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Abstract: Multiple measurements using various data acquisition systems are generally required to 

substancially enhance measurement accuracy, reliability and holisticity of freeform shapes. The 

obtained multiple measurement data of the shape are transformed and fused into a common 

coordinate system within a registration technique involving coarse and fine alignments. 

Standardized methods have been established for fine registration such as Iterative Closest Points 

(ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite 

a significant number of techniques which have been developed in the literature to supply an 

automatic rough matching between data sets.  

The work presented in this paper proposes an improvement of registration techniques by the 

consideration of new discrete curvature parameters. Two main issues are addressed in this paper: 

the coarse registration and the fine registration. For coarse registration, two novel automated 

methods based on the exploitation of discrete curvatures are presented: an enhanced Hough 

Transformation (HT) and an improved Ransac Transformation. The use of curvature features in 

both methods aims to reduce computational cost. For fine registration, a new variant of ICP method 

is proposed in order to reduce registration error using curvature parameters. A specific distance 

considering the curvature similarity is combined with Euclidean distance to define the distance 

criterion used for correspondences searching. Additionally, the objective function is improved by 

combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with 

automatic weights. The algorithms are applied on simulated and real data performed by a computed 

tomography (CT) system. The obtained results reveal the benefit of the proposed improved 

curvature-based registration methods. 
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I. Introduction 

Several measurements by means of different optical, capacitive, tomography and tactile 

probing systems are commonly required for the assessment of the shape of freeform workpieces 

while controlling reliability and accuracy of the results. Data obtained from one or several 

measuring machines equipped with one or several probing systems are characterized by different 

coordinate systems, different measurement uncertainties, different and limited overlapping sections 

and different spatial organization of points. These data are then aligned and fused into a common 

coordinate system using a registration technique [1-2]. During the registration process the optimal 

transformation parameters between two data sets (scene data and model data) endowed with 

overlapping sections is computed through two phases: coarse and fine registrations.  

The coarse registration roughly aligns the two data sets with a lower resolution from a global 

view. The outcome alignment is thereafter optimized through the fine registration for a higher 

resolution. The coarse registration result is important since the accuracy of the fine registration 

depends on it. Additionally, the search for correspondences in the overlapping sections of both data 

sets for the transformation estimation constitutes a crucial step. Numerous coarse registration 

attempts are proposed to deal with or without this matching step while for fine registration the 

closest point criterion is standardly used. 

For coarse registration, although the matching step can be achieved manually by selecting 

the identified natural or artificial corresponding marker points, miscellaneous automatic coarse 

registration techniques are currently proposed in the literature [3]. Among them, some seek to avoid 

the corresponding step using Principal Component Analysis (PCA) [4] or maximum likelihood 

techniques [5] while for the other approaches, matching step represents an important part of the 

algorithm, e.g. feature-based methods and segmentation [6]. Feature-based methods have been 

studied to a large extent [7,8]. The characteristics used to find correspondences can be curvatures, 

signature of salient features, graph model, color and texture information, normal vectors, intrinsic 

invariants, geometric features using second order local surface approximations, integral descriptor 

and many other techniques [9,10]. Furthermore, a variety of surface descriptors have been used for 

computing feature point signatures for an automatic approximate alignment of partially overlapping 

surfaces [11,12]. Feature-based methods are generally sensitive to noise. Thus, a denoising or 

smoothing is necessary prior to the application of the method.  

Furthermore, registration using PCA is fast and reliable when data sets are endowed with large 

similarity and no symmetries [13].HT [13,14] and Ransac [15] cope with PCA limitations while 

dealing also with smooth or textureless objects. Nevertheless, the exhaustive search in HT presents 
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runtime weakness and high memory consumption while Ransac computational time can be heavily 

affected by a significant volume of data.  

Iterative Closest Point (ICP) [16,17] has been established to optimize the rough alignment issue of 

coarse registration. Several ICP variants, affecting all phases of the algorithm from matching of 

points and selection of correspondences to the minimization strategy, have been carried out to 

improve the algorithm performance in term of speed, range and rate of convergence and robustness 

[18]. Corresponding search is a crucial step of registration while it considerably affects the results 

accuracy and conditions the range and the rate convergence. Some ICP variants have been 

developed for speeding up the convergence using various data structure like k-D tree [19], spatial 

bins and multiple Z-Buffer techniques [20], etc. Numerous attempts have also been made to 

robustify ICP regarding the obtained matched points used in the minimization problem formulation 

[21,22]. Instead of using all matched points, different sampling strategies have been adopted to 

compute the transformation using only some selected point pairs while attempting to overcome 

local minima [18]. Wrong pairs are rejected using robust statistics such as Least Median of Squares 

(LMedS) [23], Least Trimmed Squared (LTS) [24], etc. Euclidean distances are commonly used to 

evaluate the similarity between correspondences such as P-P (point-to-point) distance [16] and P-Pl 

(point-to-plane) distance [23]. Regarding the algorithms for solving the minimization problem, Unit 

Quaternion (UQ) method was used in the original version of ICP [16]. Nevertheless, Singular Value 

Decomposition (SVD) has been shown to yield the best global accuracy and stability [25].Different 

minimization strategy and error metric have been explored. Although P-Pl minimization method has 

been proved to be robust to noises, inaccuracies can be induced if neighbor points present high 

curvatures due to the least squares estimation of the tangent plane. 

Considering all of the above studies, the purpose of the presented work is twofold: Firstly, a novel 

registration framework is proposed for coarse registration to allow a considerable reduction of 

Hough and Ransac cost. These approaches are combined with the exploitation of discrete curvature 

features. The curvature parameters including the principal curvatures, the principal directions, the 

curvedness, the shape index and its corresponding surface type are preliminary computed using a 

discrete curvature calculation method. For HT method, the local transformation parameters are 

computed only for vertices of the same surface type, which considerably reduces the time 

processing and the required memory storage in Hough table. For Ransac method, a combination of 

geometric distance with curvature features (surface type and curvedness) constraints is proposed to 

improve the registration error and to accelerate convergence. Secondly, a curvature-based fine 

registration method is proposed. The developed method combines P-Pl registration with P-P 

minimization with an automatic weighting. Weights are attributed according to the curvature 
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features preliminary calculated at each point. Thus, according to the obtained surface type point, P-

Pl will be more or less privileged in the objective function formulation. Furthermore, curvature 

feature distance has been established for correspondences searching defined from the principal 

curvatures and combined with Euclidean distance for reliability. 

The rest of the paper is organized as follows: In Section 2, a brief presentation of discrete curvatures 

estimation methods and curvature measures are performed, along with a detailed description of a 

tensor-based method. In Section 3 and Section 4, curvature-based Hough Transformation and 

curvature-based Ransac are presented. In Section 5, the new curvature-based ICP variant is 

developed. Experimental results based on X-ray micro-Computed Tomography measurements and 

quantitative simulation results are illustrated and discussed in Section 6. In Section 7 the main 

aspects of the developed methods are discussed, as well as future research directions. 

II. Curvatures features extraction 

1- Discrete curvature estimation methods  

Most of the classical discrete curvature estimation methods are based on the polygon mesh surfaces. 

However, due to the piecewise smoothness of the input mesh, the discrete curvature estimation is 

subject to various definitions [26,27]. According to Meek and Walton [28], the classical methods of 

discrete estimation based on polygon mesh surfaces could be classified into three basic categories: 

one may approximate a local quadric surface at a given vertex mesh and then apply the derivatives 

to obtain the curvatures. One may discretize the mathematic formulae that give the curvature 

information of continuous surface and extend the notations to discrete domains [27]. One may use 

the tensor based techniques for discrete curvature estimation [26]. This approach is adopted here. 

2- Curvature definition    

Assuming Σ an orientable surface embedded in the three dimensional Euclidean space ℝ" 

and 𝑛 𝑝  the surface normal at a given point 𝑝	 ∈ 𝛴, curvatures are defined to measure the local 

bending of Σ. Take the given point 𝑝, for each unit direction 𝑢 on its tangent plane 𝑇*(𝑝), the 

normal curvature 𝜅.(𝑢) is defined as the curvature of the curve that belongs to both the surface 

itself and a perpendicular plane containing both 𝑛(𝑝) and 𝑢 (Fig.1(a)). Formally, the normal 

curvature is defined in Eq.1. 

𝜅. 𝑢 = 𝑆1 𝑢 . 𝑢 (Eq.1) 

Where, 𝑆1 𝑢  denotes the shape operator at point 𝑝 along the direction 𝑢 and it is defined as the 

derivate of 𝑛 𝑝  with the tangent direction 𝑢 (Eq.2). 

𝑆1 𝑢 = −𝛻5	𝑛(𝑝) (Eq.2) 
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𝛻5	𝑛 𝑝  indicates the gradients of 𝑛 𝑝 	along 𝑢 at point	𝑝. 

The shape operator can be shown to be symmetric. Its eigenvalues and the corresponding 

eigenvectors are respectively called the principal curvatures and the principal directions denoted 𝑇6 

and 𝑇7 (Fig.1(a)). Both the principal curvatures and the principal directions can be recovered from 

the shape operator matrix.  

3- Cohen-Steiner and Morvan method 

Cohen-Steiner and Morvan [26] proposed a method to estimate the discrete curvature tensor 

on polygon mesh by elaborating a curvature measure regarded as a discrete shape operator matrix 

inspired from the smooth case. For that purpose, a curvature tensor is first estimated at each vertex. 

Thereafter, in order to build the continuous curvature tensor field over the whole surface, the 

piecewise linear curvature tensor field is built by interpolating these values across triangles. Since it 

is not a natural way to evaluate the discrete curvatures at an isolated vertex, one should consider the 

integrals of curvatures over a given local region around a vertex. The integral of curvatures 

associated with local region is called curvature measure and its anisotropic representation is 

provided in Eq.3 for a local region 𝐵 around a vertex p on a given polyhedral mesh Σ (Fig.1(b)). 

𝐻: 𝐵 =
length 𝑒 ∩ 𝐵

2 (𝛽 𝑒 −sin 𝛽 𝑒 ) 𝑒G×𝑒GI

J∈K

+ 𝛽 𝑒 +sin 𝛽 𝑒 𝑒M×𝑒MI  
(Eq.3) 

Where 𝐸 is the collection of all the mesh edges in 𝐵. 𝑒G and 𝑒M denote the normalized sum and 

difference of unit normal vectors of the triangles incident at the edge e respectively. length 𝑒 ∩ 𝐵  

is the length of the edge e in the local region B. β(e) is the dihedral angle between the two normal 

vectors of the triangle incident with the edge e (Fig.1(c)).  

The shape operator 𝐻:(𝐵) is a 3×3 symmetric matrix which has three eigenvalues and three 

eigenvectors. The three eigenvectors correspond to the maximum principal direction, the minimum 

principal direction and the normal vector at the given vertex respectively. Therefore, the first two 

maxima eigenvalues of 𝐻:(𝐵) are the two principal curvatures at the given vertex. A simpler form 

of 𝐻:(𝐵) denoted 𝐻: 𝐵  which has the same eigen vectors as 𝐻: 𝐵  but swapped eigenvalues has 

been supplied by Zhao et al.  [13] (Eq.4) and adopted in our implementation for computation 

convenience. 

𝐻: 𝐵 =
1
𝐴 β e . length 𝑒 ∩ 𝐵 . (𝑒×𝑒I)
R∈S

 (Eq.4) 

Where 𝐴 is the area of the considered local region 𝐵 and 𝑒 is a unit vector of the edge 𝑒.  
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Our considered local region 𝐵 is defined by the Voronoi-based cell generated on the one-ring 

neighborhood of a vertex p (Fig.1(b)) and an additional coefficient 𝜆J has been integrated in the 

formulation of 𝐻: 𝐵  (Eqs.5-10) to improve results quality. 

𝐻: 𝐵 =
1
𝐴 𝜆J. 	𝛽 𝑒 . length 𝑒 ∩ 𝐵 . (𝑒×𝑒I)
J∈K

 (Eq.5) 

Where, 

𝜆J =
cosM6	(	𝑛 𝑝 , 𝑛 𝑒 )

	cosM6(	𝑛 𝑝 , 𝑛 𝑒 )R∈S
 (Eq.6) 

𝑛 𝑒 =
𝑛6 + 𝑛7
𝑛6 + 𝑛7

 (Eq.7) 

𝑛 𝑝 =
𝜔Y. 𝑛YZ

[\6

𝜔Y. 𝑛Y]
[\6

 (Eq.8) 

𝑛Y =
𝑒Y6×𝑒Y7 + 𝑒Y7×𝑒Y" + 𝑒Y"×𝑒Y6
𝑒Y6×𝑒Y7 + 𝑒Y7×𝑒Y" + 𝑒Y"×𝑒Y6

 (Eq.9) 

𝜔Y =

𝐴Y
𝑑Y7
𝐴Y

𝑑Y7
Z
[\6

 (Eq.10) 

𝑒Y6, 𝑒Y7 and 𝑒Y" are the vector units of a given face 𝑖 in the meshing. 𝑑Y is the distance between the 

vertex 𝑝Y and the centroid of the face i (Fig.1(d)). 

4- Shape index and curvedness calculation 

The main indicators for surface type recognition utilized here are the shape index and the 

curvedness. Both specify the second order geometry of a shape. The shape index is a quantitative 

measure of the local surface type of a point on a surface. It as a single value within the range [-1,1] 

and mathematically defined in Eq.11. 

𝑠 = −
2
𝜋 𝑡𝑎𝑛

M6 𝜅6 + 𝜅7
𝜅6 − 𝜅7

, 𝜅6	 ≥ 𝜅7  (Eq.11) 

Curvedness, as a complementary parameter to the shape index, is a bending energy represented by a 

positive number that specifies the amount or intensity of the surface curvatures (Eq.12). 

𝑐 = 	
𝜅67+𝜅77

2  (Eq.12) 

Where, κ6 and 𝜅7 are respectively the maximum and minimum principal curvatures of the local 

surface. 

5- Surface type classification 
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From the shape index, nine basic surface types in a continuous way defined in [29] are assumed 

here. This definition is more convenient than the classical one based on Gaussian and Mean 

curvature. However, since planar shapes were not defined in [29], a surface type for planar shape 

has been established when shape index values are equal to 2 (Table I). A unique integer called 

surface type label L is assigned to each of the ten surface types for convenience of the classifying 

and processing (Table I) [13]. 

6- Algorithm 

The algorithm for curvature features extraction can be summarized for each vertex of a considered 

data as follows:  

• Step 1: Calculation of the shape operator matrix  Hh B ;  

• Step 2: Eigen value decomposition of Hh B ; 

• Step 3: Calculation of the shape index and the curvedness; 

• Step 4: Calculation of the surface type. 

III. Enhanced Hough Transformation (HT) 

1- Classical HT 

HT avoids the priori knowledge of correspondences using an exhaustive search to estimate 

the rough transformation between the scene data and the model data. For that purpose, local frames 

are first calculated at each point for both data sets. Thereafter, each frame of the scene data has to 

be paired with each one from the model data providing 𝑚×𝑛 transformations if 𝑚 and 𝑛 are 

respectively the number of points in scene data and in model data. All resulted new transformations 

are stored in Hough table while their respective frequencies of occurrence are updated by using an 

incrementing counter for each stored transformation (Fig.2(a)). Therefore, the most frequent 

transformation in Hough table is retained for rough alignment based on the following assumption. 

Transformations calculated from correct point correspondences result in the same transformations, 

whereas all other transformations are distributed more or less randomly in the Parameter Space 

(PS). Hence, a peak in Hough table is expected at the position of the searched transformation. 

2- Proposed Curvature-based HT  

Curvature features are combined with HT algorithm to reduce the number of Hough 

operations while optimizing the memory consumption required for Hough table, which affects 

consequently the computational time. Transformation parameters are computed only for points of 

the same surface type (Fig.2(b)). Thus, the basic transformation o(𝑚×𝑛) operations are 

considerably reduced according to the number of the identified surface types in both data sets and 
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the partition of points in the generated classes. For example, if 10 surface types are identified for 

both data sets which points are uniformly classified in these 10 surface type classes, the 

corresponding transformation operation is then given by  o 10× l
6m
× n
6m

= o(𝑚×𝑛/10). 

Furthermore, additional and optional stopping criteria were defined to improve the algorithm 

performance. Some heuristic could be added to speed up the algorithm. Here, the algorithm stops if 

the maximum number of the counter is greater than a threshold 𝑇p multiplied by the second 

maximum value of the counter at a certain iteration of the loop (Eq.13). 

𝑚𝑎𝑥 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑇p.𝑚𝑎𝑥 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ∖ 𝑚𝑎𝑥 𝑐𝑜𝑢𝑛𝑡𝑒𝑟  (Eq.13) 

This criterion can be strengthened if a prior knowledge of the overlapping sections is available. 

Moreover, the transformation operation can be further decreased by applying the transformation 

parameters calculation only on points of one or some specific surface types. Indeed, since a priori 

knowledge of the surface types of points in the overlapping sections is available, transformations 

parameters can be calculated only from these points. For example, if the overlapping sections 

contain some planes (which class is denoted respectively 𝑃′ and 𝑄y in scene and in model data), 

when considering points classified as planes for the transformation calculation, the transformation 

operation will considerably decrease and will be no more than o(𝑚′×𝑛′). 𝑚′ and 𝑛y are respectively 

the number of points which surface type is plane in scene data and in model data (i.e. in 𝑃yand 𝑄′). 

3- Algorithm 

The proposed algorithm can be summarized as follows:  

• Step 1: Compute local frames 𝑉Y and 𝑉}, which can be the Eigen vectors resulted from 

Eigen value decomposition of the shape operator matrix 𝐻: 𝐵 ; 

• Step 2: Initialization of Hough table and the counter; 

• Step 3: Compute transformation from 𝑉Y and 𝑉} in 𝑃y& 𝑄y (Eq.14); 

𝑅Y→} = 𝑉}𝑉YI, 𝑇Y→} = 𝑝} − 𝑅Y→}𝑝Y (Eq.14) 

• Step 4: Test if (𝑅Y→}𝑇Y→}) belongs to Hough table (Ht) (Eq.15); 

𝑅�1�, 𝑇�1� = 𝑎𝑟𝑔 𝑚𝑖𝑛
�,I∈��

	[𝑑𝑖𝑠𝑡 𝑅Y→}, 𝑇Y→} − 𝑅, 𝑇 �� < 𝜀		] (Eq.15) 

• Step 5: Update the counter or Hough table; 

• Step 6: Extract the retained transformation by selecting the most frequent transformation 

in Hough table; 

If 𝑁 = 𝑚×𝑛 is the number of operations in the initial HT algorithm with m and n the number of 

points respectively in scene data and in model data, 𝑁 is equal to (𝑚y×𝑛y)��
�\6  for the enhanced 
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algorithm. Where 𝐾 is the number of the selected surface types to be considered within their 

respective number of points  𝑚′ and 𝑛′ identified in scene data and in model data. 

IV. Improved Ransac 

1-  Ransac-based darces registration  

The Ransac-based darces algorithm is addressed as follows:  

• Step 1: Initialization: three points (p1, p2, p3) are randomly picked in scene data P. 

• Step 2: Searching of their respective corresponding candidates’ points (q1, q2, q3) in 

model data Q using distance constraints. 

• Step 3: Calculation of (R,T) from l candidate sets of 3 point pairs (Eq.16). 

𝑅, 𝑇 = 	𝑚𝑖𝑛
�,I

𝑅𝑝Y + 𝑇	 − 𝑞Y	
7

��\"

Y\6

 (Eq.16) 

Steps 1, 2 and 3 are repeated k times providing then 𝑘y = 𝑙��
�\6  transformations: (𝑅6, 𝑇6), 

(𝑅7, 𝑇7)… (𝑅�y, 𝑇�y). 

• Step 4: Calculation of the transformed points		𝑃′6, 𝑃′7… 𝑃′�y by applying respectively 

the 𝑘y above transformations.  

𝑃′ = 𝑅𝑃 + 𝑇 (Eq.17) 

• Step 5: Calculation of the number 𝑛�y of closest points between each 𝑃Yy and 𝑄, 𝑖 =

1…𝑘′. 

• Step 6: Identification and selection of the transformation with the maximum value of 𝑛. 

Distance constraints related to Step 2 are used for finding q2 and q3: 

- q2 candidates are points on the sphere centered at q1 and which ray is the distance between p1 

and p2, Fig.3(a). 

- q3 candidates are points on the circle centered at hq12 and which ray is the distance between 

hp12 and p3 (Fig.3(b)). 

 

2- Curvature-based Ransac registration 

The identical principle for HT enhancements approach has been integrated in Ransac algorithm to 

improve its performance using an additional curvature parameter. Distance constraints are 

combined with curvature feature constraints (surface type and curvedness) which are applied first in 

the matching step to reduce the corresponding points searching area to 𝜓(𝑝Y) (Eq.18). The 
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corresponding point candidates in model data present then the same surface type with similar 

curvedness as the requested points randomly selected in scene data.  

Moreover, data can be randomly sampled from specific surface type classes in scene data since a 

priori knowledge about the surface type in the overlapping section points is available. Although no 

priori knowledge is available, the idea to select points in specific surfaces type classes also reduces 

the chance to pick close points. 

The k random sampling can be set knowing the ratio 𝜁 of the overlapping section points. Assuming 

𝑃∗ the probability to have at least a set of three points in the overlapping section, k can be 

determined using Eq.19. 

V. ICP variant 

Let us recall 𝑃 = 𝑝Y , 𝑖 = 1…𝑚 and 𝑄 = 𝑞Y , 𝑖 = 1…𝑛, two data sets to align, which we call 

respectively the scene data (the moving set) and the model data (the fixed set) with generally 𝑚 ≠

𝑛. ICP algorithm aims to determine the optimal transformation, the rotation 𝑅 and the translation 𝑇, 

(producing the best alignment of 𝑃 and 𝑄 so that 𝑄 = 𝑅𝑃 + 𝑇) from correspondences. 

1- Searching correspondences 

The matching step is traditionally based on the closest point criterion using Euclidean distance: 

𝐶𝑜𝑟𝑟𝑒𝑠 𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛
�∈�

𝑑 𝑝, 𝑞 ≤ 𝑇ℎ6 (Eq.20) 

where 

𝑑 𝑝, 𝑞 = 𝑑J = 𝑝 − 𝑞  (Eq.21) 

𝑇ℎ6 is the threshold defining the accepted maximum distance. 

However, a specific distance 𝑑� combining Euclidean distance 𝑑J with curvature distance 𝑑  

defined from principal curvatures 𝜅6 and 𝜅7 is proposed here (Eqs.22 and 23) to take into account 

the curvature similarity besides the points position for the correspondences searching. 

𝑑 𝑝, 𝑞 = 𝑑� = 𝜆𝑑J + 1 − 𝜆 𝑘𝑑 , 𝑘 ∈ ℝ∗G (Eq.22) 

Where, 

𝑑  = 	 (𝜌61 − 𝜌6�)7 + (𝜌71 − 𝜌7�)7,  

	𝜌6 =
6
¢£

, 𝜌7 =
6
¢¤
, 𝜆 ∈ 0,1  (Eq.23) 

𝜓 𝑝Y = 	𝑑¥ < 𝑇ℎ¦¥		where			𝑑¥ = 𝑐1© − 𝑐�©	 

                             for	𝐿1© = 𝐿�© 
(Eq.18) 

𝑃∗ = 1 − 1 − 1 − 𝜁 " � ⟺ 𝑘 =
𝑙𝑜𝑔	(1 − 𝑃∗)

𝑙𝑜𝑔 1 − 1 − 𝜁 " (Eq.19) 
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And 𝑘 is a constant to normalize 𝑑 . 

2- Computation of (R,T) 

𝑅, 𝑇  is classically computed by solving the optimization problem in least-squares sense where the 

associated P-P objective function is given in Eq.16. The associated P-Pl objective function f is 

provided in Eq.24. N® is the number of correspondences for both. 

𝑓(𝑅, 𝑇, (𝑝Y, 𝑞Y)) = 	 (𝑅𝑝Y + 𝑇	 − 𝑞Y)I𝑛Y
7

��

Y\6

 (Eq.24) 

The P-Pl method has been proved to be robust since the algorithm minimizes the sum of squared 

distances between the tangent plane at q[ (estimated from its ϰ-neighbour points). 

However, imprecisions can be induced especially when the neighbor points present high curvatures 

due to the least squares estimation of the tangent plane from these ones. Hence, the objective 

function has been improved by combining P-P and P-Pl  approaches with automatic weights setting 

(Eq.25), to handle the classical P-Pl method limitation. 

𝑅, 𝑇 = 	𝑚𝑖𝑛
�,I

		 𝑤Y 𝛼Y 𝑅𝑝Y + 𝑇	 − 𝑞Y	
7
		+ 	 𝛽Y 𝑅𝑝Y + 𝑇	 − 𝑞Y

I
𝑛Y

7
��

Y\6

 (Eq.25) 

𝑤Y are weights close to one indicating the reliable correspondences. They can be defined using 

Huber [30] or Tuckey criterion [31]. 

𝛼Y, 𝛽Y = 1 − 𝛼Y  are weights to balance the contribution of P-P or P-Pl approaches in the 

optimization algorithm. They are automatically set according to the knowledge of the surface type 

at each point (Table II). 

3- Stopping criteria 

The algorithm stops as soon as one of the following conditions is satisfied: 

•  the Mean Squared Error (MSE) difference between two successive iterations is 

sufficiently small; 

•  the MSE is sufficiently small; 

•  the maximum allowed number of iterations has been reached. 

 

VI. Experimental results  
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A preliminary test of our algorithms on simulated data with additional generated Gaussian noises of 

±10 nm and ± 400 nm was achieved. The MSE (Mean Square Error)and the absolute RMS (Root-

Mean-Square) and PV (Peak-to-Valley) variations are of sub-nanometer level whatever the coarse 

registration methods, which validates the robustness of our proposed approaches.  

Therefore, the measurement of a cube standard is performed by a X-ray µCT system (X-ray micro-

Computed Tomography [32]). The µCT Carl Zeiss METROTOM 800 is used here for the scanning 

of the manufactured material standard (Fig.4). It was specially achieved through the use of 

maintenance-free micro-focus X-ray tube technology. Extremely small focal points enable razor-

sharp projection images on the detector, leading to the foundation of a high measuring accuracy. 

The Carl Zeiss METROTOM 800 µCT detector delivers almost three million pixels for very high 

detail recognition. 

In this µCT system, the specimen can be located in any position in the beam path via a continuously 

adjustable travel mechanism. The detector is always optimally illuminated with the part projection. 

Together with the vertical adjustment, this function allows one to enlarge specific areas of the parts 

to measure details in relation to the entire specimen. Once the 2D projection images are acquired, 

specific software based on filtered back-projection was used to reconstruct the volume model (3D).  

More than one million points are recorded to cover the entire specimen surfaces. The registration of 

the µCT measurement data with the CAD data is carried out using the implemented methods. 

The cube standard is made of aluminum with 15 mm of side length (Fig.5 (a)). 

Afterward, the CAD data and µCT measurement have been aligned using the proposed curvature-

based registration methods. Its CAD and measurement data (Fig.5 (b)) are respectively composed of 

587206 and 1913761 points. 

The CAD surface type and curvedness maps are respectively provided in Fig.5 (c and d). The 

measurement surface type and curvedness maps on a local region are respectively illustrated in 

Fig.5 (e and f). Different surface types are distinctly identified depending on the meshing 

discretization, like the holes recognized as spherical cup (-4), the edge as ridge (2) and the cube flat 

side as plane (5), etc.  

1- Coarse registration  

The enhanced Hough and Ransac methods have been applied on points of a specific chosen surface 

type. This one should be selected according to its points distribution to avoid close points for 

Ransac approach while decreasing the counter of the wrong transformations for Hough method. 

Since the number of points of the same surface type is least, the algorithm complexity and the 

computational time are consequently reduced for a higher performance. However, a low number of 
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points can lead to an unsatisfying coarse alignment due to noises. Therefore, a compromise should 

be found when selecting the surface type to be used for Ransac or for Hough methods. Here, Hough 

and Ransac have been applied on the  surface type corresponding to L=2 (ridge). Thus, instead of a 

complexity of 587206 ´ 1913761 induced by basic Hough, our curvature based-Hough engenders at 

worst 10051 ´ 430244 local transformations calculation operations, which represents a reduction of 

99.62%. 

For the Hough table, the threshold  𝜀  in Eq.15 is split into two complementary thresholds, εµ =

10M" to delimit the rotation radian angles similarity and ε¶ = 1 to delimit the translation 

components similarity. The maximum number of counter is 2018 which corresponds to R = [0.01, -

1.05, 0.13] and T = [4.09, -8.27, -4.87] (Table III). 

For Ransac, the k-random sampling set to 20 have been generated, for which the randomly selected 

points in Q are spaced within 2 mm at least. The two thresholds for the closest points criterion and 

for the accepted maximum value n are set to 0.01 mm and 1500. These thresholds can be set 

considering the prior knowledge of the ratio of the considered surface type points present in the 

overlapping areas and the ratio of noisy points. The retained transformation is R = [-0.14, -1.12, 

0.14] and T = [3.93, -9.01, -4.32] (Table III).  

A manual coarse alignment had been carried out primarily to supply a rough alignment reference 

for a rough comparison with our algorithm results (Table III). The quality of the obtained coarse 

alignments can be subsequently thorough and characterized from the fine registration results since 

they define the ICP initialization. As illustrated in Fig.6 (d) and reported in Table VII, the three 

methods converge to the identical order of MSE, RMS and PV for both classical fine registration 

algorithms (P-P and P-Pl) with different iterations. E.g.: for P-P, the obtained Manual MSE is of 

2.1244´10-4 mm after 16 iterations, while Hough and Ransac MSE are respectively 2.1138´10-4 

mm and 2.1134´10-4 mm after 38 and 27 iterations. Higher is the quality of the rough alignment 

lower is the required number of iterations for convergence. The obtained Ransac coarse alignment 

quality is greater than Hough result with lesser computational time (720 s versus 2520 s). However, 

Hough provides constant and repeatable results compared to Ransac which is based on a random 

sampling. 

2- Fine registration 

The proposed curvature-based fine registration including the combination of P-P and  P-Pl 

minimization methods and the curvature distance used for the matching step, have been studied 

using the above three crude alignments.  
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To consider the performance of P-P and P-Pl combination (denoted “Cb”) minimization algorithm, 

the resulted MSE, RMS, PV are compared with the ones obtained using separately P-P and P-Pl 

algorithms. This analysis has been undertaken three times using a different rough alignment among 

Ransac, Hough and Manual results. For any crude alignment, the P-Pl confirms undeniably its 

advantage against the P-P (Tables IV, V and VI). 

The combination approach Cb is firstly tested with a global set of weights applied on all 

point pairs, α[ = α and β[ = β. α is varied from 0.1 to 0.9 since α = 0 corresponds to P-Pl and α =

1 to P-P (Tables IV, V and VI). The combination Cb provides advantageous results for α from 0.1 

to 0.5 (i.e. by attributing much importance to P-Pl), regardless of whatever the coarse alignment 

method. The minimum MSE and RMS values are reached for α = 0.3. The obtained MSE and RMS 

are of 3.9935´10-5 and 1.9984´10-3 for manual coarse (Table IV), 3.9944´10-5 and 1.9986´10-3 for 

Hough coarse (Table V) as well as 3.9544´10-5 and 1.9909´10-3 for Ransac coarse (Table VI). 

Secondly for an automatic set of (α[, 	β[) different combinations of their values have been achieved 

and evaluated by mostly weighting with α[ = 0.3,	β[ = 0.7 according to the presented surface type 

while focusing on 0.1,0.5  α[ range.  

The retained weights related to the automatic set (denoted AUTO) are reported in Table II with the 

lowest MSE and RMS values; E.g. 3.7555´10-5 and 1.9379´10-3 for Manual, 3.6614´10-5 and 

1.9147´10-3 for Hough, 3.6768´10-5 and 1.9193´10-3 for Ransac (Tables IV, V and VI). 

The influence of λ parameter is investigated on MSE, PV and RMS issued of the three minimization 

approaches (P-P, P-Pl and Cb) and highlighted respectively in Fig.6 (e, f, g, h, i, j, k, l and m) for 

Manual, Hough and Ransac. Quite similar MSE behaviors obtained from P-P (Fig.6 (e)), from P-Pl 

(Fig.6 (f)) and from the combination of both (Fig.6 (g)) are noticed where the common minimum is 

reached generally at λ = 0.3. The same observation is available for RMS curves. It reveals the 

effect of the curvature distance dc in ds and its advantage instead of using only Euclidean distance 

de. Comparison examples of MSE values: 1.9949´10-3 (λ =0.3) versus 2.1244´10-3 (λ =1) for P-P 

from manual (Fig.6 (e) and table IV), 5.2620´10-4 versus 5.5097´10-4 for P-Pl from Hough (Fig.6 

(f) and Table V), 3.3964´10-5 versus 3.6768´10-5 for the Cb from Ransac (Fig.6 (g) and Table VI). 

3- Result analysis and discussion 

Through the previous analyses, the benefit of the proposed curvature based-fine algorithm 

was shown. The obtained MSEs are 3.4976´10-5, 3.4067´10-5 and 3.3964´10-5 for Manual, Hough 

and Ransac coarses respectively while 2.1244´10-4, 2.1138´10-4 and 2.1134´10-4 for P-P as well as 

6.1326´10-5, 5.5097´10-5 and 5.4155´10-5 for P-Pl (Table VII). Regardless of the selected method, 
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the PV, which combines intrinsic errors of the artefact and intrinsic errors of the CT system, is 

approximately of 20 µm. 

The representative errors linked to the artefact are the form errors, the waviness and the 

roughness. Form errors and waviness are generated by the milling machine used for the 

manufacturing of the artefact. Thus, such kind of machine is equipped with numerous precision 

guiding systems presenting error motions of some micrometers, causing then form errors and 

waviness with similar level. The roughness depends on the selected milling parameters and tool and 

can be evaluated to few hundreds of nanometer. 

The errors generated by CT can be distinguished into systematic and random errors. 

Systematic errors, or repeatable errors, are introduced by an inaccuracy inherent in the system, 

whereas random errors are caused by unknown and unpredictable changes in the system. Numerous 

errors sources in the CT can be identified such as: resolution of the source of the X-ray, resolution 

and linearity errors of the detector, positioning errors of the artefact in the working space, error 

motions and positioning errors of the spindle, positioning of the detector, reconstruction of the 

numerous collected 2D radiology, number of orientation of the artefact, etc.  

Additionally, thermal drift is considered as a considerable source of error and can impact both the 

artefact and the CT system. 

VII. Conclusion 

Three novel curvature-based registration methods including two coarse registration approaches 

and an ICP variant technique have been detailed in this paper. Hough and Ransac methods are 

traditionally used for coarse registration to cope with PCA limitations. Both methods have been 

enhanced by introducing curvature parameters exploitation in the algorithm for advanced 

performance. Indeed, the two algorithms are applied on specific areas selected and identified using 

surface type and curvedness similarity constraints, which considerably reduce the complexity and 

the computational time. These curvature parameters are preliminary calculated for each vertex of 

meshed data with a controlled meshing discretization. Local transformations computation endowed 

by Hough exhaustive search is only applied on points of the same surface type. The random 

sampling of points to be paired and their correspondences searching in Ransac based-darces 

algorithm are focused on a reduced area specified by the mixture of the surface type and curvedness 

similarity constraints. For fine registration, two contributions improving the matching step and the 

optimization problem definition have been carried out and proved to be performant compared to 

classical algorithms. The reliability of correspondences searching is based on the use of specific 

distance involving the combination of Euclidean distance and curvature distance. Curvature 
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distance is defined from principal curvatures to measure the invariant curvature features similarity, 

which importance is weighted by λ close to zero. The second contribution consists of combining the 

P-P minimization with P-Pl minimization, which both are automatically weighted depending on the 

pre-calculated surface type of the considered paired points. Different applications have been 

handled to validate the proposed algorithms. Through these applications, the observed performance 

induced by curvature parameters introduction in Hough and in Ransac have been highlighted while 

the influence of the curvature similarity measure employed for fine registration as well as the 

benefit of the novel objective function, have been emphasized. This one has been revealed to be 

robust to noises instead of adopting separately P-P and P-Pl minimization approach. 

 

Acknowledgments 

The authors sincerely thank the EMPIR organization. The EMPIR is jointly funded by the EMPIR 

participating countries within EURAMET and the European Union (15SIB01: FreeFORM).  

The authors are grateful to Dr. Frank Thibault from Carl Zeiss in France for the CT measurements 

on our artefacts. 

  



	 	 -	17	- 

References 
 
[1] A. Weckenmann, X. Jiang, K. D. Sommer,  U. Neuschaefer-Rube, J. Seewig, L. 

Shaw, T. Estler, Multisensor data fusion in dimensional metrology, CIRP Annals-

Manufacturing Technology 58 (2009) 701-721. 

[2] L. Shaw, A. Weckenmann, Automatic registration method for hybrid optical 

coordinate measuring technology, CIRP Annals-Manufacturing Technology 60 

(2011) 539-542. 

[3] Díez, Y., Roure, F., Lladó, X., & Salvi, J. (2015). A qualitative review on 3d coarse 

registration methods. ACM Computing Surveys (CSUR), 47(3), 45. 

[4] Z. Zhang, C. Pan and S. Ma, An automatic method of coarse registration between 

multi-source satellite images, Proceedings of IEEE Conference on Intelligent 

Sensors, Sensors Network and Information (2004) 205-209. 

[5] A. Myronenko, X. Song, Point set registration: Coherent point drift, IEEE 

Transactions on Pattern Analysis and Machine Intelligence 32 (2010) 2262-2275. 

[6] M. Attene, B. Falcidieno, M. Spagnuolo, Hierarchical mesh segmentation based on 

fitting primitives, The Visual Computer 22  (2006) 181-193. 

[7] A. Johnson, Q-S. Kang, Y-L. Yang, S-M. Hu, Registration and Integration of 

Textured 3-D Data, Proc. 3DIM (1997). 

[8] H. Pottmann, Q. Huang, Y. Yang, Geometry and convergence analysis of algorithms 

for registration of 3-D shapes, International Journal of Computer Vision 67 (2006) 

277-296. 

[9] W-L. Li, Z-P. Yin, Y-A. Huang and Y-L. Xiong, Automatic registration for 3D 

shapes using hybrid dimensionality-reduction shape descriptions, Pattern Recognition 

44 (2011) 2926-2943. 

[10] R. Rantoson, C. Stolz, D. Fofi, F. Meriaudeau, Non contact 3D measurement scheme 

for transparent objects using UV structured light, 20th IEEE International Conference 

on Pattern Recognition (ICPR) (2010) 1646-1649. 

[11] G. Xiao, S.H. Ong, K.W.C. Foong, Registration of partially overlapping surfaces by 

rejection of false point correspondences, Pattern Recognition 39 (2006) 373–383. 

[12] 

 

 

 

S.M. Yamany, A.A. Farag, Surfacing signatures: An orientation independent free-

form surface representation scheme for the purpose of objects registration and 

matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 

(2002) 1105–1120. 



	 	 -	18	- 

[13] H. Zhao, N. Anwer, P. Bourdet, Curvature-based registration and segmentation for 

multisensor coordinate metrology, Procedia CIRP 10 (2013) 112-118 

[14] 

 

J. Illingworth, J. Kittler, The adaptive hough transform, IEEE Transactions on Pattern 

Analysis and Machine Intelligence 9 (1987) 689–698. 

[15] C-S. Chen, Y-P. Hung, J-B. Cheng, Ransac-based darces: A new approach to fast 

automatic registration of partially overlapping range images, IEEE Transactions on 

Pattern Analysis and Machine Intelligence 21 (1999) 1229–1234. 

[16] P. Besl, N. McKay, A method for registration of 3-D shapes, IEEE Transactions on 

Pattern Analysis and Machine Intelligence 14 (1992) 239 – 256. 

[17] Y. Chen, G. Medioni, Object modeling by registration of multiple range 

images,  IEEE International Conference on Robotics and Automation (1991) 2724 – 

2729. 

[18] S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algorithm, IEEE Third 

International Conference on 3-D Digital Imaging and Modeling (2001) 145-152. 

[19] M. Greenspan, M. Yurick, Approximate k-d tree search for efficient ICP, IEEE 

Fourth International Conference on 3-D Digital Imaging and Modeling (2003) 442-

448. 

[20] R. Benjemma, F. Schmitt, Fast global registration of 3D sampled surface using a 

multi-z-buffer technique, Journal of Imaging and Vision Computing 17 (1999) 113-

123. 

[21] G.K.L. Tam, Z-Q. Cheng, Y-K. Lai, F.C. Langbein, Y. Liu, D. Marshall, R.R. 

Martin, X-F. Sun, P. L. Rosin, Registration of 3D Point Clouds and Meshes: A 

Survey from Rigid to Nonrigid Visualization and Computer Graphics,  IEEE 

Transactions on Visualization and Computer Graphics 19 (2013) 1199-1217. 

[22] Y. Yang, S.H. Ong, K.W.C. Foong, A robust global and local mixture distance based 

non-rigid point set registration, Pattern Recognition 48 (2015) 156–173. 

[23] T. Masuda, N. Yokoya, A robust method for registration and segmentation of 

multiple range images, Computer Vision and Image Understanding 61 (1995) 295-

307. 

[24] D. Chetverikov, D. Svirko, D. Stepanov, P. Krsek, The trimmed iterative closest 

point algorithm, IEEE 16th International Conference in Pattern Recognition 3 (2002) 

545-548. 

[25] A. Lorusso, D.W. Eggert, R.B. Fisher, A comparison of four algorithms for 



	 	 -	19	- 

estimating 3-D rigid transformations, British Conference on Machine Vision  1 

(1995) 237-246. 

[26] D. Cohen-Steiner, J.M. Morvan, Restricted Delaunay Triangulation and Normal 

Cycle, Proceedings of 19th Annual ACM Symposium on Computational Geometry 

(2003) 312-321. 

[27] M. Meyer, M. Desbrun, P. Schroder, A.H. Barr, Discrete differential-geometry 

operators for triangulated 2-manifolds, Proceedings of Visualization and 

Mathematics (2002) 35-57. 

[28] D. Meek, D. Walton, On surface normal and Gaussian curvature estimations given 

data sampled from a smooth surface, Journal of Computer Aided Geometric Design 

17 (2000) 521-543. 

[29] J.J. Koenderink, R. J. Van Doorn, Surface shape and curvature scales, Journal of 

Imaging and Vision Computing 10 (1992) 557-565. 

[30] P.J. Huber, Robust statistics, Springer Berlin Heidelberg (2011). 

[31] 

 

A.C. Öztireli, G. Guennebaud, M. Gross, Feature Preserving Point Set Surfaces based 

on Non-Linear Kernel Regression, Computer Graphics Forum 28 (2009) 493-501. 

[32]

  

J. P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, A. Weckenmann 

Computed tomography for dimensional metrology, CIRP Annals - Manufacturing 

Technology 60 (2011) 821–842. 

 

 
  



	 	 -	20	- 

Figure captions 
 
Fig. 1: (a) Normal curvature illustration, (b) Voronoï-based cell generation for the local region B 

definition, (c) Dihedral angle illustration, (d) Illustration of 𝒏𝒑 calculation where 𝝒 = 𝟔. ---- 21 

Fig. 2: Hough algorithm illustrations: (a) The basic; (b) The enhanced. -------------------------------- 22 

Fig. 3: Ransac-based darces registration constraints illustrations related to the Step 2: (a) q2 

searching; (b) q3 searching. ------------------------------------------------------------------------------ 23 

Fig. 4: Cube illustrations: (a) Its photo; (b) Its measurement data; (c) Its CAD surface type map; (d) 

Its CAD curvedness map; (e) and (f) Zoom of its measurement surface type and curvedness 

maps. -------------------------------------------------------------------------------------------------------- 25 

Fig. 5: Results illustrations of the CAD and its measurement registration: (a) Initial alignment; (b) 

Coarse registration; (c) Fine registration; (d) MSE Curves obtained using the curvature-based 

registration with different coarse registration methods; (e) (f) (g) Final MSE values obtained 

with different values of 𝜆 using respectively P-P, P-Pl minimization approach and the 

combination of both (Cb). (h) (i) (j) Finale PV values obtained with different values of 𝜆 using 

respectively P-P, P-Pl minimization approach and the combination of both (Cb). (k) (l) (m) 

Final RMS values obtained with different values of 𝜆 using respectively P-P, P-Pl minimization 

approach and the combination of both (Cb). Note that M: Manual, H: Hough and R: Ransac. 26 
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Fig. 1: (a) Normal curvature illustration, (b) Voronoï-based cell generation for the local region B 

definition, (c) Dihedral angle illustration, (d) Illustration of 𝒏 𝒑  calculation where 𝝒 = 𝟔. 
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Fig. 2: Hough algorithm illustrations: (a) The basic; (b) The enhanced. 
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Fig. 3: Ransac-based darces registration constraints illustrations related to the Step 2: (a) q2 

searching; (b) q3 searching. 
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Fig. 4: Schema of the µCT equipped with 2D flat panel detector with cone beam (Carl Zeiss 

METROTOM 800CT). 
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Fig. 5: Cube illustrations: (a) Its photo; (b) Its measurement data; (c) Its CAD surface type map; (d) 

Its CAD curvedness map; (e) and (f) Zoom of its measurement surface type and curvedness maps. 
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Fig. 6: Results illustrations of the CAD and its measurement registration: (a) Initial alignment; (b) 

Coarse registration; (c) Fine registration; (d) MSE Curves obtained using the curvature-based 

registration with different coarse registration methods; (e) (f) (g) Final MSE values obtained with 

different values of 𝜆 using respectively P-P, P-Pl minimization approach and the combination of 

both (Cb). (h) (i) (j) Finale PV values obtained with different values of 𝜆 using respectively P-P, P-

Pl minimization approach and the combination of both (Cb). (k) (l) (m) Final RMS values obtained 

with different values of 𝜆 using respectively P-P, P-Pl minimization approach and the combination 

of both (Cb). Note that M: Manual, H: Hough and R: Ransac. 
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TABLE I: SURFACE TYPE DEFINITION  

Surface 
type Shape index  s L Color Surface 

type Shape index  s L Color 

Spherical 
cup 𝑠 ∈ −1,−

7
8  -4  Spherical 

cap 𝑠 ∈ 1,
7
8  4  

Through 𝑠 ∈ −
7
8 ,−

5
8  -3  Dome 𝑠 ∈

5
8 ,
7
8  3  

Rut 𝑠 ∈ −
5
8 ,−

3
8  -2  Ridge 𝑠 ∈

3
8 ,
5
8  2  

Saddle 
rut 𝑠 ∈ −

3
8 ,−

1
8  -1  Saddle 

ridge 𝑠 ∈
1
8 ,
3
8	  1  

saddle 𝑠 ∈ −
1
8 ,
1
8  0  Plane 𝑠 = 2 5  
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TABLE II: 𝛼	definition  

L -4 -3 -2 -1 0 1 2 3 4 5 

𝛼 0.5 0.4 0.2 0.3 0.3 0.3 0.2 0.4 0.5 0 
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TABLE III: Coarse transformation results 

Manual Hough Ransac 

R= [- 0.15, -1.53,-0.21]  

T=[4.82; -6.81; -7.86] 

R= [0.01; -1.05; 0.13 ]  

T= [4.09;-8.27;-4.87 ] 

R= [-0.14; -1.12;0.14]  

T= [3.93 -9.01 -4.32] 
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TABLE IV: P-P, P-Pl and Cb minimization tests from manual coarse 

Approach PV (mm) RMS (mm) MSE (mm) 

P-P 2.4796 ´ 10-2 2.7792 ´ 10-3 2.1244 ´ 10-4 

P-Pl 2.4664 ´ 10-2 2.4764 ´ 10-3 6.1326 ´ 10-5 
C

b 
(𝛼
,𝛽

) 

0.1 – 0.9 2.3814 ´ 10-2 2.2593 ´ 10-3 5.1044 ´ 10-5 

0.2 – 0.8 1.9454 ´ 10-2 2.0450 ´ 10-3 4.1820 ´ 10-5 

0.3 – 0.7 2.0383 ´ 10-2 1.9984 ´ 10-3 3.9935 ´ 10-5 

0.4 – 0.6 1.9705 ´ 10-2 2.0399 ´ 10-3 4.1449 ´ 10-5 

0.5 – 0.5 2.3021 ´ 10-2 2.2654 ´ 10-3 5.1231 ´ 10-5 

0.6 – 0.4 2.3456 ´ 10-2 2.4081 ´ 10-3 5.7759 ´ 10-5 

0.7 – 0.3 2.3493 ´ 10-2 2.4916 ´ 10-3 6.1793 ´ 10-5 

0.8 – 0.2 2.3704 ´ 10-2 2.6157 ´ 10-3 6.8002 ´ 10-5 

0.9 – 0.1 2.3867 ´ 10-2 2.7133 ´ 10-3 7.3621 ´ 10-5 

AUTO 2.0965 ´ 10-2 1.9379 ´ 10-3 3.7555 ´ 10-5 
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TABLE V: P-P, P-Pl and Cb minimization tests from hough coarse 

Approach PV (mm) RMS (mm) MSE (mm) 

P-P 2.7624 ´ 10-2 2.9289 ´ 10-3 2.1138 ´ 10-4 

P-Pl 2.4794 ´ 10-2 2.3572 ´ 10-3 5.5097 ´ 10-5 

C
b 

(𝛼
,𝛽

) 

0.1 – 0.9 2.5033 ´ 10-2 2.1498 ´ 10-3 4.6216 ´ 10-5 

0.2 – 0.8 2.5160 ´ 10-2 2.0197 ´ 10-3 4.0679 ´ 10-5 

0.3 – 0.7 2.3974 ´ 10-2 1.9986 ´ 10-3 3.9944 ´ 10-5 

0.4 – 0.6 2.3402 ´ 10-2 2.0962 ´ 10-3 4.3803 ´ 10-5 

0.5 – 0.5 2.3737 ´ 10-2 2.2226 ´ 10-3 4.9401 ´ 10-5 

0.6 – 0.4 2.7690 ´ 10-2 2.3520 ´ 10-3 5.5240 ´ 10-5 

0.7 – 0.3 2.6914 ´ 10-2 2.4726 ´ 10-3 6.1138 ´ 10-5 

0.8 – 0.2 2.7099 ´ 10-2 2.6358 ´ 10-3 6.9473 ´ 10-5 

0.9 – 0.1 2.7760 ´ 10-2 2.7784 ´ 10-3 7.7192 ´ 10-5 

AUTO 2.4486 ´ 10-2 1.9147 ´ 10-3 3.6614 ´ 10-5 
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TABLE VI: P-P,  P-Pl and Cb minimization tests from Ransac coarse 

Approach PV (mm) RMS (mm) MSE (mm) 

P-P 2.7625 ´ 10-2 2.9302 ´ 10-3 2.1134 ´ 10-4 

P-Pl 2.8438 ´ 10-2 2.3288 ´ 10-3 5.4234 ´ 10-5 

C
b 

(𝛼
,𝛽

) 

0.1 – 0.9 2.5193 ´ 10-2 2.1281 ´ 10-3 4.5143 ´ 10-5 

0.2 – 0.8 2.5228 ´ 10-2 2.0091 ´ 10-3 4.0165 ´ 10-5 

0.3 – 0.7 2.4025 ´ 10-2 1.9909 ´ 10-3 3.9544 ´ 10-5 

0.4 – 0.6 2.4330 ´ 10-2 2.0957 ´ 10-3 4.3918 ´ 10-5 

0.5 – 0.5 2.3751 ´ 10-2 2.2187 ´ 10-3 4.9224 ´ 10-5 

0.6 – 0.4 2.7702 ´ 10-2 2.3482 ´ 10-3 5.5142 ´ 10-5 

0.7 – 0.3 2.6645 ´ 10-2 2.5261 ´ 10-3 6.3814 ´ 10-5 

0.8 – 0.2 2.7106 ´ 10-2 2.6351 ´ 10-3 6.9436 ´ 10-5 

0.9 – 0.1 2.7758 ´ 10-2 2.7774 ´ 10-3 7.7141 ´ 10-5 

AUTO 2.4551 ´ 10-2 1.9193 ´ 10-3 3.6768 ´ 10-5 
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TABLE VII: Comparison of Cb with classical ICP using different coarse 

Approach  P-P P-Pl Cb. AUTO 

Unit (mm) 𝑑Ã(l	 = 1) 𝑑Ã(l	 = 1) 𝑑Ã(l	 = 0.2) 

Manual 

PV  2.4796 ´ 10-2 2.4664 ´ 10-2 2.1528 ´ 10-2 

RMS 2.7792 ´ 10-3 2.4764 ´ 10-3 1.8702 ´ 10-3 

MSE 2.1244 ´ 10-4 6.1326 ´ 10-5 3.4976 ´ 10-5 

Hough 

PV 2.7624 ´ 10-2 2.4794 ´ 10-2 2.4776 ´ 10-2 

RMS 2.9289 ´ 10-3 2.3572 ´ 10-3 1.8471 ´ 10-3 

MSE 2.1138 ´ 10-4 5.5097 ´ 10-5 3.4067 ´ 10-5 

Ransac 

PV 2.7625 ´ 10-2 2.8453 ´ 10-2 2.4785 ´ 10-2 

RMS 2.9302 ´ 10-3 2.3301 ´ 10-3 1.8447 ´ 10-3 

MSE 2.1134 ´ 10-4 5.4155 ´ 10-5 3.3964 ´ 10-5 

 

 

 

 

 

 

 


