A. Bertin, M. A. Mcmurray, P. Grob, S. S. Park, G. Garcia et al., Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly, Proceedings of the National Academy of Sciences, vol.105, issue.24, pp.8274-82790803330105, 2008.
DOI : 10.1073/pnas.0803330105

E. A. Booth, E. W. Vane, D. Dovala, and J. Thorner, A F??rster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers, Journal of Biological Chemistry, vol.290, issue.47, pp.28388-28401, 2015.
DOI : 10.1074/jbc.M115.683128

A. A. Bridges, H. Zhang, S. B. Mehta, P. Occhipinti, T. Tani et al., Septin assemblies form by diffusion-driven annealing on membranes, Proceedings of the National Academy of Sciences, vol.111, issue.6, pp.2146-2151, 2014.
DOI : 10.1073/pnas.1314138111

T. Cordes, J. Vogelsang, P. Tinnefeld, M. L. Diebold, S. Fribourg et al., On the mechanism of Trolox as antiblinking and antibleaching reagent Deciphering correct strategies for multiprotein complex assembly by coexpression: application to complexes as large as the histone octamer Localization and possible functions of Drosophila septins, J Am Chem Soc J Struct Biol J. R. Mol Biol Cell, vol.131, issue.612, pp.5018-5019, 1995.

M. Farkasovsky, P. Herter, B. Voss, and A. Wittinghofer, Nucleotide binding and filament assembly of recombinant yeast septin complexes, 2005.

C. M. Field, O. Awar, J. Rosenblatt, M. L. Wong, B. Alberts et al., A purified Drosophila septin complex forms filaments and exhibits GTPase activity, The Journal of Cell Biology, vol.133, issue.3, pp.605-616, 1996.
DOI : 10.1083/jcb.133.3.605

J. A. Frazier, M. L. Wong, M. S. Longtine, J. R. Pringle, M. Mann et al., Polymerization of Purified Yeast Septins: Evidence That Organized Filament Arrays May Not Be Required for Septin Function, The Journal of Cell Biology, vol.122, issue.3, pp.737-749, 1998.
DOI : 10.1038/378578a0

G. Garcia, A. Bertin, Z. Li, Y. Song, M. A. Mcmurray et al., Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation, The Journal of Cell Biology, vol.162, issue.6, pp.993-1004, 2011.
DOI : 10.1016/j.cub.2007.08.042

M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual, 2012.

L. H. Hartwell, Genetic control of the cell division cycle in yeast *1IV. Genes controlling bud emergence and cytokinesis, Experimental Cell Research, vol.69, issue.2, pp.265-2764950437, 1971.
DOI : 10.1016/0014-4827(71)90223-0

L. H. Hartwell, J. Culotti, J. R. Pringle, and B. J. Reid, Genetic control of the cell division cycle in yeast, Journal of Molecular Biology, vol.59, issue.1, pp.46-514587263, 1974.
DOI : 10.1016/0022-2836(71)90420-7

S. C. Hsu, C. D. Hazuka, R. Roth, D. L. Foletti, J. Heuser et al., Subunit Composition, Protein Interactions, and Structures of the Mammalian Brain sec6/8 Complex and Septin Filaments, Neuron, vol.20, issue.6, pp.1111-11229655500, 1998.
DOI : 10.1016/S0896-6273(00)80493-6

R. P. Huijbregts, A. Svitin, M. W. Stinnett, M. B. Renfrow, and I. Chesnokov, Drosophila Orc6 Facilitates GTPase Activity and Filament Formation of the Septin Complex, Molecular Biology of the Cell, vol.20, issue.1, pp.270-281, 2009.
DOI : 10.1091/mbc.E08-07-0754

C. M. John, R. K. Hite, C. S. Weirich, D. J. Fitzgerald, H. Jawhari et al., The Caenorhabditis elegans septin complex is nonpolar, The EMBO Journal, vol.9, issue.14, pp.3296-3307, 2007.
DOI : 10.1038/sj.emboj.7601775

M. S. Kim, C. D. Froese, M. P. Estey, and W. S. Trimble, SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission, The Journal of Cell Biology, vol.63, issue.5, pp.815-826, 2011.
DOI : 10.1002/(SICI)1097-0169(1999)43:1<52::AID-CM6>3.0.CO;2-5

M. S. Kim, C. D. Froese, H. Xie, and W. S. Trimble, Uncovering Principles That Control Septin-Septin Interactions, Journal of Biological Chemistry, vol.287, issue.36, pp.30406-30413, 2012.
DOI : 10.1074/jbc.M112.387464

M. Kinoshita, C. M. Field, M. L. Coughlin, A. F. Straight, and T. J. Mitchison, Self- and Actin-Templated Assembly of Mammalian Septins, Developmental Cell, vol.3, issue.6, pp.791-802, 2002.
DOI : 10.1016/S1534-5807(02)00366-0

M. Mavrakis, Y. Azou-gros, F. C. Tsai, J. Alvarado, A. Bertin et al., Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles Molecular cloning of a novel human cDNA homologous to CDC10 in Saccharomyces cerevisiae, Nat Cell Biol Biochem Biophys Res Commun, vol.16, issue.2021, pp.322-334, 1994.

T. P. Neufeld, G. M. Rubin, R. Nishihama, M. Onishi, and . Pringle, The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins Retrieved from http New insights into the phylogenetic distribution and evolutionary origins of the septins, Cell J. R. Biol Chem, vol.77, issue.392, pp.371-3798, 1515.

F. Pan, R. L. Malmberg, and M. Momany, Analysis of septins across kingdoms reveals orthology and new motifs, BMC Evolutionary Biology, vol.7, issue.1, pp.10-1186, 2007.
DOI : 10.1186/1471-2148-7-103

J. D. Pardee and J. A. Spudich, [18] Purification of muscle actin, Methods Cell Biol, vol.24, pp.271-2897098993, 1982.
DOI : 10.1016/0076-6879(82)85020-9

D. Popp, A. Yamamoto, M. Iwasa, and Y. Maeda, Direct visualization of actin nematic network formation and dynamics, Biochemical and Biophysical Research Communications, vol.351, issue.2, 2006.
DOI : 10.1016/j.bbrc.2006.10.041

C. Renz, N. Johnsson, and T. Gronemeyer, An efficient protocol for the purification and labeling of entire yeast septin rods from E.coli for quantitative in vitro experimentation, BMC Biotechnology, vol.13, issue.1, pp.60-70, 2013.
DOI : 10.1021/bi001121e

Y. Sadian, C. Gatsogiannis, C. Patasi, O. Hofnagel, R. S. Goody et al., The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation, 2013.

M. E. Sellin, L. Sandblad, S. Stenmark, and M. Gullberg, Deciphering the rules governing assembly order of mammalian septin complexes, Molecular Biology of the Cell, vol.22, issue.17, pp.3152-3164, 2011.
DOI : 10.1091/mbc.E11-03-0253

V. H. Serrao, F. Alessandro, V. E. Caldas, R. L. Marcal, H. D. Pereira et al., Promiscuous interactions of human septins: The GTP binding domain of SEPT7 forms filaments within the crystal, FEBS Letters, vol.7, issue.24, pp.585-3868, 2011.
DOI : 10.1016/j.febslet.2011.10.043

. Borg, /septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments, Journal of Biological Chemistry, vol.278, issue.5

X. Shi, J. Lim, T. Ha, M. Sirajuddin, M. Farkasovsky et al., Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe doi:10 Structural insight into filament formation by mammalian septins GTP-induced conformational changes in septins and implications for function, Anal Chem Nature Proc Natl Acad Sci, vol.82, issue.449716039, pp.6132-6138, 1021.

M. Soares-e-silva, M. Depken, B. Stuhrmann, M. Korsten, F. C. Mackintosh et al., Active multistage coarsening of actin networks driven by myosin motors, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9408-9413, 2011.
DOI : 10.1073/pnas.1016616108

M. Versele, B. Gullbrand, M. J. Shulewitz, V. J. Cid, S. Bahmanyar et al., Protein-Protein Interactions Governing Septin Heteropentamer Assembly and Septin Filament Organization in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.15, issue.10, pp.4568-4583, 2004.
DOI : 10.1091/mbc.E04-04-0330

E. Zent, I. Vetter, and A. Wittinghofer, Structural and biochemical properties of Sept7, a unique septin required for filament formation, Biological Chemistry, vol.392, issue.8-9, pp.791-797, 2011.
DOI : 10.1515/BC.2011.082

E. Zent and A. Wittinghofer, Human septin isoforms and the GDP-GTP cycle, Biological Chemistry, vol.395, issue.2, 2014.
DOI : 10.1515/hsz-2013-0268