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Abstrat

Multiphoni sounds of brass instruments are studied in this artile. They are produed

by playing a note on a brass instrument while simultaneously singing another note in the

mouthpiee. This results in a peuliar sound, heard as a hord or a luster of more than two

notes in most ases. This e�et is used in di�erent artisti ontexts.

Measurements of the mouth pressure, the pressure inside the mouthpiee and the radiated

sound are reorded while a trombone player performs a multiphoni, �rstly by playing an F3

and singing a C4, then playing an F3 and singing a note with a dereasing pith. Results high-

light the quasi-periodi nature of the multiphoni sound and the appearane of ombination

tones due to intermodulation between the played and the sung sound.

To assess the ability of a brass instrument physial model to reprodue the measured

phenomenon, time-domain simulations of multiphonis are arried out. A trombone model

onsisting in an exiter and a resonator non-linearly oupled is fored while self-osillating to

reprodue simultaneous singing and playing. Comparison between simulated and measured

signals is disussed. Spetral ontent of the simulated pressure math very well with the

measured one, at the ost of a high foring pressures.

I INTRODUCTION

A "monodi instrument", by its etymologial meaning, is an instrument designed to play "mono-

phoni" sounds, that is sounds with a single pith. However, most monodi instruments of the

orhestra an also produe unusual sounds, alled "multiphoni sounds". This term means that

the listener pereives multiple notes in the sound.

A range of wind instruments an produe sounds alled multiphonis [Castellengo, 1981℄. A-

tually, this word designates two distint phenomena. On the one hand, the term "multiphoni"

an refer to a multiple-pithed sound generated with an extension of the onventional playing

tehniques: woodwind multiphonis, where quasi-periodi regimes are generated through spe-

i� embouhures and/or �ngerings [Bakus, 1978, Keefe and Laden, 1991, Dalmont et al., 1995,

Gibiat and Castellengo, 2000, Do et al., 2014℄, belong to this ategory. A quasi-periodi os-

illation is a deterministi osillation whose energy is loated at frequenies whih are inte-

ger ombinations of base frequenies. The ratios between the base frequenies are irrational
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numbers. Flute-like instrument multiphonis are also based on an extended playing tehnique:

the osillation of the air jet beomes quasi-periodi with no need to introdue another osilla-

tor [Campbell and Greated, 1994, Blan et al., 2010, Terrien et al., 2013℄. Brass instrument mul-

tiphonis an be based on two distint mehanisms: a spontaneous quasi-periodi self-osillation,

similar to those in �utes and in reed instruments, an be involved [Castellengo et al., 1983℄. But

on the other hand, the brass instrument player an also produe a multiphoni sound by singing

while he plays [Campbell and Greated, 1994, Sluhin, 1995℄: two osillators are then involved, the

lips and the voal folds. This paper only fouses on this latter kind of multiphoni sound on the

trombone. In this situation, an intermodulation is observed, making non-harmoni frequenies

appear in the resulting sound.

Aording to the musial ontext, a multiphoni sound an be onsidered as a mis-

take made by the musiian or due to a defet of the instrument: in oidental art-musi,

a "rolling sound" is generally onsidered to be a mistake the musiian makes and a

bowed instrument with "wolf notes" [Iniaio et al., 2008℄ is onsidered to be of poor qual-

ity. However, multiphoni sounds an also be intentional. This applies to extra-European

traditional instruments suh as pre-Columbian �autas de hinos produing sonidos raja-

dos [Wright and Campbell, 1998, Blan et al., 2010, Terrien et al., 2013℄, or the Australian

aboriginal didjeridu [Wolfe and Smith, 2008℄ where the musiian has several options for modifying

the sound by singing or tuning of voal trat resonane while he plays. But European lassial

musi also inludes examples of multiphonis: an example of adenza of a Frenh horn onertino

is displayed in the sore in Figure 1. The tehnique is mentioned in teahing methods of

the 19th entury, as reported in [Sluhin, 1995℄. Jazz and avant-garde musi have popularized

this musial e�et with artists like James Morrison, Nils Landgren, Nat MIntosh and many others.

Figure 1: Cadenza from C.M. von Weber's onertino for horn, inluding multiphoni sounds.

Multiphonis produed by a musiian simultaneously singing and playing a brass instrument have

been doumented in [Campbell and Greated, 1994, Sluhin, 1995℄ but, to the author's knowledge,

simulations of this phenomenon have never been arried out. This paper examines the ability

of a simple instrument physial model to simulate trombone multiphonis. This helps a better

understanding of the multiphoni phenomenon and de�nes the abilities of the onsidered model.

Comparisons between results of this model and measurements on trombone players are proposed on

both multiphoni sounds studied: namely, playing an F3 while singing a C4 (referred to hereafter

as F3 −C4 multiphoni), and playing an F3 while singing a note whose pith dereases from C4 to

slightly above C3 (referred to later as "dereasing playing frequeny multiphoni"). The measure-

ment and simulation tools are �rst presented in Setion 2; then, measurements and simulations of

a seletion of multiphoni sounds are ompared in Setion 3 to evaluate the ability of the model

to reprodue multiphonis.
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II TOOLS

II.A Experimental setup

An experimental devie has been developed to measure some harateristi variables during a

trombone multiphoni performane. The aousti pressure inside the instrument mouthpiee p(t),
harateristi of the response of the instrument, is measured. Another sensor measures the blowing

pressure as well as the aousti pressure inside the mouth pm(t). The radiated sound, pext(t), is also
reorded. The measurements room has a short reverberation time, similar to that of a rehearsal

studio, for the musiian's onveniene.

• The mouth pressure pm(t) is measured with an Endevo 8510B-5 miniature pressure sensor,

through a apillary tube (1.5 mm inner diameter) inserted in the mouth of the musiian.

The apillary tube is glued to a short piee of silione tubing (4 mm diameter) onneted

to the pressure sensor. The assembly of tubes forms a Helmholtz resonator whih bandpass-

�lters the signal. An ad ho onvolution �lter is applied to the measured signal in order to

ompensate for the transfer funtion of the tube.

• The pressure inside the mouthpiee p(t) is measured through the same sensor model. The

sensor is srewed into the mouthpiee wall. The mirophone is small enough for the shape

of the mouthpiee up not to be signi�antly altered.

• The radiated sound pext(t) is reorded with a B&K 1/4” mirophone, plaed about 40 m

downstream from the enter of the trombone's bell. The viinity with the bell limits the

in�uene of the re�etions in the room.

These sensors are onneted to their respetive onditioners/ampli�ers. The signals are simulta-

neously reorded by a omputer through NI-9234 and 9215 aquisition modules. The sampling

frequeny is 51200 Hz.

Pm h(t) U(t) p(t)

Figure 2: (olor online) Sketh of the trombone positioning pm(t), p(t) and pext(t). Some variables

of the model de�ned in Setion II.B are written in green.

II.B Time-domain simulation of a trombone's physial model

All along this artile, measurements are ompared with time-domain simulations from a trombone

physial model. The retained self-sustained model relies on a linear exiter whih is non-linearly

oupled with a linear resonator. Eah of these three elements is desribed below. This kind of

model has been widely used for wind instruments [Flether, 1993℄ inluding brass instruments

[Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000℄, sine the seminal work of von

Helmoltz [von Helmholtz, 1877℄.

For brass instruments, the exiter onsists of the lips of the musiian, represented by a linear,

osillator-like valve, linking the height between the lips h(t) and the pressure di�erene aross the
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lips δp(t) = pm(t)− p(t). A one degree of freedom valve (referred to hereafter as "1-DOF valve")

[Flether, 1993℄ is enough to model the lips for ommon playing situations [Yoshikawa, 1995℄ with

a tratable number of parameters. Two kinds of 1-DOF valves an be onsidered : "striking

outward", whih tends to open when δp grows, and "striking inward" whih presents the opposite

behavior. For the reasons detailed in [Velut et al., 2016℄ we hose a "striking outward" valve to

model the lips of the trombonist. This model relies on the following equation:

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pm − p(t)), (1)

where ωl = 2πfl (rad/s) is the lip resonane angular frequeny; Ql the (dimensionless) quality

fator of the lips; h0 the value of h(t) at rest (m); µ an equivalent surfae mass of the lips (kg.m−2).

Lip parameters very similar to those hosen in [Velut et al., 2016℄ after a thorough bibliographial

review are used. These parameters are given in Table I. The only di�erene is the quality fator

Ql lessened from 7 to 5. Results previously obtained in [Velut et al., 2016℄ were satisfatory, with

reasonable threshold blowing pressures in the [1kPa : 15kPa] range for ommonly played notes.

The re�ning of the Ql value results in periodi playing on a larger range of fl on the Jupiter JSL

232l trombone used in the experiment.

h0(m) L(m) 1/µ(m2kg−1) Ql

5.10−4 12.10−3
0.11 5

Table I: Lip parameters retained for this artile.

In most studies about brasswinds, pm is assumed to be onstant in usual playing, orresponding

to the blowing pressure. However, in order to simulate a multiphoni, a foring omponent is

added to the stati value of pm, orresponding to the aousti pressure produed by the vibrating

voal folds. For multiphoni simulations with a onstant singing frequeny, the pm signal takes the

following form:

pm(t) = p0m + p1m. sin(2πtfs), (2)

where p0m and p1m are respetively the onstant blowing pressure and the amplitude of the singing

signal, and fs the singing frequeny.

For simulations with a dereasing frequeny, the signal is divided into 3 parts: �rst, the mouth

pressure is a onstant blowing pressure for 6 seonds: this gives time to reah a steady-state

osillating regime. Then, the pm signal is similar to Eq. (2) for 6 seonds with fs = f1. Then, the
frequeny dereases from f1 to f2 taking this form:

pm(t) = p0m + p1m. sin

[

2πt

(

fs +
(f2 − fs).t

2d

)]

, (3)

where d is the duration of the frequeny derease (s).

In the measurements, the p1m/p
0

m ratio is about 0.02, but higher values are used in simulations, to

get omputed spetra as lose as possible to experimental ones. A value of p1m = 0.3p0m is used all

along this paper. This di�erene in p1m values between simulation and measurement is a limitation

of our model.

This exiter is non-linearly oupled to a resonator: the bore of the trombone. Propagation in brass

instruments, partiularly the trombone, is known to be nonlinear for loud tones. This auses

nonlinear distortion of the waveform, possibly leading to shokwaves [Hirshberg et al., 1996,
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Myers et al., 2012℄. In musial terms, the sound beomes "brassy" at louder playing dynam-

is. However, sine this study fouses on low and moderate playing dynamis, a linear model of

propagation is su�ient. Thus, the resonator is modeled by its input impedane Z. By de�nition,

Z is the ratio, in the frequeny domain, of the pressure at the input of the resonator P (ω) to the

aousti �ow U(ω) taken at this same point :

Z(ω) =
P (ω)

U(ω)
. (4)

The input impedane of the Jupiter JSL 232l tenor trombone used for experiments (with the slide

fully pulled in) is measured with the impedane sensor desribed in [Maaluso and Dalmont, 2011℄,

then �tted by a sum of 13 Lorentzian funtions -representing the 13 �rst modes of the trombone-

using a least squares method similar to that in [Silva, 2009℄.

The oupling between this resonator and the aforementioned exiter is non linear. It is provided

by the air�ow through the lip hannel. The air jet is assumed to be laminar in the lip hannel,

then turbulent in the mouthpiee, all its kineti energy being dissipated without pressure reovery.

Applying the Bernoulli law and the mass onservation law between the mouth and the lip hannel

gives the following expression of the �ow between the lips, depending on the pressure di�erene

and the height of the lip hannel [Eliott and Bowsher, 1982, Hirshberg et al., 1995℄:

u(t) =

√

2

ρ
.L.h(t).sign(pm − p(t)).

√

|pm − p(t)|.θ(h), (5)

where u(t) is the air�ow rate (m3 · s−1
), ρ = 1.19 kg ·m−3

the air density at 20

◦C, θ(h) the

Heaviside step funtion related to h(t) and L the width of the lip hannel (m).

Simulations based on this model are arried out with MoReeSC [Silva, 2013℄. This open-aess

Python library solves the equations of the model numerially, based on the modal deomposition of

the pressure signal in the instrument. This provides values of p, the lip opening h and the air�ow

between the lips u at eah time sample. It features the possibility of modifying input parameters

during the simulation, whih is partiularly useful in this study for de�ning time-varying mouth

pressure signals. In order to get a simulated pressure, a measurement of the transfer funtion

of the trombone, between p and pext is made. Filtering the simulated p with the given transfer

funtion results in a simulated pext.

II.C Preliminary measurement on voal folds

A preliminary experiment is arried out to assess the hoie of a foring term to model the singing

like in Eq. (2) and (3). The prodution of a multiphoni sound requires two exiters: the lips of

the musiian and his voal folds. In order to evaluate the independene of the voal fold osillation

with respet to the lip osillation, an estimation of the voal fold osillation is arried out by

measuring the eletrial ondutivity of the glottis, similarly to what was done in the experimental

ampaign onduted on the didjeridu [Wolfe and Smith, 2008℄. The glottis ondutivity is assumed

to be approximatively proportional to the ontat area of the lips [Hezard et al., 2014℄. Sine we

are interested in omparing orders of magnitude, this approximative proportionality is su�ient.

An eletroglottograph from VoeVista is used to measure the ondutivity of the voal folds while

the musiian plays an F3−C4 multiphoni. The spetrum of the resulting signal is shown in Fig. 3.
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Figure 3: (olor online) Spetrum of glottis signal when playing an F3 − C4 multiphoni. Verti-

al lines indiate the playing frequeny ftrb (blak), the singing frequeny fs (red) and ftrb �rst
harmoni (blak, dash-dotted). Hanning window of width 0.2 s, zero-padding of the signal until

frequeny preision is under 1 Hz.

Spetral omponents an be observed at the singing frequeny fs = 262.5 Hz but also at the playing
frequeny ftrb = 174.2 Hz, showing a oupling between the lips and the voal folds. However, the

amplitude of the ftrb omponent is 20 dB lower than the amplitude of the fs one: this indiates
that the osillation of the voal folds is not muh altered by the aousti feedbak. Thus, sine

we are interested in identifying the simplest model simulating multiphoni sounds, modeling the

ontribution of voal folds through a foring term seems to be a deent approximation, muh

simpler than a model that would take into aount the voal folds, the voal trat and the lips .

However, a time-domain simulation tool whih would simulate the oupling with the impedane

of the voal trat would probably be of some interest. The implementation of suh a model ould

be realized with the tools presented here.

III RESULTS

III.A F3-C4 multiphoni

III.A.1 Experiment

The study �rstly fouses on the F3-C4 multiphoni, whih is one of the most ommonly played by

trombonists and proposed as a �rst exerise in [Sluhin, 1995℄. Produing an F3 −C4 multiphoni

onsists in playing an F3 while singing a C4, i.e. a �fth above. In physial terms, this means

playing on the third register of the trombone, while simultaneously singing the note whose

frequeny is 1.5 times higher (fs/ftrb = 1.5). The musiian is asked to suessively sing a C4, then

play an F3, then perform an F3 − C4 multiphoni.

Figure 4 shows the spetrograms orresponding to this experiment and alulated for the

time-domain signals of pm in Fig. 4 (a), p in Fig.4 (b) and pext in Fig.4 (). The suessive tasks

- singing, playing, multiphoni - suessively appear on the spetrograms. During the singing,

a omponent appears at fs = 259.8Hz with its harmonis. Similarly, ftrb = 173.6Hz and its
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harmonis appear while the musiian is playing an F3. A omponent at ftrb an be observed

in Fig. 4 (b) and () but also in the pm spetrogram, beause of the oupling with the voal

trat of the musiian [Chen et al., 2012, Fréour and Savone, 2013℄. When the multiphoni is

played, p(t) and pext(t) ontain the fundamental and harmonis of both fs and ftrb. In addition,

other frequeny omponents also appear, whih do not belong to either the harmoni series

of fs or that of ftrb. These omponents are shown by arrows in Fig. 4 (b). Note that one of

these omponents has its frequeny under ftrb. Figure 5 superimposes the spetra of p(t) during
the three phases of the performane: singing, playing, multiphoni. This highlights that some

peaks of the multiphonis spetrum learly do not belong to the played signal or to the sung signal.

III.A.2 Simulation

This experiment (playing an F3 on a trombone while singing a C4) is simulated, using the

method desribed in Setion II.B with the parameters given in Table I: the physial model of

trombone is set to play an F3, on its 3d register, with a lip resonane frequeny fl = 140 Hz

and a steady blowing pressure set to p0m = 4500 Pa. This value is slightly above the threshold

pressure alulated by linear stability analysis, as in [Velut et al., 2016℄. Then, the "sung" note

is inluded to simulate the multiphoni: a foring sinusoidal omponent is added to the stati

blowing pressure, at a frequeny fs orresponding to the upper �fth, as written in Eq. (2). The

amplitude of the foring sinusoidal omponent is set to 30% of p0m so that p1m = 1350 Pa. This

foring omponent starts 3 seonds after the blowing pressure, one the self-osillation of the

instrument model has reahed its steady state. This avoids interferenes between the foring

omponent and the transitory phase of the self-sustained osillation.

Spetrograms of the simulation results for pm, p and pext are displayed in Fig. 6 (a), (b) and (),

respetively. First, the model auto-osillates on its own until t = 3s; then the foring omponent

is added. Fig. 6 (a) does not display any spetral omponent at ftrb, beause the retained model

does not take the oupling with the voal trat into aount. Before t = 3s, Fig. 6 (b) and () only

display spetral omponents at ftrb = 189 Hz and its harmonis. The osillation frequeny of the

simulation is higher than the experimentally reorded playing frequeny in Fig. 4. This is onsistent

with a well-known limitation of this brass model, known to osillate at sharper frequenies than the

tempered sale notes [Campbell, 2004, Silva et al., 2007, Chaigne and Kergomard, 2016, p.547℄.

Then, at t = 3 s, the foring omponent at fs = 282.7 Hz appears. As in the experiment, p(t) and
pext(t) show frequeny omponents whih are neither fs, nor ftrb, nor their harmonis. This is also

to be seen in the p spetra displayed in Fig. 7: some peaks of the multiphoni signal do not math

fs, ftrb (solid lines) or their harmonis (dashed lines).
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Figure 4: (olor online) Experiment: spetrograms of the pressures in the mouth pm (a), in

the mouthpiee p (b) and radiated pext () measured in vivo. Hanning window of width 0.2 s,

95% overlap, zero-padding of the signal until frequeny preision is under 1 Hz. The musiian

suessively sings C4 (2.5 − 6.5s), plays F3 (7 − 11s), then performs an F3 − C4 multiphoni

(12 − 21s). During multiphoni, the p and pext spetrograms exhibit spetral omponents whih

do not belong to either the sung or the played note: they are designated with arrows in (b).
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Figure 5: (olor online) Experiment: spetra of the mouthpiee pressure p(t) from the same

performane: playing (a), singing (b), multiphoni (). Spetra taken from the spetrograms

in Fig. 4b). Peaks appear in the multiphoni spetrum, whose frequenies math neither the

osillation frequeny ftrb = 173.6Hz nor the singing frequeny fs = 259.8Hz nor their harmonis.

ftrb and fs are represented as vertial plain lines (fundamentals) and dash-dotted lines (harmonis).
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playing and the singing frequenies appear.
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Figure 7: (olor online) Simulation: spetrum of the mouthpiee pressure p(t) from the simulation

of the multiphonis. Spetrum is taken from spetrogram in Fig. 6b). ftrb = 189 Hz, fs = 282.7Hz
and their harmonis are shown. Some frequenies are neither harmoni of fs nor of ftrb but are
integer ombinations of those.

III.A.3 Disussion

Frequenies of the peaks appearing in the spetra of multiphonis, either simulated (Fig. 6 and 7)

or measured(Fig. 4 and 5), math very well integer ombinations of fs and ftrb: the relative error
is less than 3% for the measured frequenies and less than 0.5% for the simulated frequenies.

Table II reports the frequenies appearing in the simulation and in the measurement, and

proposes one or two integer ombinations giving the same frequeny. A given integer ombination

mathes the peak of the same rank in the experiment and in the simulation. These frequeny

omponents at integer ombinations of ftrb and fs are hereafter alled ombination tones (CT),
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as in [Campbell and Greated, 1994, p.64℄. In terms of amplitude, the peaks in the spetra of the

simulated and the measured multiphonis are not the same, even if the shapes of the spetral

envelopes remain omparable.

Peak No. 1 2 3 4 5 6 7 8 9 10

fexp(Hz) 86.1 176 259.8 347.3 433.4 521 605.1 694.8 778.7 868.7

fsim(Hz) 94.15 189 282.7 377.9 471.4 567.6 661.1 756.6 850 946.2

lin. omb. fs − ftrb ftrb fs 2ftrb fs + ftrb 3ftrb 3fs − ftrb 2fs + ftrb 3fs 5ftrb
2ftrb − fs 3ftrb − fs 4ftrb − fs 2fs 5ftrb − fs 4ftrb 4fs − ftrb

Table II: (olor online) Frequenies of �rst peaks of spetrum of p(t) measured (fexp) and simulated

(fsim) during an F3 − C4 multiphoni. Integer ombinations of fs and ftrb orresponding to eah

ombination tone are indiated.

Signals reorded during this multiphoni playing are periodi signals. However, the fundamental

frequeny of these signals is an otave below the played note, at ftrb/2.

The radiated pressure signals pext of the reorded [MM1, ℄ and the simulated [MM2, ℄ multiphoni

are both heard as hords rather than as a single note. The playing and singing frequenies appear,

along with other notes, notably the F2 one otave below ftrb. Though, informal listening tests

highlights some pereptive di�erenes. First, the sung note is heard louder in the experimental

reording than in the simulation. Then, while listening to the reording of the musial perfor-

mane, a third note, namely an A4, an be heard, whose fundamental frequeny is fs + ftrb. This
note annot be learly heard in the simulated pext signal, although its frequeny omponents are

present. One reason might be the di�erenes in spetral balane between the experiment and the

simulation, whih ould be related to the simpliity of the foring signal: this latter hypothesis

will be investigated later in the artile.

As a onlusion, the F3 − C4 multiphoni studied here appears to be quite a peuliar periodi

regime of osillation. The spetral omponents are fs, ftrb, their harmonis, and the ombination

tones of frequenies fCT = qftrb ± fs, q ∈ N ∪ {−1} (exept negative frequenies). The simulation

model, based on a self-osillating system, sinusoidally fored to model the ontribution of the

singing voie, reprodues the emergene of a regime whih is very similar in terms of frequeny

ontent, but with some di�erenes in the peak amplitudes.

Though it is periodi, this regime is not a usual self-sustained osillation of a brass instrument:

the fundamental frequeny is not the trombone's osillation frequeny, but a ombination tone.

Several harmonis are also ombination tones, eah one mathing with several integer ombinations

of fs and ftrb. This fat is related to this spei� situation where ftrb/fs is a rational value. The

system undergoes a 3:2 synhronization (also alled an internal resonane in the dynami system

terminology) whih makes ombination tones integer multiples of fs−ftb. It is a partiular behavior
of a fored self-sustained osillator. Aademi ase studies presenting this situation are developed

in [Nayfeh and Balahandran, 1995, p.156℄ with fored Van Der Pol osillators for instane.

Aording to the osillator theory, the system studied should generate a quasi-periodi osillation

when there is no internal resonane. The following part will investigate multiphoni situations

with a variable singing frequeny, leading to multiple situations where fs/ftrb is irrational.
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III.B Variable singing frequeny

III.B.1 Experiment

The trombone player is now asked to play a multiphoni with ftrb as stable as possible, while

dereasing his singing frequeny. He starts playing the same F3−C4 multiphoni as before. Then,

he lowers its singing frequeny fs as linearly as possible, until he reahes a frequeny just above

ftrb, while he keeps playing an F3. He then holds these playing and singing frequenies for a few

seonds.

Spetrograms of the resulting pm, p and pext are shown in Fig. 8 (a), (b) and (), respetively.

Fig. 8 (a) exhibits the evolution of the fs and ftrb omponents in the mouth. The ftrb omponent

is fairly stable all along the measurement. The singing omponent remains stable between 0 and 5

seonds, then dereases between 5 and 10 seonds, and stays 152 musial ents above ftrb until the
end (fs/ftrb = 1.09). After t = 6 s, a new spetral omponent emerges in the mouth, at a frequeny

growing towards ftrb. The peak at fs has the highest amplitude all along the measurement.

The phenomenon that appears during the �rst 6 seonds of the spetrogram in Fig. 8 (b) and ()

is very similar to the one appearing after 12s in Fig. 4. Then, when fs dereases, some frequeny

peaks seem to "split" in two omponents, one with a dereasing frequeny, the other one with

an inreasing frequeny. While the frequenies get loser to one another, other omponents with

inreasing or dereasing frequenies beome stronger in amplitude, olleting towards ftrb and its

harmonis. This leads to a quite rih spetrum with several seondary peaks around ftrb and its

harmonis, after t = 8 s when the singing frequeny stabilizes.

To follow the evolution of the omponents more easily, spetra are omputed at eah seond on

the mouthpiee signal and plotted in Fig. 9. The splitting of ertain frequeny omponents is

notieable: for illustration, the �rst peak at t = 3.12 s at 85 Hz (Fig. 9 (a)) splits progressively into
two distint peaks of frequeny 75 Hz and 100 Hz, respetively, at t = 5.06 s (Fig. 9 ()). The last
spetrum, at t = 10.12 s (Fig. 9 (h)), shows numerous peaks on either side of ftrb and its harmonis.

III.B.2 Simulation

The same simulation model as in Setion III.A is used to reprodue this seond experiment. Start-

ing with the same parameter values as in the previous setion (fl = 140 Hz, p0m = 4500 Pa,

p1m = 1350 Pa, fs = 282.7 Hz i.e. a �fth above ftrb), the singing frequeny is dereased linearly

(sweep signal) between t = 6 s and t = 12 s, to 152 ents above the playing frequeny: pb(t) follows
Eq. (3) with f1 = 282.7 Hz, f2 = 206 Hz and d = 6 s. The �nal frequeny is hosen to stik

with the experiment, where the �nal singing frequeny of the musiian is also 152 ents above the

playing frequeny. During the last two seonds, fs = 206 Hz. Just as above, spetrograms of pm,
p and pext are shown in Fig. 10 (a), (b) and (), respetively. Fig. 11 represents the spetra of p
omputed eah seond. Fig. 10 and 11 for simulation are equivalent to Fig. 8 and 9 for experiment.

Aording to Eq. (3), the mouth pressure only ontains the foring term, providing a onvenient

view on the evolution of fs. The �rst seonds of the p and pext spetrograms of Fig. 10 (b) and ()

are very similar to the spetrograms of Fig. 6 with omponents of fs and ftrb plus the ombination
tones. Then, when fs starts dereasing, eah omponent at fs or its harmonis splits into two

omponents moving away from one another, one having a dereasing frequeny and the other

having an inreasing frequeny. The amplitude of inreasing-frequeny omponents is weaker than

that of dereasing-frequeny omponents. Between t = 7s and t = 8s, a regime brie�y emerges

at 38, 5Hz = ftrb/5 and its harmonis, while fs = 265Hz: it an benotied under the form of

evenly spaed lines (at 38.5 Hz, 77 Hz, 115.5 Hz, 154 Hz, 192.5 Hz, 231 Hz et.) in Fig. 10 (b)

(between the dash-dotted lines) and (). This is a periodi regime due to a 5 : 1 internal resonane.
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Indeed, at this point the fs/ftrb ratio is rational and the resulting regime is periodi. The resulting

frequeny is very lose to the �rst aousti resonane frequeny of the trombone (38.9 Hz) so the

�rst mode may sustain this osillation. This will be addressed in Setion III.C. After t = 10s, the
existing omponents strengthen and new ones appear, to end up with several seondary peaks on

eah side of the omponents of the auto-osillation. These new peaks are partiularly visible in

the last spetra in Fig. 11.
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Figure 8: (olor online) Experiment: Spetrograms of pm (a), p (b) and pext () measured during a

multiphoni. Hanning window of width 0.2 s, overlapping of 95%, zero-padding of the signal until

frequeny preision is under 1 Hz. The singing frequeny is onstant at fs = 255Hz (note C4) for 5

seonds, then dereases towards fs = 185Hz (slightly above ftrb, note F3) and remains at this value

after t = 10s. The playing frequeny remains as onstant as possible, with ftrb ∈ [167.2 : 173.4].
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Figure 9: (olor online) Experiment: Spetra taken from instants of Fig. 8b) eah seond between

approximately t = 3s and t = 10s, when fs dereases. The plain lines represent ftrb (blak) and
fs (red), the dash-dotted lines represent their respetive harmonis.
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Figure 10: (olor online) Simulation: Spetrograms of the simulated pm (a), p (b) and pext ().
Hanning window of width 0.2 s, overlapping of 95%, zero-padding of the signal until frequeny

preision is under 1 Hz. The foring term appears after t = 4 seonds at fs = 282.7Hz (a �fth above
ftrb), then is steady until t = 6 s; then dereases linearly towards fs = 206 Hz (155 ents above

ftrb) for 6 seonds: then it stays at this frequeny for 2 seonds. The playing frequeny remains

stable at ftrb = 188.7 Hz all along the simulation. Vertial dash-dotted lines in (b) highlight the

periodi osillation regime at 38.5Hz.
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Figure 11: (olor online) Simulation: Spetra of the simulated p, taken from the spetrogram in

Fig. 10b) eah seond, between approximately t = 5s and t = 12s where fs dereases. The plain

vertial lines represent ftrb and fs, the dash-dotted lines represent their respetive harmonis.

III.B.3 Disussion

As in the previous experiment, several frequeny omponents appear to be harmonis of neither

ftrb nor fs. At the beginning, the frequenies are the same as in Setion III.A. Certain integer
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ombinations result in the same ombination tones, like for example 3ftrb = 2fs. Then, when fs
dereases, these integer ombinations are no longer equal sine fs and ftrb are no longer in a 3 : 2
ratio: the ombination tone frequenies either inrease or derease, depending on the sign in front

of fs in the integer ombination. The frequenies ontained in the signal are no longer integer

multiples of the lowest frequeny. The osillation beomes quasi-periodi as soon as fs/ftrb is no
longer rational.

Frequenies of the omponents of p during the phase where fs dereases are reorded, and plotted

with marks in Fig. 12 (a) (experimental measurement) and (b) (simulation). Some integer om-

binations of fs and ftrb, of positive frequeny qftrb ± fs, q ∈ N ∪ {−1} are also plotted with plain

lines on the same �gures. The math between eah peak frequeny and one integer ombination

is remarkable, with a maximum relative error of 2.5%. Therefore, the emerging frequeny ompo-

nents are integer ombinations of fs and ftrb, just as the F3−C4 multiphoni. It an be onluded

that this more omplex multiphoni regime is due to the same phenomenon as in Setion III.A,

emerging from the oupling between a self-sustained osillator and a foring term. However, here

the osillation regime is quasi-periodi.
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Figure 12: (olor online) Plot of fs (red), ftrb (blak) and some integer ombinations (plain lines)

along with the frequenies of the �ve �rst omponents of experimental (a) and simulation (b)

mouthpiee pressure (marks). These marks orrespond to the peak frequenies in Fig. 9 and 11.

The reorded values very losely math the integer ombinations.

The simulated pext and the musial performane were heard as similar during the experiment, yet

di�erenes exist. In the reorded multiphoni [MM3, ℄, an A3 an be heard at the beginning. When

fs begins to hange, this A3 rapidly dereases in loudness. During the derease in fs, ertain notes

beome audible while others disappear. These notes an also be heard in the simulated pext [MM4, ℄

but their overall loudness is weaker. At the end of this multiphoni, fs and ftrb are lose to eah

other. There, a "rolling" or "beating" sound an be heard, both in the experimental and in the

simulated pext signals. This ould be explained by the very low fs − ftrb = 16Hz omponent (16.3

Hz in measurements, 17.3 Hz in simulation), pereived as a modulation of the sound.

These observations an be related to the spetral envelopes of the measured and the simulated

p: omparatively with the peaks at ftrb, the ombination tones and the harmonis of fs have a

smaller amplitude in simulation than in experimental measurements. The fs omponent of p is an

exeption as it is weaker in measurement than in simulation. At the end of the multiphoni, the

peaks at harmonis of ftrb are �anked by smaller peaks on both sides. These seondary peaks are

signi�antly weaker in measurement than in simulations.

It an be assumed that these amplitude di�erenes between experiment and simulation are related

to the sinusoidal nature of the foring whereas the singing is a more omplex periodi signal. To
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assess this hypothesis, another simulation is arried out, this time with a foring signal reproduing

the three �rst harmonis of the reorded singing signal. The osillating omponent of pm now

onsists of three sinusoids, with the same relative amplitudes and phases as the �rst omponents

of the measured sung signal. Figure 13 ompares spetra of p simulated with a foring signal

onsisting of one or three harmonis (blue and red plots, respetively), at the begining (Fig. 13 (a)

and the end (Fig. 13 (b) of a simulation with dereasing fs. All parameters of the three-harmoni

foring simulation are equal to those of the simulation presented in Fig. 10 and Fig. 11 exept the

pm signal.
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Figure 13: (olor online) Comparison of spetra of internal pressures simulated either with a

sinusoidal foring omponent, or a 3-harmoni foring omponent. Hanning window of width 0.2
s, zero-padding of the signal until frequeny preision is under 1 Hz. Frequeny dereases as in

Fig. 10. Fig. (a) is the spetra of p at the beginning of the simulations, Fig. (b) at the end.

Di�erenes in terms of amplitude are small in (a) and reah 6 dB in (b). Vertial lines indiate

ftrb and fs (plain) and their harmonis (dash-dotted).

Adding harmonis to the foring signal only results in minor hanges in the spetral envelope of the

signal. Apart from the omponents at 2fs and 3fs being logially stronger, the major di�erene

between these simulations is the relative height of the peaks as ompared to the numerial

noise. Between amplitude peaks, the minima are visibly weaker with a three-omponent foring

signal, partiularly at the end of the simulation (Fig.13 (b)). The in�uene on the amplitude

of ombination tones is not signi�ant. The lak of major di�erene ould be explained by the

weakness of the harmonis of the foring, the seond and third harmonis of fs being respetively

17.5 dB and 27.5 dB weaker than the fundamental.

From the results on multiphonis with a sliding fs desribed in this setion the onlusions from

the previous setion an be generalized: the self-osillating model with an additional foring term

is su�ient to simulate multiphonis, resulting in the same frequeny omponents as the measured

ones. The frequenies of the omponents of both the simulated and the measured p math very

well with integer ombinations of the instrument self-osillation frequeny and the singing or

foring frequeny: these omponents are either harmonis of fs and ftrb or ombination tones.

This onsolidates the idea that multiphoni regimes of brass instruments are either quasi-periodi

regimes or, when the ftrb/fs ratio is rational, periodi regimes. Both behaviors ome from the

same phenomenon. The F3 − C4 multiphoni onsidered in III.A is a partiular ase, where all
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frequenies in the signal are harmoni beause of the 3:2 internal resonane.

The simulation model tested here reprodues this behavior aurately, in spite of the simpliity

of the model. The main di�erene is the spetral envelope. A foring signal loser to the singing

signal does not signi�antly hange this limitation.

III.C Simulations with one aousti resonane

New simulations with an even simpler model are arried out. Not only the foring is sinusoidal

as seen in Fig. 14, but the resonator is redued to one resonane, the third aousti mode of the

trombone - the one used for playing an F3.

A simulation with a dereasing sinusoidal foring is arried out. The playing frequeny with this

resonator is ftrb = 180.5 Hz, so the playing frequeny dereases from fs = 270 Hz to f2 = 196.4
Hz for 6 seonds to keep the same frequeny ratios as in Setion III.B.
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Figure 14: (olor online) Simulation: Spetrograms of pm, p and pext simulated with a one-mode

resonator. Hanning window of width 0.2 s, 95% overlapping, zero-padding of the signal until

frequeny preision is under 1 Hz. ftrb = 180.5 Hz, fs from 270 Hz to 196.4 Hz. The results are

omparable with those presented in Fig. 10 with weaker omponents at high frequenies.

The frequeny omponents of the internal pressure p are harmonis of ftrb and fs or ombination
tones, as in the previous simulations and measurements, for all values of fs tested. Thus, the

multiphoni behavior appears with this model. However, the amplitude of most frequeny ompo-

nents is weaker. This is illustrated by the amplitude di�erenes reported in Table III: while the

amplitude of the omponent at ftrb remains fairly onstant, all other omponents are signi�antly

weaker for the 1-mode simulation. Harmonis of ftrb are no longer supported by the modes 6, 9

and 12, whih a�ets the amplitude of ombination tones. The fs omponent in p(t) is weaker,
even though the amplitude of the foring is equal: the modulus of the resonator impedane is 13

times weaker at fs with only one mode than with 13 modes, whih redues the amplitude of the

fs omponent in the mouthpiee. The lowest omponent fs − ftrb = 15.9 Hz at the end of the

simulation is also weaker, but it is pereived as a modulation of the sound, making a "rolling"

sound just like in previous simulations and in measurement. The brief regime at fundamental

frequeny ftrb/5 whih an be seen between t = 7s and t = 8s in Fig 10 does not our here,

beause of the absene of the �rst mode. Another simulation with all aousti modes exept the

�rst one does not make this regime appear, whih strengthens this hypothesis. This simulation

result is not shown here for the sake of brevity.
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frequeny fs − ftrb ftrb fs 2ftrb fs + ftrb 3ftrb 3fs − ftrb
di�erene (dB) at t = 5 s 0.6 0.3 10.7 27 11.7 23.2 16

di�erene (dB) at t = 9 s 7.6 0.5 4.8 27.4 14.2 27 8.7

di�erene (dB) at t = 13 s 26 1.2 4.5 17.9 12.7 25.1 17.4

Table III: Di�erenes (in dB) in the amplitudes of the �rst peaks for one-mode and 13-mode

simulations, measured on the data displayed in Fig. 14, at three time points: t = 5s when fs = 270
Hz, t = 9s when fs = 233 Hz and dereases, and t = 13s when fs = 196.4 Hz. While amplitudes

of the peaks at ftrb are equivalent, other omponents are muh weaker when the resonator has a

single mode.

The quasi-periodi regime related to multiphonis therefore ours even with a very simple in-

strument model: a one-DOF mehanial exiter non-linearly oupled with a one-mode aousti

resonator, self-osillating and fored with a sinusoidal signal.

IV CONCLUSIONS

Both measurement and simulation results presented in this paper on�rm the type of osillating

regime of the multiphoni sounds studied. When the musiian sings and plays di�erent notes

simultaneously, the resulting pressure signal inside the instrument ontains harmonis of the sung

and played frequenies, as well as ombination tones, whose frequenies are integer ombinations

of fs and ftrb. This is veri�ed not only in the partiular ase of an F3 − C4 multiphoni as in

Setion III.A but also in the ase of a time-variable frequeny. This generally orresponds to

quasi-periodi osillation, exept when an internal resonane ours and the ratio between playing

and singing frequenies is rational. In this latter ase, the osillation is periodi, though it is

di�erent from the usual periodi self-osillation of a brass instrument.

To some extent ,the trombone physial model used in this paper is able to simulate this phe-

nomenon. Even if the simulated and measured ftrb are not exatly the same (as usual with an

outward-striking lip model), the frequeny ontent of the simulated internal pressure of the in-

strument p is very similar to the probe mirophone measurements inside the mouthpiee, with

harmonis of both the sung and played signals along with ombination tones. This similarity

also applies when fs dereases with time, and when the instrument model is simpli�ed at most.

The major di�erene between simulation and measurement onsists in di�erenes in the spetral

envelopes: the amplitude of the peaks orresponding to ombination tones is generally weaker in

measurement than in simulation when the foring is sinusoidal. This is partiularly true when

fs and ftrb are lose to eah other, the seondary peaks being muh weaker in measurement. A

riher foring signal with three harmonis, loser to the measured sung signal, does not dramat-

ially hange the results: hanging the foring signal does not seem the best way to improve the

simulation.

While the simulated blowing pressure p0m is of the same order of magnitude as blowing pressures

usually measured on trombone players [Bouhuys, 1968, Fréour and Savone, 2013℄, the amplitude

of the foring signal p1m used in our simulations is about 15 times higher than the amplitude

measured in the reorded mouth pressure signal pm. This is the main limitation of this model

for multiphoni simulation. Yet, these very di�erent input parameters give omparable results in

terms of internal pressure p, the di�erene in amplitude between the peaks at ftrb and fs being of

the same order of magnitude in the measured and simulated p spetra. This is the main limitation

of our model. A more omplex model, taking into onsideration the ouplings between the lips,

the voal folds, the resonanes in the instrument and those in the voal trat would possibly give
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a better simulation of multiphonis in terms of amplitude of the frequeny omponents, yet at the

expense of a far greater omplexity.
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