested in the time needed to transfer an information from a source
component to a consumer one, like in our example from a sensor to a rendering
loop.
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