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We consider general N-particle wave functions that have the form of a product of the Laughlin
state with filling factor 1/¢ and an analytic function of the N variables. This is the most general form
of a wave function that can arise through a perturbation of the Laughlin state by external potentials
or impurities, while staying in the lowest Landau level and maintaining the strong correlations of
the original state. We show that the perturbation can only shift or lower the 1-particle density but
nowhere increase it above a maximum value. Consequences of this bound for the response of the

Laughlin state to external fields are discussed.

In theoretical studies of the fractional quantum Hall
effect (FQHE) |9, [1d, 12, 3] Laughlin’s wave func-
tion(s) play a fundamental role. There is such
a function for every positive integer ¢ and it can be writ-
ten, in units where the magnetic length is 1/ V2, as

\I/Lau = CLau H(Zz - Zj>e€7 ﬁvzl |Zi|2/2 (1)
i<j

where the z; € C are the positions of IV particles moving
in R?, identified with the complex plane, and the constant
CLau 18 a normalization factor (depending on N and ¢).
For fermions, ¢ is odd and > 3 (the case £ = 1 corresponds
to noninteracting fermions), while for bosons ¢ > 2 is
even. Bosonic wave functions of this type are potentiall
relevant for atomic gases in artificial magnetic fields ﬂé:
, @, @, @, @] The analysis below applies to Laughlin
states of both symmetry types.

The Laughlin state () is a special kind of wave func-
tion in the Lowest Landau level (LLL) of a Hamiltonian
with a strong magnetic field perpendicular to the plane
where the particles move. The general form of such func-
tions is

\I/(zl,...,zN)=A(21,...,ZN)6_Z£V:1 |zl /2 (2)

with A analytic, antisymmetric for fermions and sym-
metric for bosons. Also square integrability is required,
but A is not restricted to polynomials. If there is strong
repulsive two-body interaction between the particles, the
Laughlin function () is a natural trial function for low
energy states. The factors (z; — 2;)* indeed suppress in-
teractions by producing strong correlations between the
particle positions. For certain zero-range interactions, (1)
is even an exact ground state ﬂl_lL |ﬂ, @]

The success of Laughlin’s theory of the FQHE fractions
1/¢, based on (), depends crucially on the fact that the
Laughlin wave function behaves as an incompressible lig-
uid, whose response to perturbations and external fields
is extremely rigid. This in fact has two distinct aspects:
1. The Laughlin wave function is an approximate ground
state for the many-body Hamiltonian, and its energy is
separated from the rest of the spectrum by a gap.

2. Modifications of the Laughlin wave function that stay
within the ground eigenspace of the many-body Hamil-
tonian cannot increase the local one-particle density be-
yond a fixed value.

The main evidence for these facts is experimental and
numerical. For model zero-range interactions, the jus-
tification of Property 1 amounts to a proof of an V-
independent spectral gap, see e.g. HE, Section 2.2] or @,
Section 2.1] and references therein. We are not aware of
a solution to this important problem.

Property 2 is not always recognized as a separate is-
sue, but is also crucial for Laughlin’s original argument
supporting quantization of the Hall conductivity , ]
and for FQHE physics in general. Its importance lies
in understanding the effect of an external potential that
would try to concentrate the density as much as possible
in energetically favorable places.

If the energy gap in Property 1 is sufficiently large we
can exclude a jump across it and restrict attention to
wave functions with the same interaction energy as the
Laughlin function. We are thus led to study the set of
all normalized wave functions of the form

\IJF(Zl,...,ZN) = F(Zl,...

,ZN)\IfLau(Zl,...,ZN) (3)

with F' analytic and symmetric under exchange of the z;.
This form exhausts the class of functions that minimize
the magnetic kinetic energy and at the same time avoid
repulsive interactions by vanishing at least as (z; — 2;)°
as z; and z; come together. In the bosonic case and with
¢ = 2 these are exactly the ground states of the contact
interaction @, Section 2.1]. We shall refer to the class
of states of the form [B) as fully correlated states.
Physically, [B) can lead to the addition of quasi-holes
(zeros of the wave-function) to the Laughlin state, essen-
tially arbitrary correlations between the particles’ and
quasi-holes’ locations being allowed. It is intuitive that
this leads to a decrease of the global density. It is how-
ever far from obvious that no local increase of the density
can occur anywhere. Several quasi-holes arranged tightly
on a circle could, perhaps, increase the density inside the



circle. Moreover, F' need not contain any zeros at all
like, e.g., exp(c>_,27), which stretches the support of
the density in one direction and shrinks it in another.

In this Letter, we report on recent density bounds for
fully correlated states that demonstrate the validity of
Property 2 without invoking Property 1. They hold es-
sentially on length scales O(N'/*), much smaller than
the full extent of the liquid, which is of order N/2, and
are related to earlier partial results proved in @, @]
The full proofs are somewhat involved and presented else-
where ﬂﬁ] but we sketch the main arguments below, and
discuss physical applications.

In his pioneering paper M], Laughlin already argued
that the one-particle density of the state () has the form
of a circular droplet of radius v/N where the density
takes the constant value (7¢) 1. The argument was based
on the plasma analogy, where the absolute square of the
wave function is written as the Gibbs distribution of a
classical 2D Coulomb gas, and subsequently treated by a
mean-field approximation.

Recent mathematical analysis m, @] has confirmed
the validity of this approximation for the Laughlin states
and Laughlin’s ‘quasi hole’ states where the prefactor F’
is a product in which each factor depends on a single
variable, e.g.

N
U(21,...,2N) = cH(zj —a)"Wrau(z1,...,28)  (4)
j=1

with a € C, m an integer and ¢ a normalization constant.
These results however do not imply density bounds for
the general state ([B). The latter could in particular be
a linear superposition of functions of the form (@), and
the density of a linear superposition needs not coincide
with the linear superposition of the densities, because of
quantum-mechanical interferences.

The analysis of m, @] was generalized to other pref-
actors of a special kind in @] A common feature that
emerged was an upper bound on the one-particle density
of magnitude (m¢)~!, which is the density of the Laughlin
state itself. Such a bound was called an incompressibility
estimate in HE] because it is a manifestation of the resis-
tance of the Laughlin state against attempts to compress
its density.

The mean-field methods of ﬂﬂ—lﬁ] are not applicable
to general prefactors F'. The question of a bound on the
density for the general case was treated in [34] with an en-
tirely different technique, rooted in 2D potential theory.
The bound obtained was, however, four times the ex-
pected optimal value (7£)~1. In this Letter we show that
an improved version of the potential theoretic method
leads to the correct optimal bound for arbitrary F.

As indicated by numerical studies ﬂ], the incompress-
ibility bound for the density cannot be expected to hold
pointwise for finite N. We prove, however, that it holds

for local averages. Denote

pr(z)=N |Ur(2,22,...,258) dza .. .dzn (5)

R2(N—1)
the particle density of the state []). Our main result is

Theorem 1 (Density bound). For any a > 1/4 and
any disk D of radius N we have

[ or < DI+ o1) (6)
D T

where |D| is the area of the disk and o(1) tends to zero
as N — oo.

Recall that the magnetic length is 1/v/2. The average
can thus be taken on “mesoscopic scales”, much smaller
than the full extent of the state, O(N'/?), but not quite
down to the expected finest scale, O(1). A simple argu-
ment shows that (@) implies the analogous result for any
open set, not just a disk.

It follows that, for a continuous confining potential V',
the smallest potential energy obtainable with a fully cor-
related state

Ey(¢,N) := min {/ Vpr, VUr of the form (BI)} (7)
R2

is bounded below by the “bathtub energy” @, Theo-
rem 1.14]

1
E‘b/t(ﬁ):_min{/ Vp‘OSpS—,/p_N}, (8)
R2 4 R2

i.e. the minimum of the potential energy over all densities
p bounded by (7f)~1. This lower bound

Ev((,N) Z Ey'(() 9)

holds for large N provided V varies only on scales much
larger than N1/4,

The bound (@) means that any compression of the par-
ticle density above the “magic value” (7f)~! that one
could imagine to accommodate the variations of an ex-
ternal potential would make us leave the class of fully
correlated states, with corresponding increase in either
the magnetic kinetic energy or the interaction energy.
Assuming the spectral gap mentioned in Property 1, no
such density bump is allowed. This justifies two things a
posteriori:

e That it is legitimate to neglect disorder in the sample
and/or small external electric fields, as is done as a first
approximation in the derivation of FQHE wave-functions.

e Laughlin’s argument [13, [15] (see also [12, Sections 4.4,
9.3 and 9.5]) that switching on an electric current moves
electrons transversally without creating any charge accu-
mulation, and generates a Hall conductivity of value 1/¢.



It has been proposed (see [, [§, [37] for reviews) that
Laughlin wave functions could be created in cold atomic
gases, either by rapid rotation or by applying artificial
magnetic fields. In this context, a magneto-optical trap
confines the gas. Some recent proposals to reach the
Laughlin state m, @] involve some non-trivial engineer-
ing of the trapping potential. How the Laughlin state
responds is, therefore, of importance for the experimen-
tal set-up.

In addition, the precursor of FQHE states in a rapidly
rotating Bose gas is a Bose-Einstein condensate (see HE,
@] and references therein). Observing the distinctively
flat profile of the Laughlin state would already be a strong
indication of the transition to the FQHE regime. A more
complete probe could be the response of the gas to vari-
ations of the trapping potential: the Bose condensate
follows the trap by taking a Thomas-Fermi-like shape
(see [1, 2, [5] and references therein). The Laughlin state
essentially does not respond to such variations, as exem-
plified by our main theorem.

We also point out that a combination of Theorem [I]
with estimates obtained in @, @] leads to the following
improvement of [33, Corollary 2.3]:

Corollary 2 (Optimization of the energy in radial
traps). Let V(x) = |x|® with s > 0. Then the potential
energy within the class @Bl) is minimized by the Laughlin
state (F =1):

o Jpe Vi B (0)
Nse By (6,N) — Noso By (£, N) (10)

where Ey (N, ) and EY(() are defined in ([0) and (&)
respectively.

It is remarkable that the Laughlin state stays an ap-
proximate minimizer in any power-law trap (the result
actually holds for more general radial increasing poten-
tials). No matter how steep and narrow a potential well
one imposes, it is impossible to compress the Laughlin
state while keeping the form (@), i.e., without jumping
across the spectral gap. Extensions of Corollary 2] to
mexican-hat-like traps as in ﬂﬁ, Corollary 2.3] are also
possible.

We now turn to sketching the proof of Theorem [l
Detail are given in the longer paper ﬂﬁ] It is convenient
to change variables and consider the scaled N-particle
probability density

ur(Zy) == NN ‘\IJF (\/N ZN) ‘2 (11)

corresponding to the wave-function (B)). This has an ex-
tension O(1) for the Laughlin state, F' = 1. Here Zy
stands for (z1,...,2n). The scaled 1-particle probability

density is

/L;‘l‘)(z):/ ,UF(szQv"'vZN)dZQ'--dZN
R2(N—-1)
= pr (\/Nz) (12)

The first step is to write the N-particle density as a
Gibbs factor (Laughlin’s plasma analogy),

pr(Zn) = 25  exp (-3 HN(ZN)) (13)

with effective “temperature” T'= N~! and the Hamilto-
nian

N
Hy(2Zn) = Y Il — 5 Y log |z - 2| + W (Zw)
j=1 i<j
(14)
where

Wy (Zn) = —%log‘F (\/N ZN)‘. (15)

The term Wy (Zy) has the important property of being
superharmonic in each variable:

— V2 Wn(Zyn) >0 for all i. (16)

This holds because F' is analytic and is, in fact, the only
property of Wy that is used in our method.

A precursor of the desired bound (@) for pp is the
fact that the local density of points in a minimizing con-
figuration for Hy(Zy) is everywhere bounded above by
N(ml)~1 for large N. This is the core of the proof of the
theorem, and a signature of screening properties of the
effective plasma. To establish it, we introduce and study
an auxiliary minimization problem, which is, mathemat-
ically, a cousin of the Thomas-fermi energy minimization
problem for molecules [21].

For K fixed points z; € R? (“nuclei”) we define an
energy for functions o on R? (“electron density”) by

E™ o] = — /R2 Vel (z)o(x) dz + D(o, o) (17)

with
K
Vnucl(x) = - Z log |I - $z| (18)
i=1
and
1
D(o,0') = —= // o(z)log |z — 2|0’ (2") dz dz’.
2 R2xR?
(19)

This functional is minimized under the subsidiary condi-
tions

0<o<1, /U:K. (20)
R2



In physical terms, this model describes a neutral 2D
molecule consisting of fixed nuclei and mobile electrons,
with Coulomb interactions. The interpretation of the
constraint 0 < ¢ < 1 is that the kinetic energy of the
electrons is zero for densities < 1 and oo for densities > 1.

The basic facts about this TF model are: (1) There
exists a unique minimizer, T¥. (2) The minimizer has
compact support. (3) Apart of a set of measure zero,
oTF takes only the values 0 or 1. (4) The Thomas-Fermi
equation holds:

>0 ifo™(x)=1
() =<~ 21
(@) {o if 0 TF () = 0 (1)
where
BT (@) = Viuelo) + [ loglo o™ (a")ds’
Rz

is the total electrostatic potential of the molecule.

According to the TF equation the support of o ™F is the
same as the support of the potential ®*F, which is contin-
uous away from the “nuclei”. Denote by S1F (21, ..., 2x)
the open set where ®TF is strictly larger than 0. Some
important properties are:

(1) The area of X (x1,...,2x) is equal to K. (2)
STz, ak—1) € X (2q,...,2K). (3) For a single
nucleus at xq, ETF(xl) is the disc with center z; and
radius 7~ 1/2,

Consider now a scaled version of (4,

N
7T
H(Xn) =5 Z |2 — Z log|z; — | + W(Xn),
i=1 1<i<j<N
(22)
with W symmetric and superharmonic in each variable
r; € R? and Xy = (21,...,2n5). A key property of
minimizing configurations of H is stated in the following:

Lemma 3 (Exclusion rule). Let X% = {29,...,2%}
be a minimizing configuration of points for H. For any
subset of points y1,...,Yr,Yk+1 € X%,

yk+1 € S (Y, YK (23)

The proof of this intermediary result is sketched in the
Appendix. To make the result plausible, observe the fol-
lowing: the first term in ([22]) is the electrostatic potential
generated by a constant background of charge density
—1. Using Equation (2I]), the electrostatic potential gen-
erated by the points y1, ..., yx is completely screened by
the part of the background potential generated by the
region XTF (y1,...,yx). What the result says is that no
other point of a minimizing configuration can lie inside
this screening region. The reason is two-fold:

e if another point yx 1 lay inside the screening region,
one could decrease the sum of the first two terms in (22)
by moving yx+1 to any position on the boundary.

e the last term W in (22]), being superharmonic, is gen-
erated by a positive charge distribution. One can thus
always decrease VW by moving yx 1 to some point on the
boundary. Such a move decreases at the same time the
sum of the first two terms.

The particular case K = 1 of Lemma[3] goes back to an
unpublished theorem of Lieb, used in [34]: The minimal
distance between points in a minimizing configuration of
H is not less than 1/y/m. This property shows that the
density of points is in any case bounded above by 4. The
general exclusion rule for all K implies more. The density
is, in fact, asymptotically bounded above by 1:

Lemma 4 (Exclusion rule implies density bound).
For R > 0 let n(R) denote the mazimum number of any

points {y1,...,yn} that a disk D(R) of radius R can ac-
commodate while respecting the exclusion rule [23). Then
. n(R)
h}r;lj;p e <1 (24)

We present a proof sketch in the Appendix. The main
point is that, if a large region contains a density of points
> 1 we can reach a contradiction by considering two facts:

e the potential ®TF generated by the points y; con-
tained in D(R) and the corresponding exclusion set
ST (y1,...,y,) must vanish at all the points y; lying
outside of D(R), by the exclusion rule and (2I). This
leads to a uniform upper bound on ®TF outside of D(R).
e the same potential is generated by an overall posi-
tive charge density, because the nuclear charge in D(R),
which is > 7R? by assumption, is not fully screened by
the part of the negative charge density ™" lying in D(R),
at most equal to the area mR? because o 7% < 1. A lower
bound on the circular average of ®*F outside of D(R)
follows.

It turns out that, for R large enough, the two estimates
obtained in this way contradict one another.

After scaling, x — z = \/”Wéx, Lemma 2 applies to

the Hamiltonian (I4]) and implies that in any minimizing
configuration {29,..., 2%} of (@) the number of points
29 contained in any disc of radius R > N /2 is no larger
than N(7¢)~! times the area of the disc. This is the
gist of the proof. From there, two main steps are left to
conclude the proof of Theorem [ see the Appendix.

We point out that our density upper bound holds down
to the finest possible scale for ground states of the plasma
Hamiltonian (Id), i.e. on length scales > N~1/2 (see [3(]
where the corresponding lower bound is proved in the
purely Coulombic case W = 0). When applying this re-
sult to Gibbs states of ([l we have to restrict to length
scales > N~Y4 but this is likely to be due to a tech-
nical limitation of our method. It was indeed recently
proved that, for the purely Coulombic Hamiltonian, the
expected microscopic density estimate holds for low tem-

perature Gibbs states [3, 4, [17, [1§] (see also [28] for



ground states of higher dimensional Coulomb and Riesz
gases). It remains to be seen whether a combination of
our methods with those of B, ] could improve our re-
sults. Another question for future investigations is the
extension of Corollary 2 to more general potentials V.

Conclusion: We have considered perturbations of the
Laughlin state that may arise to accommodate external
potentials while keeping the system in the lowest Landau
band and preserving the original correlations. We proved
rigorously that no such perturbation can raise the parti-
cle density anywhere beyond the Laughlin value 1/(7f).
Our theorem holds on length scales > N'/4 which, while
large compared to the magnetic length, are microscopic
compared to the system’s macroscopic size, N/2,

Acknowledgments: We received financial support
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(E. H. Lieb).

Appendix : Elements of proof

Here we sketch, for completeness, the proofs of Lem-
mas Bl and [@ The arguments are kept short; full details
may be found in the longer paper ]

Proof of Lemma[3 By symmetry of the Hamiltonian we
may, without loss, choose y; = 29,1 < i < K + 1. Con-
sider then fixing all points but z ;. The energy to
consider is then
G(z) = H(a?,..., 2%, 2, 2% o, 2X). (25)
We claim that if z € TF(29,... 2% ) = 2TF then there
is an Z € OXTY, the boundary of XTF, such that G(Z) <
G(x). Thus the minimizing point 2%, cannot lie in
»TF,
To prove the claim, we add and substract a term
— Jsrr log |z — 2'|dz’ to write G(x) = ®(z) + R(x) with

K
O(x) = - logle —af| + / log |z — '|dz’  (26)
i—1 TE
and
m 2 / /
R(z) = —|z| —/ log |z — a'|dx
2 SITF

N
- Z log |z — | + W (x) + const. (27)
i=K+2

Now, @ is precisely the TF potential corresponding to
‘nuclear charges’ at 29, ...2%. Hence, using ), ® > 0
on ¥TF and zero on the boundary 9XT¥. The first two
terms in R are harmonic on ©™F when taken together.
(The Laplacian applied to the first term gives 27 and

to the second term —27 on XTF.) The other terms are
superharmonic on ©™. Thus, R takes its minimum on
the boundary, so there is a ¥ € OXTF with R(z) > R(Z).
On the other hand, ®(x) > 0 = ®(z) so G(x) > G(z).

O

Proof of Lemma[f The proof is indirect. Assuming that
for some § > 0 there are arbitrary large radii with the
property that the disk D(R) contains at least (1+d)7R?
points. This leads to a contradiction with (23] and we
present here a sketch of the argument. Full details are
given in [23].

By taking the maximal § (which is in any case < 3) we
may, without restriction, assume that the density is also
at least (1 + 0) in the annulus A of width ¢ - R around
D(R). Since the density is everywhere bounded above
by 4, apart from the points y; € D(R), i = 1,...,n
there must be points y; € A, j = n+1,...,m in the
configuration such that every point in 4 is at most a
distance O(1) from one of the y;. The TF potential ®TF
generated by the y; and the corresponding exclusion set
ST (yy, ..., y,) must vanish at the y; by the exclusion
rule and (2I)).

On the other hand, after scaling the variables by R~*
and extracting a factor R? one can show that the gradient
of the TF potential is uniformly bounded in the scaled
annulus R~'A. The distance between the scaled y; is
now R~ so the scaled potential goes to zero uniformly
on R~'Aas R — oco. The same holds then for the circular
average of the scaled potential.

We claim, however, that the latter is strictly bounded
away from zero close to the radius 1 (corresponding to ra-
dius R in the unscaled annulus). This follows from New-
ton’s theorem, because the nuclear charge in D(R), which
is (1+J)7R? by assumption, is not fully screened by the
part of the negative charge density o™ lying in D(R),
which is at most equal to the area 7 R2 because o TF < 1.
There is thus a contradiction for R large enough. O

As indicated in the main text, with Lemmas [B] and M
at our disposal, the bound (@) of Theorem [I] holds if u;})
in ([I2) is replaced by the empirical measure

P2 = N0 - )

of a minimizing configuration {z9,...,20} for Hy. The
remaining task is to show that this bound holds also
for the Gibbs state of Hy. Here we use crucially that
the “temperature” 7T in the latter scales as N~ ! so that
the Gibbs measure is essentially concentrated on ground
state configurations for large N. Turning this intuition
into a proof follows the lines of @, Section 3]: To ac-
cess the l-particle density we prove free energy upper
and lower bounds for a perturbed version of the Hamil-
tonian. We show that the latter satisfies, approximately,



the same bounds as the unperturbed ([4]) and then trans-
late the free-energy estimates into density estimates using
a Feynman-Hellmann-type argument.

Strictly speaking, this strategy requires an priori
bound ensuring that ¥ lives on length scales of order
N2 eg.

(Up, LyU ) < CN? (28)

where Ly is the total angular momentum operator and
C' is independent of N and F. This asumption is very
reasonable physically, and can in fact be eliminated using
a suitable localization procedure.

Finally, the extension of Theorem [l from disks to arbi-
trary open sets uses the “cheese theorem” (see ﬂﬂ, Sec-
tion 14.4] or [20, Theorem 14]) which asserts that any
reasonable open set can be efficiently covered with disks,
up to a residual set of arbitrarily small area.
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