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Abstract— We present a model predictive controller (MPC)
for multi-contact locomotion where predictive optimizations
are realized by time-optimal path parameterization (TOPP).
A key feature of this solution is that, contrary to existing
planners where step timings are provided as inputs, here the
timing between contact switches is computed as output of a
fast nonlinear optimization. This is appealing to multi-contact
locomotion, where proper timings depend on terrain topology
and suitable heuristics are unknown. We show how to formulate
legged locomotion as a TOPP problem and demonstrate the
behavior of the resulting TOPP-MPC controller in simulations
with a model of the HRP-4 humanoid robot.

I. INTRODUCTION

Walking pattern generators on horizontal floors usually
take single-support (SS) and double-support (DS) durations
as user-defined parameters. Recent works showed how adapt-
ing step timings helps recover from disturbances [1], [2],
yet using capture-point schemes that are so far limited to
walking on flat surfaces. The full locomotory capabilities of
humanoids appear in multi-contact, where wheeled robots
cannot follow. In multi-contact locomotion, walking speed
and step timings depend on terrain topology, as illustrated for
instance by Naismith’s rule: the walking pace (in min.km−1)
depends affinely on terrain slope.

Model predictive control (MPC) is a paradigm that gives
controllers the level of foresight required to tackle the issue
of timed walking. Its application to multi-contact locomotion
is relatively recent, and can be split in two categories. In
one line of research, contact forces are jointly considered
as control variables used to optimize a cost function over
future whole-body motions [3], [4], [5]. In such formulations,
contact feasibility constraints (namely, that contact wrenches
lie inside their wrench cone) are straightforward to calculate,
at the cost of a large number of control variables.

Another line of research seeks to reduce both control vari-
ables and contact constraints at the center of mass (COM),
i.e., focusing on centroidal dynamics [6]. In [7], ZMP support
areas were generalized to multi-contact and applied to whole-
body motion generation, but it was observed that these areas
vary with the position of the COM. This is indeed a general
phenomenon: once reduced at the COM, contact feasibility
constraints yield bilinear inequalities crossing COM position
and acceleration. In [8], these inequalities were kept linear
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by bounding variations of a nonlinear term, resulting in a
ZMP controller that can raise or lower its COM. Polyhedral
boundaries were also used in [9] to formulate a linear MPC
problem over 3D accelerations of the COM.

Yet, all of the works [3], [4], [7], [8], [9], [10], [11] are
based on pre-defined timings. Set aside flat-floor walking, the
alternative to fixed timings seems to be blackbox nonlinear
optimization [12], [13], [5]. Walking on non-flat terrains was
showed in [12] using a SLIP model and on-line foot-step
planning. Lengagne et al. [13] showcased a broad set of
tasks, but noted that the performance and numerical stability
of nonlinear solvers were still problematic. Recent develop-
ments [11], [10] performed a few iterations of sequential
quadratic programming fast enough for the control loop; yet
again using pre-defined step timings.

In this work, we explore an alternative to linearize bilinear
constraints at the center of mass: namely, by alternating path
interpolation with trajectory retiming. A key feature of this
approach is that all timings (step durations, COM transfer
durations, etc.) are produced as output of the optimization
problem. Our contribution lies in (1) the formulation of
legged locomotion as a TOPP problem, including COM-
trajectory retiming, contact switches and swing-leg synchro-
nization, and (2) a model predictive controller (called TOPP-
MPC) that leverages this solution into a full-fledge multi-
contact locomotion controller.

II. BACKGROUND

A. Contact stability conditions

We wish that contacts stay fixed (i.e., neither slip nor tilt)
while the robot pushes on them to locomote. The inequality
constraints that model this regime are known as contact-
stability conditions, and can be rewritten at the centroidal
level. Consider the Newton-Euler equations of motion:[

mp̈G
L̇G

]
=

[
mg
0

]
+ wG, (1)

where m is the total robot mass, and G its center of mass
(COM) located at pG (coordinates are given in the inertial
frame of origin O), LG is the angular momentum of the
robot around G, g the gravity vector and wG the net contact
wrench taken at G:

wG :=

K∑
i=0

[
fi−−→

GCi × fi

]
,

where fi is the contact force exerted onto the robot at the ith

contact point Ci (this formulation includes surface contacts
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with continuous pressure distributions, see e.g. [14]). We can
rewrite the Newton-Euler equations (1) at a fixed reference
point O as:

wO =

[
m(p̈G − g)

L̇G +mpG × (p̈G − g)

]
. (2)

Under the assumption of linearized friction cones, feasible
contact wrenches, i.e., those corresponding to contact forces
that lie inside their respective friction cones, are exactly
characterized by:

AOwO ≤ 0, (3)

where AO is the matrix of the net contact wrench cone
(CWC), which can be computed based uniquely on the
positions and orientations of the contacts. See e.g. [15] for
a review of the corresponding algorithm.

B. TOPP and TOPP-Polygon

Consider a robot with n degrees of freedom and a
path q(s)s∈[0,1] in its configuration space. Assume that all
dynamic constraints on the robot along the path can be
expressed in the form:

s̈a(s) + ṡ2b(s) + c(s) ≤ 0. (4)

Finding the time-optimal parameterization s(t)t∈[0,T ] subject
to constraints (4) is the classical time-optimal path parame-
terization (TOPP) problem, for which efficient methods have
been developed (see [16] for a historical review).

A wide range of constraints can be put into the form of (4),
including pure acceleration bounds, torque bounds for se-
rial manipulators, contact-stability constraints for humanoid
robots in single- [14] and multi-contact [15]. Constraints on
redundantly actuated systems (such as humanoids in multi-
contact), cannot be put into the form of (4), but rather in the
more general form [17]:

(s̈, ṡ2) ∈ P(s), (5)

where P(s) is a convex polygon in the (s̈, ṡ2)-plane. In [18],
the authors developed TOPP-Polygon, an extension of the
TOPP algorithm that is able to deal with such polygonal
constraints. Its computation bottleneck lied in the enumer-
ation of polygonal constraints P(s), which could take up
to tens of milliseconds per path discretization step. In what
follows, we reduce it to less than a millisecond.

III. TOPP FOR MULTI-CONTACT LOCOMOTION

A. Reduction of TOPP Polygons

Consider a path pG(s)s∈[0,1] of the center of mass. Dif-
ferentiating twice, one obtains

p̈G = pGss̈+ pGssṡ
2, (6)

where the subscript s denotes differentiation with respect to
the path parameter.

Assume that the angular momentum at the center of mass
is kept constant (L̇G = 0). Substituting the expression of p̈G

TABLE I
POLYGON SIZES AND COMPUTATION TIMES FOR POLYGON REDUCTION

BY CONVEX HULL (CH) AND BRETL & LALL’S METHOD (B&L).

Contact # ineq. bef. # ineq. aft. Hull1 B&L1

Single (SE) 16 3.8 ± 0.4 0.4 ms 1.0 ms
Single (NSE) 16 3.5 ± 0.5 0.6 ms 1.2 ms

Double 145 6.1 ± 1.6 0.5 ms 2.0 ms

into the equation of motion (2), we get:

wO =

[
m(pGss̈+ pGssṡ

2 − g)
pG ×m(pGss̈+ pGssṡ

2 − g)

]
. (7)

The contact-stability condition (3) thus rewrites to:

s̈AO

[
pGs

pG × pGs

]
+ ṡ2AO

[
pGss

pG × pGss

]
≤ AO

[
g

pG × g

]
(8)

which has the canonical form (4) of TOPP.
Equation (8) usually contains a large number of in-

equalities, up to 150 for a rectangular double-support area.
Existing TOPP solvers [16], [17]) take several seconds to
solve problems with that many inequalities, which would
make them unpractical for closed-loop control. Hence the
importance of pruning redundant inequalities [17], which is
algorithmically equivalent to applying a convex hull to the
dual of the problem, as exploited in [9].

This observation applies to the present TOPP problem.
Equation (8) can be put in the canonical form:

B[s̈ ṡ2]> ≤ c (9)

where the matrix B and vector c are defined by:

B, c := AO

[
pGs pGss

pG × pGs pG × pGss

]
,AO

[
g

pG × g

]
.

If the polygon thus described contains the origin (0, 0) (i.e., if
c ≥ 0) then running a convex hull algorithm on the rows of
B (dual vectors) will enumerate edges of the corresponding
polygon. Intersecting consecutive edges will then provide
the list of vertices. Meanwhile, if (0, 0) is outside of the
polygon, it becomes necessary to compute an interior point
of the polygon. Following [9], we use its Chebyshev center x̊,
which can be computed by solving a single linear program.

Alternatively, one can compute the polygon directly
from (8) using a recursive polytope projection method [19].
Table I reports an experimental comparison of the two
methods1 (convex hull versus polytope projection), in three
different scenarios: single-contact in static equilibrium (SE),
single-contact non-static-equilibrium (NSE) and double con-
tact. The table reports the number of inequalities before and
after pruning, averaged across multiple positions pG, with
computation times averaged across 100 iterations. We ob-
serve that the convex-hull method outperforms the polytope
projection method in all scenarios, and significantly so in
double contact.

1All computation times reported in this paper were obtained on an Intel(R)
Core(TM) i7-6500U CPU @ 2.50 Ghz. Standard deviations for computation
times in Table I are not reported as they are all smaller than 0.1 ms.
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Fig. 1. Contact locations and interpolated COM paths for the test
case reported in Table I. Contacts corresponding to the successive Double-
Support (DS) and Single-Support (SS) phases are contoured in dotted lines.

B. TOPP through contact switches

Consider the smooth three-dimensional COM path
pG(s)s∈[0,1] depicted in Figure 1, along with the sequence of
foot stances DS1–SS–DS2. Denote by s1 (resp. s2) the path
index of the contact switch from DS1 to SS (resp. from SS
to DS2). Mind that s1 and s2 are two geometric positions
and do not include any timing information. Consider now
the TOPP problem through contact switches. The contact-
stability matrices ADS1, ASS, ADS2 (computed only once
per stance based on footstep locations [15]) are used over
the path intervals [0, s1], [s1, s2], [s2, 1] respectively. Fig-
ure 2 shows examples of polygons computed in each of the
intervals. TOPP can finally be run on the full path [0, 1],
subject to the constraints provided by these polygons.

C. Geometric nature of contact switches

Single-support phases allow bipeds to transfer one foot
(the swing foot) to a new foothold location while the other
(the support foot) stays fixed. A central question is then: how
should the COM move during these phases? One answer is
to maintain it inside the static-equilibrium prism (SEP) of
the support foot,2 a behavior that can be observed in many
walking patterns reported in the literature (see e.g. Figure 4
in [20], Figure 1 in [21], Figure 2 and 3 in [10], ...). However,
having the COM in the SEP indicates quasi-static walking. It
notably precludes the discovery of dynamic walking patterns,
where the COM need not enter the SEP if foot swings are
fast enough. TOPP can discover such motions through proper
variations of the geometric parameters s1 and s2.

Let s∗1 and s∗2 denote respectively the first and second
intersection of the COM path with the static-equilibrium
prism. Choosing s1 = s∗1 and s2 = s∗2 corresponds to the
“safe” quasi-static option. By contrast, choosing s1 < s∗1
and s2 > s∗2 gives rise to portions of the path that are
not quasi-statically traversable. However, if the path is time-
parameterizable, there will exist a dynamically-stable execu-
tion. Furthermore, as s1 gets smaller and and s2 gets larger,

2 When walking on horizontal floors, this is equivalent to keeping the
COM over the so-called support area.

s = 0.4 (DS1) s = 0.7 (SS)
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s = 0.76 (SS) s = 1.45 (DS2)
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Fig. 2. Constraint polygons in the (s̈, ṡ2)-plane for various values of s.
Here, the contact switches happen at s1 = 0.67 (DS1 to SS) and s2 = 1.33
(SS to DS2). Note that the beginning of the single-contact phase is not in
static equilibrium, as illustrated by the polygon at s = 0.7 which does not
contain the origin (red dot).

the time-parameterized behavior will be more aggressive, up
to a point when no a feasible time-parameterization exists.
For the same path as in Figure 1, if one chooses s1 = 0.51
instead of s1 = 0.67, then the path becomes non time-
parameterizable.

IV. LOCOMOTION BY RETIMED PREDICTIVE CONTROL

The loop of a predictive controller can be described as
follows: at each iteration, (1) generate a preview trajectory
of future system dynamics leading to a desired configuration,
then (2) apply the first controls of this trajectory. To keep up
with the high rates of a control loop, the preview trajectory is
commonly found as the solution to an optimization problem,
be it a linear-quadratic regulator [22], [23], a quadratic
program [3], [9] or a blackbox optimal-control problem [5].
In what follows, our optimization unfolds in two steps:
interpolating preview paths, and retiming them using TOPP.
Our preview window foresees one footstep ahead at a time.

In single-support phases, one needs to interpolate both
COM and swing-foot trajectories. Similarly to [24], we
adopt a simplified dynamics model where the COM is
represented by a point-mass and the swing foot by a rigid
body (Figure 3). Contact dynamics are reduced at the COM
under zero angular momentum as described in Section III-A,
while joint kinematic and dynamic constraints are modeled
by workspace velocity and acceleration limits on the swing
foot. All of these constraints are taken into account when
retiming by TOPP. Retimed foot and COM accelerations
are then sent as reference to a whole-body controller that
converts them into joint accelerations. The complete pipeline
is summarized in Figure 4.

A. Finite state machine
The locomotion state machine underlying TOPP-MPC

is simpler than those of previous works like [9] as it is



Fig. 3. Preview of swing-foot (green) and COM (ligh and dark red)
trajectories during a single-support phase. Retiming the swing foot path
under conservative constraints yields a swing duration Tswing. This value
is then converted into retiming constraints on the COM trajectory, so that
TOPP uses the single-support CWC up to pG(s1) (light red) and the double-
support one afterwards (dark red).

does not need to take time into consideration. Transitions
between single- and double-support phases are triggered by
straightforward geometric conditions, namely:
• SS → DS when ‖pswing − pgoal

swing‖ ≤ ε, i.e., when the
swing-foot touches down on its target foothold.

• DS → SS when ‖pG − pgoal
G ‖ ≤ dtrans, i.e., when the

COM enters the vicinity of its preview target.
While ε should be a small value scaled upon the ability of
the robot to estimate its foot displacements, dtrans depends on
the contact geometry and preview target velocity. We used
dtrans = 5 cm in our experiments, which corresponds roughly
to the half-width of static-equilibrium polygons.

B. COM and swing-foot path interpolation

Path interpolation is constrained by state estimation from
the robot: the beginning of the path p(s) needs to coincide
with the current robot state (pcur, ṗcur), where we use p to
refer equivalently to the COM position pG or swing-foot
position pswing. This means that:

p(0) = pcur (10)
cos (ps(0), ṗcur) = 1 (11)

The latter equation, a cosine of the angle between two
vectors, states that the initial path tangent must be positively
aligned with the current velocity. The norms of the two
vectors will be matched as well at the retiming stage, so
that the output trajectory velocity ṗ(0) = ps(0)ṡ(0) = ṗcur.

Target positions and velocities (pgoal, ṗgoal) by the end of
the preview window are also provided:
• for swing-foot paths, the target position is taken at the

contact location and the target velocity is zero;
• for COM paths, the target position is taken at the center

of the Static-Equilibrium Prism for the next single-

support phase, while the target velocity is a fixed-norm
vector parallel to the contact surface and going forward
in the direction of motion.

Boundary conditions at the end of the preview path are
similarly given by:

p(1) = pgoal (12)
cos(ps(1), ṗgoal) = 1 (13)

Like [17], we interpolate the path p(s) by a cubic Hermite
curve, i.e., a third-order polynomial H(p0,v0,p1,v1) such
that H(0) = p0, H ′(0) = v0, H(1) = p1 and H ′(1) = v1.
This construction ensures that position constraints (10) and
(12) are satisfied. However, velocity constraints (11) and (13)
are not vector equalities: they only impose vector directions
and signs, leaving norms as a free parameter. Our path
interpolation problem therefore has two degrees of freedom
λ > 0 and µ > 0: we can choose any path

Iλ,µ = H(pcur, λṗcur, pgoal, µṗgoal) (14)

The values of λ and µ can be selected so as to optimize
additional path smoothness criteria. This problem has been
studied in computer graphics, where Yong et al. [25] intro-
duced the Optimized Geometric Hermite (OGH) curves that
minimize strain energy

∫ 1

0
‖pss(s)‖2ds of the path:

OGH(p0,v0,p1,v1) = arg min
λ,µ

∫ 1

0

‖I ′′λ,µ(s)‖2ds (15)

An interesting feature of this problem is that the values
λ∗OGH, µ

∗
OGH that yield this minimum are found analytically

from boundary conditions (pcur, ṗcur,pgoal, ṗgoal), so that
there is no need for numerical optimization at runtime. We
experimented with OGH curves but observed that, when
boundary velocity vectors ṗcur, ṗgoal deviate significantly
from the direction of motion ∆

def
= pgoal − pcur, OGH

curves tend to start or end with very sharp accelerations.
These accelerations have little impact on strain energy but
jeopardize trajectory retiming.

To avoid this phenomenon, we chose to optimize a dif-
ferent criterion. We observed empirically that a good proxy
criterion for the “retimability” of a trajectory is the uniform
bound given by:

arg min
λ,µ

max
s∈[0,1]

‖I ′′λ,µ(s)‖2 (16)

The maximum over s in this formula implies that, contrary to
OGH curves, the optimal solution here cannot be expressed
as a single analytical formula on λ and µ. However, the
optimum to a relaxation of this problem can. We call Her-
mite curves with Overall Uniformly-Bounded Accelerations
(HOUBA) the polynomials given by:

λ∗HOUBA = 6 · 3(∆ · v0)(v1 · v1)− 2(∆ · v1)(v0 · v1)

9‖v0‖2‖v1‖2 − 4(v0 · v1)2
(17)

µ∗HOUBA = 6 · −2(∆ · v0)(v0 · v1) + 3(∆v1)‖v0‖2

9‖v0‖2‖v1‖2 − 4(v0 · v1)2
(18)

(Recall that ∆
def
= pgoal − pcur.) We show in Appendix I
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Fig. 4. Pipeline of the predictive controller. A finite state machine sends the current walking phase (single- or double-support) as well as contact
locations to TOPP-MPC. COM and (in single support) swing-foot trajectories are then interpolated from the current robot state to a desired future state,
and sent to TOPP. The initial COM and foot accelerations of the retimed trajectory are finally converted to joint accelerations by a whole-body controller
and sent to the robot.

that this formula provides a suboptimal upper bound to the
uniform bound (16). As desired, it yields trajectories that are
less prone to sharp boundary accelerations. In what follows,
we interpolate all our COM and swing-foot paths by HOUBA
curves.

C. Swing limb synchronization

COM and swing-foot path retimings are not indepen-
dent: contact constraints on COM accelerations need to be
computed using the single-support CWC while the swing
foot is in the air, and the double-support CWC once contact
is made. One way to take this coupling into account is to
synchronize both path retimings. Denote by s and sswing
the indexes of the COM and swing-foot paths respectively.
Synchronization amounts to setting sswing = s/strans and
reformulating all foot constraints (limited workspace velocity
and acceleration) on (s̈swing, ṡ

2
swing) as constraints on (s̈, ṡ2).

This approach has the merit of conciseness and compu-
tational efficiency, but we chose not to do so due to an
undesired side effect: at the end of the swing-foot trajectory,
we want the foot velocity to go to zero so as to avoid
impacts. Under synchronization, this would imply that the
COM velocity goes to zero as well, and thus that the contact
switch is quasi-static.

To avoid this issue, we adopted the two-stage retiming
strategy depicted in Figure 3:
• First, retime the swing-foot trajectory. Let Tswing denote

the duration of the resulting trajectory.
• Second, retime the COM trajectory under the additional

constraint that t(strans) > Tswing, i.e., that the retimed
COM trajectory will spend at least Tswing of its time in
the single-support section s ∈ [0, strans].

Given the initial path velocity ṡ0 = ‖ṗcur‖/‖ps(0)‖, the
constraint t(strans) > Tswing can be formulated as a path
acceleration constraint s̈ ≤ s̈max suitable for TOPP:

Property 1: A sufficient condition for t(strans) > Tswing is
that s̈ ≤ s̈max, with

s̈max
def
=

1

2strans

[(
strans

Tswing

)2

− ṡ20

]
(19)

The proof of this property is given in Appendix II. In the
(s̈, ṡ2)-plane where TOPP-polygons are computed, Equa-
tion (19) amounts to adding two vertical boundaries at s̈ =
±s̈max and can be done readily in existing software.

D. Inverse kinematics controller

The last step of our pipeline converts COM and foot
reference accelerations p̈G, p̈swing into joint commands that
are finally sent to the robot’s motor controllers. We used our
own inverse kinematics solver for this, which is implemented
in the open-source pymanoid library.3 The solver is based
on a single-layer quadratic program with weighted whole-
body tasks (see [7] for details). We used the following
tasks, by decreasing priority: support foot contact, swing
foot tracking, COM tracking, constant angular-momentum
and joint-velocity minimization, with respective weights
104, 100, 10, 1. We chose joint-velocity minimization as the
regularizing task. Each iteration of the solver updates a vector
of joint-angle velocities q̇ref which is finally sent to the robot.

V. EXPERIMENTS

We evaluated TOPP-MPC in simultations with a model of
the HRP-4 humanoid robot. All the source code necessary
to reproduce our work is publicly released 4.

A. Preview targets tuning

The main input required by our controller is a sequence
of foothold locations, which we assume to be provided
by a parallel perception-and-planning module. From these
footholds, target COM and swing-foot positions and veloci-
ties are computed as follows. Let (ti, bi,ni) denote the frame
of the ith contact in the sequence. For the DS phase ending
on this contact and the SS phase of the (i − 1)th contact,
preview targets are set to:
• pgoal

G is the center of the SEP of the next SS footstep
• ṗgoal

G = vref ti, where vref = 0.4 m.s−1

• pgoal
swing is the position of the ith contact

• ṗgoal
swing = αti − (1 − α)ni, where α tunes the forward

inclination of the foot landing velocity.
Similarly, we used v0 = βti−1 + (1 − β)ni−1 for the foot
takeoff direction. In the accompanying video, we set α = 0.5
and β = 0.3. Recall that only the signs and directions of
these velocity vectors matter as we use Hermite curves for
interpolation.

3https://github.com/stephane-caron/pymanoid
4https://github.com/stephane-caron/topp-mpc

https://github.com/stephane-caron/pymanoid
https://github.com/stephane-caron/topp-mpc


1
4

0
 c

m

Fig. 5. Locomotion over uneven terrain by HRP-4 running the TOPP-MPC controller. The only external input to the system is a foothold sequence.
From this, the controller automatically deduces the timings of its single- and double-support phases (which depend on terrain topology), along with COM
and swing-foot motions that guarantee contact stability. TOPP previews are run in a closed feedback loop with an update period of 40 ms. In the simulations
depicted above, the robot climbs up and down two meter-high hills with slopes ranging from 0◦ to 30◦. Feasibility of the motion has been checked by
computing at each time instant feasible supporting contact forces, which can be seen in the accompanying video.

B. TOPP tuning

Once a path is interpolated, we retime it using a path
discretization step of ds = 0.1. Minimum-time trajecto-
ries always saturate inequality constraints, which means
in particular that output contact wrenches wG will lie on
the boundary of the CWC, a behavior that would make
our controller sensitive to disturbances. We palliate this by
computing the CWC matrix with sole dimensions and friction
coefficients downscaled by 0.75.

C. Simulations

Figure 5 shows one application of our controller on a
scenario where the robot has to climb up and down a series
of meter-high hills, with slopes ranging from 0◦ to 30◦.
In this example, swing-foot accelerations were bounded by
‖p̈swing‖ ≤ 5 m.s−2. Phase timings derived by the controller
were, on average over the complete motion, 0.88±0.06 s for
DS phases (these rather long durations may result from our
choice of COM targets centered in the SEP), and 0.65±0.22 s
for SS phases. Note that these phase durations result from
the particular terrain topology selected for the experiment.

TABLE II
TOPP PERFORMANCE IN THE CLOSED MPC FEEDBACK LOOP.

Phase Convex Hull Bretl & Lall
DS 18.6 ± 5.5 ms 26.2 ± 7.0 ms
SS 30.0 ± 5.6 ms 38.9 ± 7.5 ms

Table II reports times taken to build and solve TOPP
instances in this simulation. We observe that the convex-
hull reduction presented in Section III-A yields results 20 to
30% faster than when using Bretl and Lall’s method. Overall,
TOPP-MPC fits in an update loop running at 30 Hz.

VI. CONCLUSION

We introduced a model predictive controller whose under-
lying optimization is a Time-Optimal Path Parameterization
(TOPP-MPC). Despite its nonlinearity, we showed how the
TOPP optimization runs fast enough for the control loop in
legged locomotion. The key feature of TOPP-MPC is that it
determines by itself proper timings between contact switches,
based on terrain topology and its model of system dynamics.
We evaluated the performance of the overall controller in
simulations where the humanoid model HRP-4 climbs up and
down a series of hills (Figure 5 and accompanying video).

There are many avenues for further improvements. By con-
struction, time-optimal retiming switches between maximum
and minimum accelerations, causing discontinuities in the
ensuing contact forces. To mitigate this effect, an active line
of research seeks to extend the underlying TOPP routine
so as to enforce continuity constraints on accelerations [26]
or jerk bounds [27]. Another direction would be to rely
on admissible velocity propagation [28] to discover feasible
motions throughout multiple contact changes.
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APPENDIX I
CALCULATION OF HOUBA PARAMETERS

In this problem, we seek to minimize an upper-bound M
and the accelerations ‖H ′′(s)‖2 of the curve. By definition
of Hermite curves,

2H ′′(0) = 3∆− 2λv0 − µv1 (20)
2H ′′(1) = −3∆ + λv0 + 2µv1 (21)

By convexity of the cost function ‖H ′′(s)‖2, extrema are
realized at the boundaries s ∈ {0, 1} of the interval:
∀s ∈ [0, 1], ‖H ′′(s)‖2 ≤ max(‖H ′′(0)‖2, ‖H ′′(1)‖2). Our
problem is therefore the joint minimization of (20)-(21). By
Minkowski inequality,

2‖H ′′(0)‖2 ≤ ‖3∆− λv0 − µv1‖2 + ‖µv1‖2 (22)
2‖H ′′(1)‖2 ≤ ‖3∆− λv0 − µv1‖2 + ‖λv0‖2 (23)

Using the symmetry in λ and µ, we reformulate this as the
minimization of E(λ, µ) := ‖3∆−λv0−µv1‖2+ 1

2λ‖v0‖2+
1
2µ‖v1‖2. Differentiating with respect to λ and µ yields:

∂E/∂λ = −6(∆ · v0) + 9λ‖v0‖2 + 6µ(v0 · v1)(24)
∂E/∂µ = −6(∆ · v1) + 6λ(v0 · v1) + 9µ‖v1‖2 (25)

Finally, solving for critical points the linear system given by
(24) = 0, (25) = 0 yields the formulas (17) and (18).

APPENDIX II
PROOF OF PROPERTY 1

Let us define a(s)
def
= s̈, b(s) def

= ṡ2, and denote by
b′(s)

def
= db

ds and ḃ(s)
def
= db

dt . The definitions of a and b
imply that b′(s) = 2a(s), so that

b(s) = ṡ20 +
∫ s
0
b′(s)ds = ṡ20 + 2

∫ s
0
a(s)ds. (26)

An upper bound a(s) ≤ s̈max then implies that

b(strans) ≤ ṡ20 + 2stranss̈max. (27)

Next, the output switching time t(strans) can be written as:

t(strans) =

∫ strans

0

ds√
b(s)

≥ strans√
ṡ20 + 2stranss̈max

(28)

A necessary condition for t(strans) > Tswing is thus that
s2trans ≥ T 2

swing(ṡ20 + 2stranss̈max). Equation (19) is finally a
rewriting of the latter inequality.
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