The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view

Abstract : The group of diffeomorphisms of a compact manifold endowed with the L^2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L^2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. On the optimal transport side, we prove a polar factorization theorem on the automorphism group of half-densities. Geometrically, our point of view provides an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L^2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give particular solutions of the incompressible Euler equation on a group of homeomorphisms of R^2 which preserve a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.
Type de document :
Pré-publication, Document de travail
To appear in Journal of Differential Equations, 26 pages. 2017
Liste complète des métadonnées

Littérature citée [56 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01363647
Contributeur : François-Xavier Vialard <>
Soumis le : mercredi 13 décembre 2017 - 12:52:24
Dernière modification le : jeudi 14 décembre 2017 - 10:00:12

Fichiers

Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01363647, version 3
  • ARXIV : 1609.04006

Citation

Thomas Gallouët, François-Xavier Vialard. The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view. To appear in Journal of Differential Equations, 26 pages. 2017. 〈hal-01363647v3〉

Partager

Métriques

Consultations de la notice

1

Téléchargements de fichiers

1