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ABSTRACT

This paper proposes an unsupervised Bayesian algorithm for

unmixing successive hyperspectral images while accounting

for temporal and spatial variability of the endmembers. Each

image pixel is modeled as a linear combination of the end-

members weighted by their corresponding abundances. Spa-

tial endmember variability is introduced by considering the

normal compositional model that assumes variable endmem-

bers for each image pixel. A prior enforcing a smooth tempo-

ral variation of both endmembers and abundances is consid-

ered. The proposed algorithm estimates the mean vectors and

covariance matrices of the endmembers and the abundances

associated with each image. Since the estimators are difficult

to express in closed form, we propose to sample according

to the posterior distribution of interest and use the generated

samples to build estimators. The performance of the proposed

Bayesian model and the corresponding estimation algorithm

is evaluated by comparison with other unmixing algorithms

on synthetic images.

Index Terms— Hyperspectral unmixing, spectral vari-

ability, temporal and spatial variability, Bayesian algorithm,

Hamiltonian Monte-Carlo, MCMC methods.

1. INTRODUCTION

Spectral unmixing (SU) consists of identifying the macro-

scopic materials present in an hyperspectral image (HI)

(called endmembers) and their proportions (called abun-

dances). The spectrum of each material might vary from one

pixel to another resulting in the so-called endmember vari-

ability (EV) [1, 2]. This variability appears spatially and thus

will be denoted as spatial endmember variability (SEV). In

the literature, some statistical methods which address SEV

consider the endmembers as random variables. These mod-

els include the beta compositional model [3] and the normal

compositional model (NCM) [4–7]. In this paper we are in-

terested in applications where successive HIs are acquired for

the same scene at different time instants to study the temporal
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evolution of the physical elements. In this case, a temporal

endmember variability (TEV) will also appear depending on

the observation season or other weather factors.

The main contribution of this paper is the development

of a hierarchical Bayesian model that considers both spatial

and temporal EVs for unsupervised hyperspectral unmixing.

SEV is introduced by considering the NCM model for each

image at successive time instants. To introduce temporal cor-

relation, the endmember means and abundances are assigned

a prior enforcing smooth evolution between consecutive im-

ages. This temporal prior is defined from the discrete Lapla-

cian of the different parameters and has shown increasing in-

terest for many problems such as image deconvolution [8, 9],

hyperspectral unmixing [10], medical imaging [11] and al-

timetry [12]. Moreover, the proposed Bayesian model as-

sumes that the endmember variances are different in the dif-

ferent spectral bands, which has shown interesting properties

[7, 13].

An algorithm is then proposed to estimate the unknown

model parameters. However, the minimum mean square er-

ror (MMSE) and maximum a posteriori (MAP) estimators

cannot be easily computed from the obtained joint posterior.

The proposed algorithm alleviates this problem by generating

samples distributed according to this posterior using Markov

chain Monte Carlo (MCMC) methods. More precisely, we

use a Gibbs sampler coupled with a constrained Hamiltonian

Monte Carlo (CHMC) algorithm since it has been shown to

have good sampling properties for high-dimensional vectors

[7, 13, 14].

The paper is structured as follows. Section 2 introduces

our notations and the proposed mixing model. The hierarchi-

cal Bayesian model which accounts for the spatial and tempo-

ral EVs in HIs is introduced in Section 3. Section 4 analyzes

the performance of the proposed algorithm when applied to

synthetic images. Conclusions and future works are reported

in Section 5.



2. PROBLEM FORMULATION

2.1. Notations

Matrix and vectors are denoted with bold upper and lower

case letters. A vector is by convention a column vector. When

there are many indices, the time index is indicated after a

semicolon. For example, mr;t ∈ R
L×1 denotes the spectrum

of the rth endmember mean for the tth image. The notation

1 : T means the elements from 1 to T . For example, mr,1:T

denotes the set of vectors (mr;1, · · · ,mr;T ).

2.2. Mixing model and endmember variability

In this paper, we consider T successive HIs observing the

same scene at different time instants. For the tth image, and

in order to consider SEV, the observation model is based on

the NCM defined as [4–7]

yn;t =

R∑

r=1

arn;tsrn;t = Sn;tan;t (1)

with srn;t ∼ N (mr;t,Σt) which introduces spatial EV

since the endmembers vary from one pixel to another, Σt =
diag

(
σt

2
)

is a diagonal covariance matrix, σ2
t =

[
σ2
1;t, · · · ,

σ2
L;t

]T
is the endmember variance vector of the tth image,

Sn;t = [s1n;t, · · · , sRn;t], M t = [m1;t, · · · ,mR;t] is the

(L × R) matrix containing the endmember means of the

tth image and an;t = [a1n;t, · · · , aRn;t]
T

is the (R × 1)
abundance vector of the nth pixel from the tth image. The

abundance vector an;t contains proportions and thus should

satisfy the physical positivity and sum-to-one (PSTO) con-

straints arn;t ≥ 0, ∀r ∈ {1, . . . , R} and
∑R

r=1 arn;t = 1
for each image #t. Note that (1) introduces SEV by consid-

ering different endmembers for each image pixel. However,

it does not consider any correlation between successive tem-

poral images. The next section introduces a hierarchical

Bayesian model that takes into account both temporal and

spectral EVs.

3. HIERARCHICAL BAYESIAN MODEL

The unknown parameters of the proposed model include the

(L×R×T ) endmember mean matrices M1:T for all time in-

stants, the (T×L) matrix containing the endmember variances

denoted by σ2
1:T , the (R × N × T ) abundance matrix A1:T

(whose nth column is A:n;t = an;t) for all time instants.

3.1. Likelihood

The observation model defined in (1) and the Gaussian prop-

erties of the endmembers srn;t yield the following likelihood

f(yn;t|an;t,M t,Σt) ∝
1

(
aT
n;tan;t

)L/2

(
1

∏L
l=1 σ

2
l;t

) 1

2

exp

{
−

[
yn;t −M tan;t

]T
Σ

−1
t

[
yn;t −M tan;t

]

2aT
n;tan;t

}
. (2)

Assuming independence between the observed pixels yields

f(Y 1:T |A1:T ,M1:T ,σ
2
1:T ) =

N∏

n=1

T∏

t=1

f(yn;t|an;t,M t,Σt).

3.2. Parameter priors

This section introduces the prior distributions that we have

chosen for the parameters of interest A1:T , M1:T and σ2
1:T .

3.2.1. Abundance matrix A

In order to satisfy the PSTO constraints, the abundances be-

long to the simplex S given by

S =

{
an;t,

∣∣arn;t ≥ 0, ∀r, ∀t and

R∑

r=1

arn;t = 1, ∀t

}
. (3)

In [15, 16], a uniform distribution on S has been considered

for the abundance vector an;t of a given image. In this paper,

we consider a smooth variation of the abundances from one

temporal image to another. This correlation is introduced by

considering the following truncated Gaussian prior

f(A1:T |ǫ
2
1:N ) ∝

N∏

n=1

(
1

ǫ2n

)RT/2

IS (a:n;1:T )

exp

(
−

1

2ǫ2n

R∑

r=1

‖Darn;1:T ‖
2

)
(4)

where IA(.) is the indicator function over the set A, D de-

notes the discrete Laplacian operator and ǫ2n is a hyperparam-

eter that controls the degree of smoothness for the abundances

(it depends on the pixel index because the abundances vary

differently from one pixel to another). This prior can also be

written as

A1:T |ǫ
2
1:N ∼

N∏

n=1

{[
R∏

r=1

N
(
arn;1:T |0T , ǫ

2
nK

)
]
IS (a:n;1:T )

}

(5)
where K =

(
DTD

)−1

and N (x|µ,Σ) denotes the nor-

mal distribution of the variable x with mean µ and covari-

ance matrix Σ. This Gaussian prior distribution constrains

a smooth evolution for the abundances. It has been used in

different contexts such as image deconvolution [8, 9], spec-

tral unmixing of HIs [10] or for medical imaging applications

[11]. Note that the prior is truncated on the simplex to satisfy

the physical PSTO constrains. Note also that we have consid-

ered the abundance reparametrization procedure introduced

in [13, 17] to simplify the sampling procedure. Indeed, this

reparametrization expresses the PSTO constraints by only us-

ing nonnegativity constraints, easily handled by the sampling

procedure as already shown in [7, 13]

3.2.2. Prior for the endmember means

To introduce temporal correlation between the endmember

means, we assign the following prior for the rth endmember



mean matrix M r,1:T

mr;1:T |ψ
2
1:L ∼

L∏

ℓ=1

N[0,1]T
(
mrℓ;1:T |m̃rℓ;1:T , ψ

2
ℓK

)
(6)

where m̃rℓ;t is a fixed spectra (estimated from the data us-

ing an endmember extraction algorithm such as VCA [18])

and ψ2
ℓ controls the smoothness of the temporal evolution of

mr;1:T for each spectral band. Indeed, the endmember val-

ues vary differently from one spectral band to another. Since

M contains reflectances, it should satisfy the following con-

straints 0 < mrl;t < 1, ∀r, ∀l, ∀t, [7, 13]. Therefore, the

Gaussian prior (6) has been truncated on the set [0, 1]. As-

suming prior independence between the endmember means

yields f
(
M1:T |ψ

2
1:L

)
=

∏R
r=1 f

(
mr;1:T |ψ

2
1:L

)
.

3.2.3. Prior for the endmember variances

As in [5, 7], a non informative Jeffreys prior is chosen for the

endmember variances as follows

f
(
σ2

1:T

)
=

T∏

t=1

L∏

ℓ=1

f
(
σ2
ℓ;t

)
=

T∏

t=1

L∏

ℓ=1

1

σ2
ℓ;t

IR+

(
σ2
ℓ;t

)
(7)

where we have assumed prior independence between the end-

member variances.

3.3. Hyperparameter priors

As in [19], the hyperparameters ǫ2 =
(
ǫ21, · · · , ǫ

2
N

)
, ψ2 =(

ψ2
1 , · · · , ψ

2
L

)
have been fixed empirically by considering the

dynamic range of each parameter.

3.4. Posterior distribution

The proposed Bayesian model depends on the parameters

θp =
{
A1:T ,M1:T ,σ

2
1:T

}
and the fixed hyperparameters

θh =
{
ǫ2,ψ2

}
. The joint posterior distribution of the

unknown parameters can be computed from the following

hierarchical structure

f (θp,θh|Y ) ∝ f (Y |θp) f (θp|θh) (8)

with f (θp,θh) = f (θp|θh) = f
(
A1:T |ǫ

2
)
f
(
M1:T |ψ

2
)

f
(
σ2

1:T

)
, where we have assumed prior independence be-

tween the parameters. The MMSE and MAP estimators asso-

ciated with the posterior (8) are not easy to determine. These

estimators are therefore approximated using samples gener-

ated according to (8) by considering an MCMC approach.

This can be achieved by using a Gibbs sampler that gener-

ates samples according to the conditional distributions of (8)

[20]. Indeed, the Gibbs algorithm samples sequentially the

parameters A,M and σ2. The conditional distribution as-

sociated with each of the variable σ2 is an inverse gamma

distribution that is easy to sample. However, the conditional

distributions of both A and M 1 are more complex and require

the use of an accept-reject procedure to sample from them. In

this paper, we consider the CHMC algorithm that has shown

interesting mixing properties for high-dimensional problems

[21, Chap. 5] [7,13]. Note finally that the sampling algorithm

is not described here for brevity (the reader is invited to con-

sult [7, 13] for more details about the sampling algorithm).

4. SIMULATION RESULTS

In this section the performance of the proposed algorithm on

synthetic data is assessed. First, the criteria used for the eval-

uation of the unmixing quality is introduced. Second, the

proposed algorithm is compared with state-of-the-art meth-

ods considering two sequences of synthetic images. The third

part considers a synthetic sequence whose parameters were

extracted from an actual image to approximate a real image

scenario.

4.1. Evaluation criteria

In order to evaluate the quality of the unmixing strategy,

we have considered synthetic images with known abun-

dances and endmembers. The unmixing performance can

then be measured by using the average root mean square er-

ror (aRMSE) and the average spectral angle mapper (aSAM)

of the estimates

aRMSE (A) =

√√√√ 1

TNR

T∑

t=1

N∑

n=1

‖an;t − ân;t‖
2

aRMSE (M) =

√√√√ 1

TLR

T∑

t=1

R∑

r=1

‖m̂r;t −mr;t‖
2

aSAM (M) =
1

TR

T∑

t=1

R∑

r=1

d(m̂r;t,mr;t) (9)

where || · || denotes the standard l2 norm such that ||x||2 =

xTx, d(x, z) = arccos
(

x
T
z

‖x‖ ‖z‖

)
and arccos(·) is the in-

verse cosine operator. The Earth movers distance (EMD) cri-

terion (based on the Euclidean distance and described in [22])

has also been considered to simultaneously evaluate the es-

timated endmembers and abundances. Note that the recon-

struction error (RE) criterion can also be evaluated for the nth

measured and estimated pixel spectra yn;t, ŷn;t as follows

RE =

√√√√ 1

TNL

T∑

t=1

N∑

n=1

∥∥ŷn;t − yn;t

∥∥2
. (10)

1The conditional distribution of M is a truncated multivariate Gaussian

distribution.



4.2. Synthetic images

This section considers two sequences of T = 20 synthetic

images. Each image contains 30× 30 pixels and is generated

according to (1) with R = 3 physical elements, (construction

concrete, green grass and micaceous loam), corresponding

to spectral signatures available in the ENVI software library

[23]. At each time instant #t, the endmember means are gen-

erated by introducing variability on the ENVI-like spectral

signatures. These endmember means vary smoothly from one

image to the next. Using the spectra obtained, the tth image

is generated by considering the NCM model with endmem-

ber variances that increase linearly with respect to the spec-

tral bands such that σ2
1 = 3× 10(−4) and σ2

L = 25× 10(−4).

A smooth temporal evolution is also considered when gen-

erating the abundances under the PSTO constraints. For the

first sequence of images (denoted by I1), the abundances are

uniformly distributed in the truncated simplex S with (ar <

0.9, ∀r). The constraint ar < 0.9 implies that there is no

pure pixel in the image, which makes the problem more chal-

lenging. However, in presence of a highly mixed scenario,

the abundances can be concentrated in some regions of the

simplex [7, 24]. Thus, in the second sequence (denoted by

I2), we have considered a non uniform abundance reparti-

tion in the truncated simplex S with (ar < 0.9, ∀r). The

abundances have been generated by considering a Dirichlet

distribution with parameters (8,8,5) as in [7]. The hyper-

parameters have been fixed to ǫ2n = ψ2
ℓ = 10−4, ∀n, ∀ℓ.

These two sequences are processed using different unmix-

ing strategies that are compared to the proposed UsTNCM

algorithm (denoted by UsTNCM for unsupervised temporal

NCM). More precisely, we have considered the following un-

mixing algorithms: (i) VCA+FCLS: [18,25] and (ii) UsLMM

[15]. Table 1 shows the performance for each of the differ-

ent algorithms. This table shows a reduced performance for

VCA+FCLS mainly because of the absence of pure pixels

and the variation of the endmember variances with respect to

spectral bands. UsLMM and UsTNCM provide good results

when processing the first sequence with slightly better results

for UsLMM. The interest in the proposed approach is high-

lighted when processing I2 where it shows the best results.

For this sequence, the pixels are highly mixed and process-

ing the images independently as in UsLMM does not lead to

good results. Conversely, the UsTNCM processes the whole

sequence jointly and benefits from the temporal correlation

between successive images.

4.3. Realistic synthetic image

Due to the absence of a sequence of real images, this sec-

tion considers a 35 × 35 synthetic image that has been gen-

erated based on a real Madonna image2. This real image was

2We have considered small images because of the high computational cost

of MCMC approaches.

Table 1. Results on synthetic data. The results should be

multiplied by (×10−2) .
VCA+

UsLMM UsTNCM
FCLS

I1 I2 I1 I2 I1 I2

aRMSE(A) 5.86 9.08 1.47 6.86 1.47 2.07

aRMSE(M) 2.77 4.55 0.53 3.38 0.77 1.48

aSAM(M) 5.47 8.93 1.25 6.30 1.96 3.34

RE 2.95 3.28 2.54 2.34 0.57 0.53

EMD 573.5 902 138.2 635.2 171.3 209.8

Table 2. Results on the synthetic Madonna sequence. The

results should be multiplied by (×10−2) .

aRMSE aRMSE aSAM
RE EMD

(A) (M) (M)

VCA+FCLS 5.79 0.43 2.34 1.29 30.2

UsLMM 8.50 0.66 2.91 1.27 57.5

UsTNCM 3.06 0.34 1.87 0.28 25.9

acquired in 2010 by the Hyspex hyperspectral scanner over

Villelongue, France (00 03’W and 4257’N). The dataset con-

tains L = 160 spectral bands recorded from the visible to

near infrared (400 − 1000nm) with a spatial resolution of

0.5m [26]. Three endmember means and abundance maps

have been estimated from this real image when considering

the VCA+FCLS algorithm. The synthetic tth image was then

generated by considering (1) when smoothly varying these es-

timated parameters with respect to time (with T = 20). The

endmember variances vary linearly with respect to spectral

bands such that σ2
1 = 6× 10(−5) and σ2

L = 5× 10(−4). The

hyperparameters have been fixed to ǫ2n = ψ2
ℓ = 10−4, ∀n, ∀ℓ.

Fig. 1 shows four images (t = 1, 8, 15, 20) of the obtained

sequence in true color (bands 72, 33, and 18). These images

show three elements: tree, soil and grass that are located in

many clusters inside the simplex [7] (which is a challenging

scenario as for I2). The performance of the different algo-

rithms is shown in Table 2. UsTNCM shows the best results

since it processes the whole sequence jointly. This allows the

proposed approach to better capture the temporal variation of

both the endmembers and the abundances.

5. CONCLUSIONS

This paper proposed an unsupervised Bayesian algorithm for

unmixing successive hyperspectral images while accounting

for temporal and spatial variability. Spatial variability is in-

troduced by considering a normal compositional model. Tem-

poral variability is included as the mean of a Gaussian process

that ensures a smooth temporal evolution for the abundances

and endmember means between successive images. The pa-

rameters are then estimated using an MCMC approach. The

algorithm proposed in this paper showed good results when

applied to unmixing of synthetic images particularly for high



Fig. 1. Synthetic sequence based on the Madonna image.

(top-left) t = 1, (top-right) t = 8, (bottom-left) t = 15 and

(bottom-right) t = 20.

mixed scenarios and in the absence of pure pixels. Future

work will address the issue of hyperparameter estimation for

the proposed Bayesian model. The validation of the proposed

approach on real hyperspectral images would also be very in-

teresting.
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