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Abstract. It is well-known that estimating extreme quantiles, namely, quantiles lying beyond the

range of the available data, is a nontrivial problem that involves the analysis of tail behavior through the

estimation of the extreme-value index. For heavy-tailed distributions, on which this paper focuses, the

extreme-value index is often called the tail index and extreme quantile estimation typically involves an

extrapolation procedure. Besides, in various applications, the random variable of interest can be linked

to a random covariate. In such a situation, extreme quantiles and the tail index are functions of the

covariate and are referred to as conditional extreme quantiles and the conditional tail index, respectively.

The goal of this paper is to provide classes of estimators of these quantities when there is a functional (i.e.

possibly infinite-dimensional) covariate. Our estimators are obtained by combining regression techniques

with a generalization of a classical extrapolation formula. We analyze the asymptotic properties of these

estimators, and we illustrate the finite-sample performance of our conditional extreme quantile estimator

on a simulation study and on a real chemometric data set.
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1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications. In hydrology for exam-

ple, it is of interest to estimate the maximum level reached by seawater along a coast over a given period,

or to study extreme rainfall at a given location; in actuarial science, a major problem for an insurance

firm is to estimate the probability that a claim so large that it represents a threat to its solvency is filed.

When analyzing the extremes of a random variable, a central issue is that the straightforward empirical

estimator of the quantile function is not consistent at extreme levels; in other words, direct estimation

of a quantile exceeding the range covered by the available data is impossible, and this is of course an

obstacle to meaningful estimation results in practice.

In many of the aforementioned applications, the problem can be accurately modeled using univari-

ate heavy-tailed distributions, thus providing an extrapolation method to estimate extreme quantiles.

Roughly speaking, a distribution is said to be heavy-tailed if and only if its related survival function

decays like a power function with negative exponent at infinity; its so-called tail index γ is then the

parameter which controls its rate of convergence to 0 at infinity. If Q denotes the underlying quantile

function, this translates into: Q(δ) ≈ [(1 − β)(1 − δ)]γQ(β) when β and δ are close to 1. The quantile

function at an arbitrarily high extreme level can then be consistently deduced from its value at a typically

much smaller level provided γ can be consistently estimated. This procedure, suggested by Weissman [38],

is one of the simplest and most popular devices as far as extreme quantile estimation is concerned.

The estimation of the tail index γ, an excellent overview of which is given in the recent monographs by

Beirlant et al. [2] and de Haan and Ferreira [25], is therefore a crucial step to gain understanding of the

extremes of a random variable whose distribution is heavy-tailed. In practical applications, the variable

of interest Y can often be linked to a covariate X. For instance, the value of rainfall at a given location

depends on its geographical coordinates; in actuarial science, the claim size depends on the sum insured

by the policy. In this situation, the tail index and quantiles of the random variable Y given X = x are

functions of x to which we shall refer as the conditional tail index and conditional quantile functions.

Their estimation has been considered first in the “fixed design” case, namely when the covariates are

nonrandom. Smith [34] and Davison and Smith [10] considered a regression model while Hall and Taj-

vidi [26] used a semi-parametric approach to estimate the conditional tail index. Fully nonparametric

methods have been developed using splines (see Chavez-Demoulin and Davison [6]), local polynomials

(see Davison and Ramesh [9]), a moving window approach (see Gardes and Girard [17]) and a nearest

neighbor approach (see Gardes and Girard [18]), among others.
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Despite the great interest in practice, the study of the random covariate case has been initiated only

recently. We refer to the works of Wang and Tsai [37], based on a maximum likelihood approach, Daouia

et al. [7] who used a fixed number of non parametric conditional quantile estimators to estimate the con-

ditional tail index, later generalized in Daouia et al. [8] to a regression context with conditional response

distributions belonging to the general max-domain of attraction, Gardes and Girard [19] who introduced

a local generalized Pickands-type estimator (see Pickands [31]), Goegebeur et al. [23], who studied a non-

parametric regression estimator whose strong uniform properties are examined in Goegebeur et al. [24].

Some generalizations of the popular moment estimator of Dekkers et al. [11] have been proposed by

Gardes [16], Goegebeur et al. [21, 22] and Stupfler [35, 36]. Finally, Gardes and Stupfler [20] worked on

a smoothed local Hill estimator (see Hill [27]) related to the work of Resnick and Stărică [32].

The aim of this paper is to introduce integrated estimators of conditional extreme quantiles and of the

conditional tail index for random, possibly infinite-dimensional, covariates. In particular, our estimator of

the conditional tail index, based on the integration of a conditional log-quantile estimator, is somewhat

related to the one of Gardes and Girard [17]. Our aim is to examine the asymptotic properties of

our estimators, as well as to examine the applicability of our conditional extreme quantile estimator

on numerical examples and on real data. Our paper is organized as follows: we define our estimators

in Section 2. Their asymptotic properties are stated in Section 3. A simulation study is provided in

Section 4 and we revisit a set of real chemometric data in Section 5. All the auxiliary results and proofs

are deferred to the Appendix.

2 Functional extreme quantile: definition and estimation

We let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X,Y ) ∈ E × R+ where (E , d)

is a (not necessarily finite-dimensional) Polish space endowed with a semi-metric d. For instance, E can

be the standard p−dimensional space Rp, a space of continuous functions over a compact metric space,

or a Lebesgue space Lp(R), to name a few. For y > 0, we denote by S(y|X) a regular version of the

conditional probability P(Y > y|X). Note that since E is a Polish space, such conditional probabilities

always exist, see Jǐrina [28].

In this paper, we focus on the situation where the conditional distribution of Y given X is heavy-tailed.

More precisely, we assume that there exists a positive function γ(·), called the conditional tail index, such

that

lim
y→∞

S(λy|x)

S(y|x)
= λ−1/γ(x), (1)

for all x ∈ E and all λ > 0. This is the adaptation of the standard extreme-value framework of heavy-

tailed distributions to the case when there is a covariate. The conditional quantile function of Y given
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X = x is then defined for x ∈ E by Q(α|x) := inf {y > 0 |S(y|x) ≤ α}. If x ∈ E is fixed, our final aim is

to estimate the conditional extreme quantile Q(βn|x) of order βn → 0. As we will show below, this does

in fact require estimating the conditional tail index γ(x) first.

2.1 Estimation of a functional extreme quantile

Recall that we are interested in the estimation of Q(βn|x) when βn → 0 as the sample size increases. The

natural empirical estimator of this quantity is given by

Q̂n(βn|x) := inf
{
y > 0 | Ŝn(y|x) ≤ βn

}
, (2)

where

Ŝn(y|x) =

n∑
i=1

I{Yi > y}I{d(x,Xi) ≤ h}

/
n∑
i=1

I{d(x,Xi) ≤ h}

and where h = h(n) is a nonrandom sequence converging to 0 as n → ∞. Unfortunately, denoting

by mx(h) := nP(d(x,X) ≤ h) the average number of observations whose covariates belong to the ball

B(x, h) = {x′ ∈ E | d(x, x′) ≤ h} with center x and radius h, it can be shown (see Proposition 1) that the

condition mx(h)βn →∞ is required to obtain the consistency of Q̂n(βn|x). This means that at the same

time, sufficiently many observations should belong to the ball B(x, h) and βn should be so small that

the quantile Q(βn|x) is covered by the range of this data, and therefore the order βn of the functional

extreme quantile cannot be chosen as small as we would like. We thus need to propose another estimator

adapted to this case. To this end, we start by remarking (see Bingham et al. [4, Theorem 1.5.12]) that (1)

is equivalent to

lim
α→0

Q(λα|x)

Q(α|x)
= λ−γ(x), (3)

for all λ > 0. Hence, for 0 < β < α with α small enough, we obtain the extrapolation formula Q(β|x) ≈

Q(α|x)(α/β)γ(x) which is at the heart of Weissman’s extrapolation method [38]. In order to borrow more

strength from the available information in the sample, we note that, if µ is a probability measure on the

interval [0, 1], another similar, heuristic approximation holds:

Q(β|x) ≈
∫

[0,1]

Q(α|x)

(
α

β

)γ(x)

µ(dα).

If we have at our disposal a consistent estimator γ̂n(x) of γ(x) (an example of such an estimator is given

in Section 2.2), an idea is to estimate Q(βn|x) by:

Q̂n(βn|x) =

∫
[0,1]

Q̂n(α|x)

(
α

βn

)γ̂n(x)

µ(dα). (4)

In order to obtain a consistent estimator of the extreme conditional quantile, the support of the measure µ,

denoted by supp(µ), should be located around 0. To be more specific, we assume in what follows that
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supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1] and u ∈ (0, 1) small enough. For instance, taking µ to be the Dirac

measure at u leads to

Q̂n(βn|x) = Q̂n(u|x)

(
u

βn

)γ̂n(x)

,

which is a straightforward adaptation to our conditional setting of the classical Weissman estimator [38].

If on the contrary µ is absolutely continuous, estimator (4) is a properly integrated and weighted version

of Weissman’s estimator. Due to the fact that it takes more of the available data into account, we can

expect such an estimator to perform better than the simple adaptation of Weissman’s estimator, a claim

we investigate in our finite-sample study in Section 4.

2.2 Estimation of the functional tail index

To provide an estimator of the functional tail index γ(x), we note that equation (3) warrants the approx-

imation γ(x) ≈ log[Q(α|x)/Q(u|x)]/ log(u/α) for 0 < α < u when u is small enough. Let Ψ(·, u) be a

measurable function defined on (0, u) such that

0 <

∣∣∣∣∫ u

0

log(u/α)Ψ(α, u)dα

∣∣∣∣ <∞.
Multiplying the aforementioned approximation by Ψ(·, u), integrating between 0 and 1 and replacing

Q(·|x) by the classical estimator Q̂n(·|x) defined in (2) leads to the estimator:

γ̂n(x, u) :=

∫ u

0

Ψ(α, u) log
Q̂n(α|x)

Q̂n(u|x)
dα

/∫ u

0

log(u/α)Ψ(α, u)dα. (5)

Without loss of generality, we shall assume in what follows that
∫ u

0
log(u/α)Ψ(α, u)dα = 1. Particular

choices of the function Ψ(·, u) actually yield generalizations of some well-known tail index estimators to

the conditional framework. Let kx := uMx(h). The choice Ψ(·, u) = 1/u leads to the estimator:

γ̂Hn (x) =
1

kx

bkxc∑
i=1

log
Q̂n((i− 1)/Mx(h)|x)

Q̂n(kx/Mx(h)|x)
, (6)

which is the straightforward conditional adaptation of the classical Hill estimator (see Hill [27]). Now,

taking Ψ(·, u) = u−1(log(u/·)− 1) leads, after some algebra, to the estimator:

γ̂Zn (x) =
1

kx

bkxc∑
i=1

i log

(
kx
i

)
log

Q̂n((i− 1)/Mx(h)|x)

Q̂n(i/Mx(h)|x)
.

This estimator can be seen as a generalization of the Zipf estimator (see Kratz and Resnick [29], Schultze

and Steinebach [33]).

3 Main results

Our aim is now to establish asymptotic results for our estimators. We assume in all what follows that

Q(·|x) is continuous and decreasing. Particular consequences of this condition include that S(Q(α|x)|x) =
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α for any α ∈ (0, 1) and that given X = x, Y has an absolutely continuous distribution with probability

density function f(·|x).

Recall that under (1), or equivalently (3), the conditional quantile function may be written for all t > 1

as follows:

Q(t−1|x) = c(t|x) exp

(∫ t

1

∆(v|x)− γ(x)

v
dv

)
,

where c(·|x) is a positive function converging to a positive constant at infinity and ∆(·|x) is a measurable

function converging to 0 at infinity, see Bingham et al. [4, Theorem 1.3.1]. We assume in what follows

that

(HSO) c(·|x) is a constant function equal to c(x) > 0, that the function ∆(·|x) has ultimately constant sign

at infinity and that there exists ρ(x) < 0 such that for all λ > 0,

lim
y→∞

∣∣∣∣∆(λy|x)

∆(y|x)

∣∣∣∣ = λρ(x).

The constant ρ(x) is called the conditional second-order parameter of the distribution. These conditions

on the function ∆(·|x) are commonly used when studying tail index estimators and make it possible to

control the error term in convergence (3). In particular, it is straightforward to see that for all z > 0,

lim
t→∞

1

∆(t|x)

(
Q((tz)−1|x)

Q(t−1|x)
− zγ(x)

)
= zγ(x) z

ρ(x) − 1

ρ(x)
, (7)

which is the conditional analogue of the second-order condition of de Haan and Ferreira [25] for heavy-

tailed distributions, see Theorem 2.3.9 therein.

Finally, for 0 < α1 < α2 < 1, we introduce the quantity:

ω (α1, α2, x, h) = sup
α∈[α1,α2]

sup
x′∈B(x,h)

∣∣∣∣log
Q(α|x′)
Q(α|x)

∣∣∣∣ ,
which is the uniform oscillation of the log-quantile function in its second argument. Such a quantity

is also studied in Gardes and Stupfler [20], for instance. It acts as a measure of how close conditional

distributions are for two neighboring values of the covariate.

These elements make it possible to state an asymptotic result for our conditional extreme quantile esti-

mator:

Theorem 1 Assume that conditions (3) and (HSO) are satisfied and let un,x ∈ (0, 1) be a sequence

converging to 0 and such that supp(µ) ⊂ [τun,x, un,x] with τ ∈ (0, 1]. Assume also that mx(h)→∞ and

that there exists a(x) ∈ (0, 1) such that:

c1 ≤ lim inf
n→∞

un,x[mx(h)]a(x) ≤ lim sup
n→∞

un,x[mx(h)]a(x) ≤ c2 (8)

for some constants 0 < c1 ≤ c2, z1−a(x)∆2(za(x)|x)→ λ(x) ∈ R as z →∞ and

[mx(h)]1−a(x)ω2
(
[mx(h)]−1−δ, 1− [mx(h)]−1−δ, x, h

)
→ 0 (9)
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for some δ > 0. If moreover [mx(h)](1−a(x))/2(γ̂n(x)− γ(x))
d−→ Γ with Γ a non-degenerate distribution,

then, provided we have that βn[mx(h)]a(x) → 0 and [mx(h)]a(x)−1 log2([mx(h)]−a(x)/βn) → 0, it holds

that
[mx(h)](1−a(x))/2

log([mx(h)]−a(x)/βn)

(
Q̂n(βn|x)

Q(βn|x)
− 1

)
d−→ Γ.

Note that [mx(h)]1−a(x) →∞ depends on the average number of available data points that can be used

to compute the estimator. More precisely, under condition (8), this quantity is essentially proportional

to un,xmx(h), which is the average number of data points actually used in the estimation. In particular,

the conditions in Theorem 1 are analogues of the classical hypotheses in the estimation of an extreme

quantile. Besides, condition (9) ensures that the distribution of Y given X = x′ is close enough to that

of Y given X = x when x′ is in a sufficiently small neighborhood of x. Finally, taking µ to be the Dirac

measure at un,x makes it possible to obtain the asymptotic properties of the functional adaptation of

the standard Weissman extreme quantile estimator. In particular, as in the standard univariate case, the

asymptotic distribution of the conditional extrapolated estimator depends crucially on the asymptotic

properties of the conditional tail index estimator used.

We proceed by stating the asymptotic normality of the estimator γ̂n(x, u) in (5). To this end, an additional

hypothesis on the weighting function Ψ(·, u) is required.

(HΨ) The function Ψ(·, u) satisfies:

∀u ∈ (0, 1], ∀β ∈ (0, u],
u

β

∫ β

0

Ψ(α, u)dα = Φ(β/u) and lim sup
υ↓0

∫ υ

0

|Ψ(α, υ)|dα <∞,

where Φ is a nonincreasing probability density function on (0, 1) such that Φ2+κ is integrable for

some κ > 0. In addition, there exists a positive continuous function g defined on (0, 1) such that

for any k > 1 and i ∈ [1, k],

|iΦ (i/k)− (i− 1)Φ ((i− 1)/k)| ≤ g (i/(k + 1)) , (10)

and the function g(·) max(log(1/·), 1) is integrable on (0, 1).

Note that for all t ∈ (0, 1),

0 ≤ tΦ(t) ≤
∫ t/2

0

|Ψ(α, 1/2)|dα.

Since the right-hand side converges to 0 as t ↓ 0, we may extend the definition of the map t 7→ tΦ(t) by

saying it is 0 at t = 0. Hence, inequality (10) is meaningful even when i = 1.

Condition (HΨ) on the weighting function Ψ(·, u) is similar in spirit to a condition introduced in Beirlant et

al. [1]. This condition is satisfied for instance by the functions Ψ(·, u) = u−1 and Ψ(·, u) = u−1(log(u/·)−

1) with g(·) = 1 for the first one and, for the second one, g(·) = 1− log(·). In particular, our results shall

then hold for the adaptations of the Hill and Zipf estimators mentioned at the end of Section 2.2.

The asymptotic normality of our family of estimators of γ(x) is established in the following theorem.
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Theorem 2 Assume that conditions (3), (HSO) and (HΨ) are satisfied, that mx(h) → ∞ and u =

un,x → 0. Assume that there exist a(x) ∈ (0, 1) such that z1−a(x)∆2(za(x)|x)→ λ(x) ∈ R as z →∞, con-

dition (9) holds and that there are two ultimately decreasing functions ϕ1 ≤ ϕ2 such that z1−a(x)ϕ2
2(z)→ 0

as z →∞ and ϕ1(mx(h)) ≤ un,x[mx(h)]a(x) − 1 ≤ ϕ2(mx(h)). Then we have that

[mx(h)](1−a(x))/2 (γ̂n(x, un,x)− γ(x))
d−→ N

(
λ(x)

∫ 1

0

Φ(α)α−ρ(x)dα, γ2(x)

∫ 1

0

Φ2(α)dα

)
.

Our asymptotic normality result thus holds under generalizations of the common hypotheses on the

standard univariate model, provided the conditional distributions of Y at two neighboring points are

sufficiently close. We close this section by pointing out that our main results are also similar in spirit

to results obtained in the literature for other conditional tail index or conditional extreme-value index

estimators, see e.g. Gardes and Stupfler [20] and Stupfler [35, 36].

4 Simulation study

4.1 Hyperparameters selection

The aim of this paragraph is to propose a selection procedure of the hyperparameters involved in the

estimator Q̂n(βn|x) of the extreme conditional quantile and in the estimator γ̂n(x, u) of the functional tail

index. Assuming that the measure µ used in (4) is such that supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1) fixed

by the user (a discussion of the performance of the estimator as a function of τ is included in Section 4.2

below), these hyperparameters are: the bandwidth h controlling the smoothness of the estimators and the

value u ∈ (0, 1) which selects the part of the tail distribution considered in the estimation procedure. The

criterion used in our selection procedure is based on the following remark: for any positive and integrable

weight function W : [0, 1] 7→ [0,∞),

EW := E
[∫ 1

0

W (α) (I{Y > Q(α|X)} − α)
2
dα

]
=

∫ 1

0

W (α)α(1− α)dα.

The sample analogue of EW is given by

1

n

n∑
i=1

∫ 1

0

W (α) (I{Yi > Q(α|Xi)} − α)
2
dα,

and for a good choice of h and u, this quantity should of course be close to the known quantity EW . Let

then W
(1)
n and W

(2)
n be two positive and integrable weight functions. Replacing the unobserved variable

Q(α|Xi) by the statistic Q̂n,i(α|Xi) which is the estimator (2) computed without the observation (Xi, Yi)

leads to the following estimator of E
W

(1)
n

:

Ê
(1)

W
(1)
n

(h) :=
1

n

n∑
i=1

∫ 1

0

W (1)
n (α)

(
I{Yi > Q̂n,i(α|Xi)} − α

)2

dα.
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Note that Ê
(1)

W
(1)
n

(h) only depends on the hyperparameter h. In the same way, one can also replace Q(α|Xi)

by the statistic Q̂n,i(α|Xi) which is the estimator (4) computed without the observation (Xi, Yi). An

estimator of E
W

(2)
n

is then given by:

Ê
(2)

W
(2)
n

(u, h) :=
1

n

n∑
i=1

∫ 1

0

W (2)
n (α)

(
I{Yi > Q̂n,i(α|Xi)} − α

)2

dα.

Obviously, this last quantity depends both on u and h. We propose the following two-stage procedure to

choose the hyperparameters u and h. First, we compute our selected bandwidth hopt by minimizing with

respect to h the function

CV(1)(h) :=

[
Ê

(1)

W
(1)
n

(h)−
∫ 1

0

W (1)
n (α)α(1− α)dα

]2

.

Next, our selected sample fraction uopt is obtained by minimizing with respect to u the function CV(2)(u, hopt)

where

CV(2)(u, h) :=

[
Ê

(2)

W
(2)
n

(u, h)−
∫ 1

0

W (2)
n (α)α(1− α)dα

]2

.

Note that the functions CV(1) and CV(2) can be seen as adaptations to the problem of conditional extreme

quantile estimation of the cross-validation function introduced in Li et al. [30].

4.2 Results

The behavior of the extreme conditional quantile estimator (4), when the estimator (5) of the functional

tail index is used together with our selection procedure of the hyperparameters, is tested on some random

pairs (X,Y ) ∈ C1[−1, 1] × (0,∞), where C1[−1, 1] is the space of continuously differentiable functions

on [−1, 1]. We generate n = 1000 independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ) where X is the

random curve defined for all t ∈ [−1, 1] by X(t) := sin[tU/(2π)] + (V + 2π)t + W , where U , V and W

are independent random variables drawn from a standard uniform distribution. Note that this random

covariate was used for instance in Ferraty et al. [14]. Regarding the conditional distribution of Y given

X = x, x ∈ C1[−1, 1], two distributions are considered. The first one is the Fréchet distribution, for which

the conditional quantile is given for all α ∈ (0, 1) by

Q(α|x) =

[
log

(
1

1− α

)]−γ(x)

.

The second one is the Burr distribution with parameter r > 0, for which Q(α|x) = (α−rγ(x) − 1)−1/r.

For these distributions, letting x′ be the first derivative of x and

z(x) =
2

3

[∫ 1

−1

x′(t)[1− cos(πt)]dt− 23

2

]
,

the functional tail index is given by

γ(x) = exp

[
− log(3)

9
z2(x)

]
I{z(x) < 3}+

1

3
I{z(x) ≥ 3}.
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Let us mention that the second order parameter ρ(x) appearing in condition (HSO) is then ρ(x) = −1

for the Fréchet distribution and ρ(x) = −rγ(x) for the Burr distribution.

The space C1[−1, 1] is endowed with the semi-metric d given for all x1, x2 by

d(x1, x2) =

[∫ 1

−1

(x′1(t)− x′2(t))
2
dt

]1/2

,

i.e. the L2−distance between first derivatives. To compute γ̂n(x, u), we use the weight function Ψ(·, u) =

u−1(log(u/·)− 1), and the measure µ used in the integrated conditional quantile estimator is assumed to

be absolutely continuous with respect to the Lebesgue measure, with density

pτ,u(α) =
6(α− τu)

[u(1− τ)]2

(
1− α− τu

u(1− τ)

)
I{α ∈ [τu, u]}.

In what follows, this estimator is referred to as the Integrated Weissman Estimator (IWE).

The hyperparameters are selected using the procedure described in Section 4.1. Since we are interested

in the tail of the conditional distribution, the supports of the weight functions W
(1)
n and W

(2)
n should be

located around 0. More specifically, for i ∈ {1, 2}, we take

W (i)
n (α) := log

(
α

β
(i)
n,1

)
I{α ∈ [β

(i)
n,1, β

(i)
n,2]},

where β
(1)
n,1 = b2

√
n log nc/n, β

(1)
n,2 = b3

√
n log nc/n, β

(2)
n,1 = b5 log nc/n and β

(2)
n,2 = b10 log nc/n. The

cross-validation function CV(1)(h) is minimized over a grid H of 20 points evenly spaced between 1/2

and 10 to obtain the optimal value hopt, while the value uopt is the obtained by minimizing over a grid

U of 26 points evenly spaced between 0.005 and 0.255 the function CV(2)(u, hopt).

For the Fréchet distribution and two Burr distributions (one with r = 2 and one with r = 1/20), the

conditional extreme quantile estimator (4) is computed with the values uopt and hopt obtained by our

selection procedure. The quality of the estimator is measured by the Integrated Squared Error given by:

ISE :=
1

n

n∑
i=1

∫ β
(2)
n,2

β
(2)
n,1

log2 Q̂n,i(α|Xi)

Q(α|Xi)
dα.

This procedure is repeated N = 100 times. The median and the first and third quartiles of the N values

of the Integrated Squared Error are gathered in Table 1. The proposed estimator is compared to the

adaptation of the Weissman estimator obtained by taking for the measure µ in (4) the Dirac measure

at u. This estimator is referred to as the Weissman Estimator (WE) in table 1. In the WE estimator,

the functional tail index γ(x) is estimated either by (6) or by the generalized Pickands-type estimator of

Gardes and Girard [19]. For J ≥ 2, this estimator is given by:

γ̂GG(x, u) =

J∑
j=1

(log Q̂n(u/j2|x)− log Q̂n(u|x))

/
J∑
j=1

log(j2)

10



Following their advice, we set J = 10. Again, the median and the first and third quartiles of the N

values of the Integrated Squared Error of these two estimators are given in Table 1. In this table, optimal

median errors among the five tested estimators are marked in bold.

Fréchet dist. Burr dist. (r = 2) Burr dist. (r = 1/20)

IWE (τ = 1/10) [0.0178 0.0227 0.0294] [0.0191 0.0234 0.0294] [1.948 2.379 2.879]

IWE (τ = 1/2) [0.0168 0.0217 0.0265] [0.0185 0.0228 0.0280] [1.861 2.285 2.696]

IWE (τ = 9/10) [0.0170 0.0205 0.0260] [0.0180 0.0219 0.0268] [1.867 2.380 2.947]

WE (Hill-type) [0.0180 0.0230 0.0277] [0.0183 0.0238 0.0275] [1.915 2.423 2.805]

WE (Pickands-type) [0.0190 0.0226 0.0276] [0.0194 0.0244 0.0281] [2.084 2.662 3.086]

Table 1: Comparison of the Integrated Squared Errors of the following extreme conditional quantile

estimators: IWE with τ ∈ {1/10, 1/2, 9/10} (lines 1 to 3), WE when γ(x) is estimated by the Hill-type

estimator (6) (line 4) and WE when γ(x) is estimated by the Pickands-type estimator (line 5). Results

are given in the following form: [first quartile median third quartile].

It appears that the IWEs outperform the two WEs on our tested cases. Regarding the choice of τ , although

the three IWEs perform better than the proposed competitors, a value close to 1 seems preferable, the

improvement in terms of Integrated Squared Error then being roughly 10% in two of the three cases.

Finally, as expected, the value of ρ(x) has a strong impact on the estimation procedure: a value of ρ(x)

close to 0 leads to large values of the Integrated Squared Error.

5 Real data example

In this section, we showcase our extreme quantile Integrated Weissman Estimator on functional chemo-

metric data. This data, obtained by considering n = 215 pieces of finely chopped meat, consists of

pairs of observations (xn, zn), where xi is the absorbance curve of the ith piece of meat, obtained at

100 regularly spaced wavelengths between 850 and 1050 nanometers (this is also called the spectromet-

ric curve), and zi is the percentage of fat content in this piece of meat. The data, openly available at

http://lib.stat.cmu.edu/datasets/tecator, is for instance considered in Ferraty and Vieu [12, 13].

Figure 1 is a graph of all 215 absorbance curves.

Because the percentage of fat content zi obviously belongs to [0, 100], it has a finite-right endpoint and

therefore cannot be conditionally heavy-tailed as required by model (1). We thus consider the “inverse

fat content” yi = 100/zi in this analysis. Figure 2 shows the Hill plot of the sample (y1, . . . , yn) without

integrating covariate information. It can be seen in this figure that the Hill plot seems to be stabilizing

near the value 0.4 for a sizeable portion of the left of the graph, thus indicating the plausible presence of
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a heavy right tail in the data (y1, . . . , yn), see for instance Theorem 3.2.4 in de Haan and Ferreira [25].

On these grounds, we therefore would like to analyze the influence of the covariate information, which is

the absorbance curve, upon the inverse fat content. While of course the absorbance curves obtained are in

reality made of discrete data because of the discretization of this curve, the precision of this discretization

arguably makes it possible to consider our data as in fact functional. This, in our opinion, fully warrants

the use of our estimator in this case.

Because the covariate space is functional, one has to wonder about how to measure the influence of the

covariate and then about how to represent the results. A nice account of the problem of how to represent

results when considering functional data is given in Ferraty and Vieu [13]. Here, we look at the variation

of extreme quantile estimates in two different directions of the covariate space. To this end, we consider

the semi-metric

d(x1, x2) =

[∫ 1050

850

(x′′1(t)− x′′2(t))
2
dt

]1/2

,

also advised by Ferraty and Vieu [12], and we compute:

• a typical pair of covariates, i.e. a pair (xmed
1 , xmed

2 ) such that

d(xmed
1 , xmed

2 ) = median{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j}.

• a pair of covariates farthest from each other, i.e. a pair (xmax
1 , xmax

2 ) such that

d(xmax
1 , xmax

2 ) = max{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j}.

For the purpose of comparison, we also compute the “average covariate” x = n−1
∑n
i=1 xi. In particular,

we represent on Figure 3 our two pairs of covariates together with the average covariate, the same scale

being used on the y−axis in both figures. Recall that since the semi-metric d is the L2−distance between

second-order derivatives, it acts as a measure of how much the shapes of two covariate curves are different,

rather than measuring how far apart they are.

We compute our conditional extreme quantile estimator at the levels 5/n and 1/n, using the methodology

given in Section 4.2. In particular, the selection parameters β
(1)
n,1, β

(1)
n,2, β

(2)
n,1 and β

(2)
n,2 used in the cross-

validation methodology were the exact same ones used in the simulation study, namely 0.437, 0.655,

0.035 and 0.069, respectively. The bandwidth h is selected in the interval [0.00316, 0.0116], the lower

bound in this interval corresponding to the median of all distances d(xi, xj) (i 6= j) and the upper bound

corresponding to 90% of the maximum of all distances d(xi, xj), for a final selected value of 0.00717. The

value of the parameter u is selected exactly as in the simulation study, and the selection procedure gives

the value 0.185. Finally, we set τ = 0.9 in our Integrated Weissman Estimator.

Results are given in Figure 4; namely, we compute the extreme quantile estimates Q̂n(β|x), for β ∈

{5/n, 1/n}, and x belonging to either the line [xmed
1 , xmed

2 ] = {txmed
1 + (1 − t)xmed

2 , t ∈ [0, 1]} or to the
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line [xmax
1 , xmax

2 ]. It can be seen in these figures that the estimates in the direction of a typical pair of

covariates are remarkably stable; they are actually essentially indistinguishable from the estimates at the

average covariate, which are 42.41 for β = 5/n and 93.86 for β = 1/n. By contrast, the estimates on

the line [xmax
1 , xmax

2 ], while roughly stable for 60% of the line and approximately equal to the value of

the estimated quantiles at the average covariate, very sharply drop afterwards, the reduction factor being

close to 10 from the beginning of the line to its end in the case β = 5/n. This conclusion suggests that

while in typical directions of the covariate space the tail behavior of the fat content is very stable, there

may be certain directions in which this is not the case. In particular, there appear to be certain values

of the covariate for which thresholds for the detection of unusual levels of fat should differ from those of

more standard cases.

6 Proofs of the main results

Before proving the main results, we recall two useful facts. The first one is a classical equivalent of

Mx(h) :=

n∑
i=1

I{d(Xi, x) ≤ h}.

If mx(h)→∞ as n→∞ then, for any δ ∈ (0, 1):

[mx(h)](1−δ)/2
∣∣∣∣Mx(h)

mx(h)
− 1

∣∣∣∣ P−→ 0 as n→∞, (11)

see Lemma 1 in Stupfler [35]. For the second one, let {Y ∗i , i = 1, . . . ,Mx(h)} be the response variables

whose associated covariates {X∗i , i = 1, . . . ,Mx(h)} are such that d(X∗i , x) ≤ h. Lemma 4 in Gardes and

Stupfler [20] shows that the random variables Vi = 1−F (Y ∗i |X∗i ) are such that, for all u1, . . . , up ∈ [0, 1],

P

(
p⋂
i=1

{Vi ≤ ui}|Mx(h) = p

)
= u1 . . . up, (12)

i.e. they are independent standard uniform random variables given Mx(h).

6.1 Proof of Theorem 1

The following proposition is a uniform consistency result for the estimator Q̂n(βn|x) when βn goes to 0

at a moderate rate.

Proposition 1 Assume that conditions (3), (HSO), (8) and (9) are satisfied. If mx(h)→∞, then

sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ = OP

(
[mx(h)](a(x)−1)/2

)
.
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Proof. Let Mn := Mx(h), {Ui, i ≥ 1} be independent standard uniform random variables, Vi :=

S(Y ∗i |X∗i ) and

Zn(x) := sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ .
We start with the following inequality: Zn(x) ≤ Tn(x) +R

(Q)
n (x), with

Tn(x) := sup
α∈[τun,x,un,x]

∣∣∣∣Q(VbαMnc+1,Mn
|x)

Q(α|x)
− 1

∣∣∣∣ (13)

and R(Q)
n (x) := sup

α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)−Q(VbαMnc+1,Mn
|x)

Q(α|x)

∣∣∣∣∣ . (14)

Let us first focus on the term Tn(x). For any t > 0,

P(vn,xTn(x) > t) =

n∑
j=0

P(vn,xTn(x) > t|Mn = j)P(Mn = j),

where vn,x := [mx(h)](1−a(x))/2. From (11), letting

In := [mx(h)(1− [mx(h)][a(x)/4]−1/2),mx(h)(1 + [mx(h)][a(x)/4]−1/2)], (15)

one has P(Mn /∈ In)→ 0 as n→∞. Hence,

P(vn,xTn(x) > t) ≤ sup
p∈In

P(vn,x,Tn(x) > t|Mn = p) + o(1).

Using Lemma 1,

sup
p∈In

P(vn,xTn(x) > t|Mn = p) = sup
p∈In

P(vn,xT p(x) > t),

where

T p(x) := sup
α∈[τun,x,un,x]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ .
Using condition (8), it is clear that there are constants d1, d2 > 0 with d1 < d2 such that for n large

enough, we have for all p ∈ In:

T p(x) ≤ sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ .
Thus,

P(vn,xTn(x) > t) ≤ sup
p∈In

P

(
vn,x sup

α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ > t

)
+ o(1).

Furthermore, for n large enough, there exists κ > 0 such that for all p ∈ In, vn,x ≤ κp(1−a(x))/2 and thus,

for all t > 0,

P(vn,xTn(x) > t) ≤ sup
p∈In

P

(
κp(1−a(x))/2 sup

α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ > t

)
+ o(1).
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Since

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ = OP(1),

(see Lemma 2 for a proof), it now becomes clear that Tn(x) = OP(v−1
n,x).

Let us now focus on the term R
(Q)
n (x). As before, one can show that for all t > 0,

P(vn,xR
(Q)
n (x) > t) ≤ sup

p∈In
P(vn,x,R

(Q)
n (x) > t|Mn = p) + o(1).

Lemma 1 and condition (9) yield for any t > 0 and n large enough:

sup
p∈In

P(vn,xR
(Q)
n (x) > t|Mn = p)

≤ sup
p∈In

P(vn,xω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t)

≤ sup
p∈In

P(p(1−a(x))/2ω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t/κ)

≤ sup
p∈In

[
P(U1,p < [mx(h)]−1−δ) + P(Up,p > 1− [mx(h)]−1−δ)

]
.

Since for n large enough

sup
p∈In

[
P(U1,p < [mx(h)]−1−δ) + P(Up,p > 1− [mx(h)]−1−δ)

]
= 2 sup

p∈In

[
1− [1− [mx(h)]−1−δ]p

]
≤ 2

(
1− [1− [mx(h)]−1−δ]2mx(h)

)
→ 0, (16)

we thus have proven that R
(Q)
n (x) = oP(v−1

n,x) and the proof is complete.

Proof of Theorem 1. The key point is to write

Q̂n(βn|x) =

∫ un,x

τun,x

Q(α|x)

(
α

βn

)γ(x)
{
Q̂n(α|x)

Q(α|x)

(
α

βn

)γ̂n(x)−γ(x)
}
µ(dα).

Now, by assumption vn,x(γ̂n(x) − γ(x))
d−→ Γ where vn,x := [mx(h)](1−a(x))/2. Since βn/un,x is asymp-

totically bounded from below and above by sequences proportional to βn[mx(h)]a(x) → 0, one has for n

large enough that

sup
α∈[τun,x,un,x]

∣∣∣∣∣log

[(
α

βn

)γ̂n(x)−γ(x)
]∣∣∣∣∣ ≤ |γ̂n(x)− γ(x)| log

(
un,x
βn

)
= oP(1),

since by assumption v−1
n,x log(un,x/βn)→ 0. A Taylor expansion for the exponential function thus yields(

α

βn

)γ̂n(x)−γ(x)

− 1− log(α/βn)(γ̂n(x)− γ(x)) = OP
(
v−1
n,x log2(un,x/βn)

)
,

uniformly in α ∈ [τun,x, un,x]. We then obtain

Q̂n(βn|x) =

∫ un,x

τun,x

Q(α|x)

(
α

βn

)γ(x)

Gn,x(α)µ(dα)
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where

Gn,x(α) :=
Q̂n(α|x)

Q(α|x)

[
1 + log(α/βn)(γ̂n(x)− γ(x)) +OP

(
v−1
n,x log2(un,x/βn)

)]
.

By Proposition 1,

sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ = OP(v−1
n,x),

and therefore:

Gn,x(α) = 1 + log(α/βn)(γ̂n(x)− γ(x)) +OP
(
v−1
n,x log2(un,x/βn)

)
. (17)

By Lemma 3,

sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = O
(
∆(u−1

n,x|x)
)
, (18)

and thus, (17) and (18) lead to

Q̂(βn|x)

Q(βn|x)
− 1 = (γ̂n(x)− γ(x))

∫ un,x

τun,x

log(α/βn)µ(dα)
[
1 +O

(
∆(u−1

n,x|x)
)]

+ O
(
∆(u−1

n,x|x)
)

+OP
(
v−1
n,x log2(un,x/βn)

)
.

Since un,x/βn → 0 and µ([τun,x, un,x]) = 1, one has∫ un,x

τun,x

log(α/βn)µ(dα) =

∫ un,x

τun,x

[log(un,x/βn) + log(α/un,x)]µ(dα) = log(un,x/βn)(1 + o(1)),

and thus

Q̂(βn|x)

Q(βn|x)
− 1 = (γ̂n(x)− γ(x)) log(un,x/βn) [1 + o(1)]

+ O
(
∆(u−1

n,x|x)
)

+OP
(
v−1
n,x log2(un,x/βn)

)
.

Using the convergence in distribution of γ̂n(x) completes the proof.

6.2 Proof of Theorem 2

For the sake of brevity, let vn,x = [mx(h)](1−a(x))/2, Mn = Mx(h) and Kn = un,xMn. The cu-

mulative distribution function of a normal distribution with mean λ(x)
∫ 1

0
Φ(α)α−ρ(x)dα and variance

γ2(x)
∫ 1

0
Φ2(α)dα is denoted by Hx in what follows. Let t ∈ R and ε > 0. Denoting by En(t) the event

{vn,x (γ̂n(x, un,x)− γ(x)) ≤ t}, one has

|P [En(t)]−Hx(t)| ≤
n∑
p=0

P(Mn = p) |P [En(t)|Mn = p]−Hx(t)| .

Recall that from (11), P(Mn /∈ In)→ 0 as n→∞ where In is defined in (15). Hence, for n large enough,

|P [En(t)]−Hx(t)| ≤ sup
p∈In
|P [En(t)|Mn = p]−Hx(t)|+ ε

8
. (19)
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Now, using the notation Vi := S(Y ∗i |X∗i ) for i = 1, . . . ,Mn, let us introduce the statistics:

γ̃n(x, un,x) :=

bKnc∑
i=1

Wi,n(un,x,Mn) log
Q(Vi,Mn |x)

Q(VbKnc+1,Mn
|x)

and R(γ)
n (x) := γ̂n(x, un,x)− γ̃n(x, un,x), (20)

where

Wi,n(un,x,Mn) :=

∫ i/Mn

(i−1)/Mn

Ψ(α, un,x)dα. (21)

It is straightforward that for all κ > 0,

sup
p∈In
|P [En(t)|Mn = p]−Hx(t)| ≤ sup

p∈In

∣∣∣P [En(t) ∩
{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]
−Hx(t)

∣∣∣
+ sup

p∈In
P
[
vn,x|R(γ)

n (x)| > κ|Mn = p
]

=: T (1)
n,x + T (2)

n,x. (22)

Let us first focus on the term T
(1)
n,x. Denoting by Ẽn(t) the event {vn,x (γ̃n(x, un,x)− γ(x)) ≤ t}, one has

for all p ∈ In that P[En(t) ∩ {vn,x|R(γ)
n (x)| ≤ κ}|Mn = p] ≤ P[Ẽn(t+ κ)|Mn = p] and that

P
[
En(t) ∩

{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]
≥ P

[
Ẽn(t− κ) ∩

{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]
≥ P

[
Ẽn(t− κ)|Mn = p

]
− P

[
vn,x|R(γ)

n (x)| > κ|Mn = p
]
.

Using the inequality |x| ≤ |a|+ |b| which holds for all x ∈ [a, b], it is then clear that for all κ > 0,

T (1)
n,x ≤ sup

p∈In

∣∣∣P [Ẽn(t+ κ)|Mn = p
]
−Hx(t+ κ)

∣∣∣+ sup
p∈In

∣∣∣P [Ẽn(t− κ)|Mn = p
]
−Hx(t− κ)

∣∣∣
+ |Hx(t)−Hx(t+ κ)|+ |Hx(t)−Hx(t− κ)|+ T (2)

n,x.

Since Hx is continuous, we can actually choose κ > 0 so small that

|Hx(t)−Hx(t+ κ)| ≤ ε

8
and |Hx(t)−Hx(t− κ)| ≤ ε

8

and therefore

T (1)
n,x ≤ sup

p∈In

∣∣∣P [Ẽn(t+ κ)|Mn = p
]
−Hx(t+ κ)

∣∣∣+ sup
p∈In

∣∣∣P [Ẽn(t− κ)|Mn = p
]
−Hx(t− κ)

∣∣∣
+ T (2)

n,x +
ε

4
. (23)

We now focus on the two first terms in the left-hand side of the previous inequality. From Lemma 4, the

conditional distribution of γ̃n(x, un,x) given Mn = p is that of

γp(x, un,x) :=
1

pun,x

bpun,xc∑
i=1

Φ

(
i

pun,x

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
.
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Hence, for all s ∈ R and p ∈ In, the equality P[Ẽn(s)|Mn = p] = P[vn,x(γp(x, un,x) − γ(x)) ≤ s].

Furthermore, for n large enough we have

p/2 ≤ p

1 + [mx(h)][a(x)/4]−1/2
≤ mx(h) ≤ p

1− [mx(h)][a(x)/4]−1/2
≤ 2p

for all p ∈ In, so that for n large enough:

∀p ∈ In, ξ(+)(p) := p[1 + (2p)[a(x)/4]−1/2]−1 ≤ mx(h) ≤ p[1− (p/2)[a(x)/4]−1/2]−1 =: ξ(−)(p). (24)

Under our assumptions on the sequence un,x, the previous inequalities lead to k1(p) ≤ pun,x ≤ k2(p)

where

k1(p) := p[ξ(−)(p)]−a(x)[1 + ϕ1(ξ(−)(p))] and k2(p) := p[ξ(+)(p)]−a(x)[1 + ϕ2(ξ(+)(p))].

Since Φ is a nonincreasing function on (0, 1), we then get that:

γp(x, un,x) ≤ 1

k1(p)

bpun,xc∑
i=1

Φ

(
i

bk2(p)c+ 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

≤ 1

k1(p)

bk2(p)c+1∑
i=1

Φ

(
i

bk2(p)c+ 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

= γ̂p(x, k1(p), k2(p))

with

γ̂p(x, k, k
′) :=

1

k

bk′c∑
i=1

Φ

(
i

bk′c+ 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
. (25)

A similar lower bound applies and thus γ̂p(x, k2(p), k1(p) − 1) ≤ γp(x, un,x) ≤ γ̂p(x, k1(p), k2(p)) for all

p ∈ In. As a first conclusion, using the inequality |x| ≤ |a| + |b| which holds for all x ∈ [a, b], we have

shown that for all s ∈ R,

sup
p∈In

∣∣∣P [Ẽn(s)|Mn = p
]
−Hx(s)

∣∣∣ ≤ sup
p∈In
|P [vn,x(γ̂p(x, k1(p), k2(p))− γ(x)) ≤ s]−Hx(s)|

+ sup
p∈In
|P [vn,x(γ̂p(x, k2(p), k1(p)− 1)− γ(x)) ≤ s]−Hx(s)| .

Since from (24), [ξ(+)(p)](1−a(x))/2 ≤ vn,x ≤ [ξ(−)(p)](1−a(x))/2 for all p ∈ In and since by assumption on

the ϕi,

k1(p)

k2(p)
= 1 +O

(
p[a(x)/4]−1/2

)
+O

(
ϕ1(ξ(+)(p))

)
+O

(
ϕ2(ξ(+)(p))

)
= 1 + o(p(a(x)−1)/2),

one can apply Lemmas 6 and 7 to show that for n large enough

sup
p∈In

∣∣∣P [Ẽn(t+ κ)|Mn = p
]
−Hx(t+ κ)

∣∣∣+ sup
p∈In

∣∣∣P [Ẽn(t− κ)|Mn = p
]
−Hx(t− κ)

∣∣∣ ≤ ε

2
. (26)
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It remains to study the term T
(2)
n,x. Lemma 4 entails that

T (2)
n,x ≤ sup

p∈In
P
[
2vn,xω(U1,p, Up,p, x, h)

∫ un,x

0

|Ψ(α, un,x)|dα > κ

]
.

From condition (HΨ),

lim
u↓0

∫ u

0

|Ψ(α, u)|dα = C <∞

and thus for n large enough, using (16):

T (2)
n,x ≤ sup

p∈In
P
[
vn,xω(U1,p, Up,p, x, h) >

κ

4C

]
≤ 2

(
1− [1− [mx(h)]−1−δ]2mx(h)

)
≤ ε

8
. (27)

Collecting (19), (22), (23), (26) and (27) concludes the proof.
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A Appendix

The first lemma is dedicated to the statistics Tn(x) and R
(Q)
n (x) defined in the proof of Proposition 1,

equations (13) and (14).

Lemma 1 Let {Ui, i ≥ 1} be independent standard uniform random variables. For x ∈ E such that

mx(h) > 0, the conditional distribution of Tn(x) given Mx(h) = p is that of

T p(x) := sup
α∈[τun,x,un,x]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣
and, given Mx(h) = p, R

(Q)
n (x) is bounded from above by

ω(U1,p, Up,p, x, h) exp[ω(U1,p, Up,p, x, h)]
(
1 + T p(x)

)
.

Proof. Recall the notation Mn := Mx(h) and Vi := S(Y ∗i |X∗i ). First, given Mn = p, equation (12)

entails that {Vi, 1 ≤ i ≤ Mn}|{Mn = p} d
= {Ui, 1 ≤ i ≤ p} where U1, . . . , Up are independent standard

uniform variables. It thus holds that{
Q(VbαMnc+1,Mn

|x), α ∈ [0, 1)
}
|{Mn = p} d

=
{
Q(Ubpαc+1,p|x), α ∈ [0, 1)

}
.

As a direct consequence

Tn(x)|{Mn = p} d
= T p(x). (28)

Let us now focus on the term R
(Q)
n (x). Since Q(·|x) is continuous and decreasing, one has, for i =

1, . . . ,Mn,

logQ(Vi|x)− ω(V1,Mn
, VMn,Mn

, x, h) ≤ log Y ∗i = logQ(Vi|X∗i )

≤ logQ(Vi|x) + ω(V1,Mn
, VMn,Mn

, x, h).

It follows from Lemma 1 in Gardes and Stupfler [20] that for all i ∈ {1, . . . ,Mn},∣∣log Y ∗Mn−i+1,Mn
− logQ(Vi,Mn

|x)
∣∣ ≤ ω(V1,Mn

, VMn,Mn
, x, h). (29)

Since Q̂n(α|x) = Y ∗Mn−i+1,Mn
for all α ∈ [(i− 1)/Mn, i/Mn), the mean value theorem leads to

sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)

Q(VbαMnc+1,Mn
|x)
− 1

∣∣∣∣∣ ≤ ω(V1,Mn
, VMn,Mn

, x, h) exp [ω(V1,Mn
, VMn,Mn

, x, h)] .

Hence,

R(Q)
n (x) = sup

α∈[τun,x,un,x]

∣∣∣∣∣ Q̂n(α|x)

Q(VbαMnc+1,Mn
|x)
− 1

∣∣∣∣∣
∣∣∣∣Q(VbαMnc+1,Mn

|x)

Q(α|x)

∣∣∣∣
≤ ω(V1,Mn

, VMn,Mn
, x, h) exp [ω(V1,Mn

, VMn,Mn
, x, h)] (1 + Tn(x)).

Use finally (12) and (28) to complete the proof.
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The next lemma examines the convergence of Tn(x), defined in the above lemma, given Mx(h).

Lemma 2 Let U1, . . . , Up be independent standard uniform variables. Assume that (3) and (HSO) hold.

If a(x) ∈ (0, 1) is such that p1−a(x)∆2(pa(x)|x)→ λ ∈ R as p→∞ then, for all d1, d2 > 0 with d1 < d2,

we have:

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣Q(Ubpαc+1,p|x)

Q(α|x)
− 1

∣∣∣∣ = OP(1).

Proof. Recall that (HSO) entails that (7) holds. Then, one can apply [25, Theorem 2.4.8] to the

independent random variables {Q(Ui|x), i = 1, . . . , p} distributed from the conditional survival function

S(·|x): because

inf
α∈[d1p−a(x),d2p−a(x)]

α

d2p−a(x)
=
d1

d2
> 0,

it holds that

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣∣Q(Ubpαc+1,p|x)

Q(d2p−a(x)|x)
−
(
αpa(x)

d2

)−γ(x)
∣∣∣∣∣ = OP(1). (30)

Since (7) must in fact hold locally uniformly in z > 0 (see [25, Theorem B.2.9]) and [d1, d2] is a compact

interval, it is clear that

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣∣ Q(α|x)

Q(d2p−a(x)|x)
−
(
αpa(x)

d2

)−γ(x)
∣∣∣∣∣ = O(1). (31)

Combine (30) and (31) to conclude the proof.

Lemma 3 below controls a bias term appearing in the proof of Theorem 1.

Lemma 3 Assume that conditions (3) and (HSO) are satisfied. If mx(h) → ∞ and βn/un,x → 0 we

have that:

sup
α∈[τun,x,un,x]

∣∣∣∣∣ Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = OP
(
∆(u−1

n,x|x)
)
.

Proof. Recall

αγ(x)Q(α|x) = c(x) exp

(∫ α−1

1

∆(v|x)

v
dv

)
,

and therefore
Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

= exp

(∫ α−1

β−1
n

∆(v|x)

v
dv

)
.

Furthermore, since α ≤ un,x,∣∣∣∣∣
∫ α−1

β−1
n

∆(v|x)

v
dv

∣∣∣∣∣ ≤ |∆(u−1
n,x|x)|

∫ ∞
1

∣∣∣∣∣∆(yu−1
n,x|x)

∆(u−1
n,x|x)

∣∣∣∣∣ dyy .
As the function y 7→ y−1∆(y|x) is regularly varying with index ρ(x)− 1 < −1, we may write, according

to [4, Theorem 1.5.2],∣∣∣∣∣
∫ α−1

β−1
n

∆(v|x)

v
dv

∣∣∣∣∣ ≤ 2|∆(u−1
n,x|x)|

∫ ∞
1

yρ(x)−1dy = − 2

ρ(x)
|∆(u−1

n,x|x)|.
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Since the right-hand side converges to 0 and does not depend on α, it follows by a Taylor expansion of

the exponential function that

sup
α∈(τun,x,un,x]

∣∣∣∣∣ Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = OP
(
∆(u−1

n,x|x)
)
,

which is the required conclusion.

The next result is dedicated to the statistics γ̃n(x, un,x) and R
(γ)
n (x) introduced in the proof of Theorem 2,

equation (20).

Lemma 4 Let Ui, i ≥ 1 be independent standard uniform random variables. For any x ∈ E such that

mx(h) > 0, the conditional distribution of γ̃n(x, un,x) given Mx(h) = p is that of

γp(x, un,x) =
1

pun,x

bpun,xc∑
i=1

Φ

(
i

pun,x

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
,

and given Mx(h) = p, R
(γ)
n (x) is bounded from above by

2ω(U1,p, Up,p, x, h)

∫ un,x

0

|Ψ(α, un,x)|dα.

Proof. Set again Mn = Mx(h). Equation (12) entails that the conditional distribution of γ̂n(x, un,x)

given Mn = p is that of

bpun,xc∑
i=1

Wi,n(un,x, p) log
Q(Ui,p|x)

Q(Ubpun,xc+1,p|x)
=

bpun,xc∑
i=1

Wi,n(un,x, p)

bpun,xc∑
j=i

log
Q(Uj,p|x)

Q(Uj+1,p|x)
,

where {Ui, i ≥ 1} are independent standard uniform random variables, and this is equal to γp(x, un,x)

by switching the summation order and using assumption (HΨ). Now, since Q̂n(α|x) = Y ∗Mn−i+1,Mn
for

all α ∈ [(i− 1)/Mn, i/Mn), one has

γ̂n(x, un,x) =

bun,xMnc∑
i=1

Wi,n(un,x,Mn) log
Y ∗Mn−i+1,Mn

Y ∗Mn−bun,xMnc,Mn

,

where Wi,n(un,x,Mn) was defined in (21). Hence the identity

R(γ)
n (x) =

bun,xMnc∑
i=1

Wi,n(un,x,Mn) log

[
Q(Vbun,xMnc+1,Mn

|x)

Q(Vi,Mn
|x)

Y ∗Mn−i+1,Mn

Y ∗Mn−bun,xMnc,Mn

]
.

Using the bound (29) yields to

R(γ)
n (x) ≤ 2ω(V1,Mn , VMn,Mn , x, h)

bun,xMnc∑
i=1

|Wi,n(un,x,Mn)|

≤ 2ω(V1,Mn , VMn,Mn , x, h)

∫ un,x

0

|Ψ(α, un,x)|dα.

Using equation (12) completes the proof.
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Our next result studies some particular Riemann sums. It shall prove useful when examining the conver-

gence of γ̃n(x, un,x) given Mx(h), see Lemma 6.

Lemma 5 Let f be an integrable function on (0, 1). Assume that f is nonnegative and nonincreasing.

For any nonnegative continuous function g on [0, 1] we have that:

lim
m→∞

1

m− 1

m−1∑
i=1

f

(
i

m

)
g

(
i

m

)
=

∫ 1

0

f(t)g(t)dt.

If moreover f is square-integrable then:

lim
m→∞

√
m

∣∣∣∣∣ 1

m− 1

m−1∑
i=1

f

(
i

m

)
−
∫ 1

0

f(t)dt

∣∣∣∣∣ = 0.

Proof. To prove the first statement, it suffices to shown that |Sm(f, g)− S(f, g)| → 0 as m→∞ where

Sm(f, g) :=
1

m

m−1∑
i=1

f

(
i

m

)
g

(
i

m

)
and S(f, g) :=

∫ 1

0

f(t)g(t)dt.

Note first that:

|S(f, g)− Sm(f, g)| ≤
m−1∑
i=1

∫ i/m

(i−1)/m

∣∣∣∣f(t)g(t)− f
(
i

m

)
g

(
i

m

)∣∣∣∣ dt+

∫ 1

(m−1)/m

f(t)g(t)dt.

Since g is nonnegative on [0, 1] and f is nonincreasing, it is straightforward that for all t ∈ [(i−1)/m, i/m)

|f(t)g(t)− f(i/m)g(i/m)| ≤ f(t) sup
|s−s′|≤1/m

|g(s)− g(s′)|

+ ‖g‖∞ (f(t)− f(i/mn)) ,

where ‖g‖∞ is the finite supremum of g on [0, 1]. The fact that f is nonincreasing yields f(t)− f(i/m) ≤

f((i− 1)/m)− f(i/m) for all i = 2, . . . ,m and thus the previous inequality leads to

|S(f, g)− Sm(f, g)| ≤
∫ 1

0

f(t)dt sup
|s−s′|≤1/m

|g(s)− g(s′)|

+ ‖g‖∞

(∫ 1/m

0

f(t)dt− f(1)

m

)

+ ‖g‖∞
∫ 1

(m−1)/m

f(t)dt→ 0 (32)

by the uniform continuity of g on [0, 1] and the fact that f is an integrable function. This proves the first

statement of the result. To prove the second one, remark that:

√
m

∣∣∣∣∣ 1

m− 1

m−1∑
i=1

f

(
i

m

)
−
∫ 1

0

f(t)dt

∣∣∣∣∣ ≤
√
m

m− 1
Sm(f, 1) +

√
m|S(f, 1)− Sm(f, 1)|.

Using the first statement with g = 1 entails that the first term of the left-hand side converges to 0 as

m→∞. Now, taking g = 1 in (32) leads to

√
m|S(f, 1)− Sm(f, 1)| ≤

√
m

∫ 1/m

0

f(t)dt+
√
m

∫ 1

(m−1)/m

f(t)dt.
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By the Cauchy-Schwarz inequality,

√
m

∫ 1/m

0

f(t)dt ≤

(∫ 1/m

0

f2(t)dt

)1/2

→ 0

and
√
m

∫ 1

(m−1)/m

f(t)dt ≤

(∫ 1

(m−1)/m

f2(t)dt

)1/2

→ 0

since f2 is integrable on (0, 1). The proof is complete.

The next lemma establishes the asymptotic normality of the random variable γp(x, k, k
′) introduced in

the proof of Theorem 2, equation (25).

Lemma 6 Assume that conditions (3), (HSO) and (HΨ) are satisfied. Let k(p) and k′(p) be two sequences

satisfying, for some a(x) ∈ (0, 1), pa(x)−1k(p) → 1 and p(1−a(x))/2[k(p)/k′(p) − 1] → 0 as p → ∞. Let

U1, . . . , Up be independent standard uniform random variables. If p1−a(x)∆2(pa(x)|x) → λ(x) ∈ R, then

the random variable

γ̂p(x, k(p), k′(p)) :=
1

k(p)

bk′(p)c∑
i=1

Φ

(
i

bk′(p)c+ 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

is such that p(1−a(x))/2(γ̂p(x, k(p), k′(p)) − γ(x)) converges in distribution to a normal distribution with

mean λ(x)
∫ 1

0
Φ(α)α−ρ(x)dα and variance γ2(x)

∫ 1

0
Φ2(α)dα.

Proof. For the sake of brevity, let γ̂p(x) := γ̂p(x, k(p), k′(p)). Under conditions (3), (HSO) and (HΨ),

one can apply Theorem 3.1 in Beirlant et al. [1] to prove that

p(1−a(x))/2

 k(p)

bk′(p)c
γ̂p(x)− 1

bk′(p)c

bk′(p)c∑
j=1

Φ

(
j

bk′(p)c+ 1

)[
γ(x) + ∆

(
p+ 1

bk′(p)c+ 1

∣∣∣∣x)( j

bk′(p)c+ 1

)−ρ(x)
]

converges to a centered normal distribution with variance γ2(x)
∫ 1

0
Φ2(α)dα. As a direct consequence of

Lemma 5, the previous convergence can be rewritten

p(1−a(x))/2

[
k(p)

bk′(p)c
γ̂p(x)− γ(x)

]
d−→ N

(
λ(x)

∫ 1

0

Φ(α)α−ρ(x)dα, γ2(x)

∫ 1

0

Φ2(α)dα

)
. (33)

Finally, since

p(1−a(x))/2 [γ̂p(x)− γ(x)] = p(1−a(x))/2

(
bk′(p)c
k(p)

− 1

)
k(p)

bk′(p)c
γ̂p(x)

+ p(1−a(x))/2

[
k(p)

bk′(p)c
γ̂p(x)− γ(x)

]
,

a combination of convergence (33) and of the fact that p(1−a(x))/2[k(p)/k′(p)−1]→ 0 as p→∞ concludes

the proof.
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The final lemma is a technical tool we shall need to bridge the gap between the convergence of our

estimators and that of their conditional versions.

Lemma 7 Let {Zp, p ∈ N} be a sequence of random variables such that for all t ∈ R, P(Zp ≤ t)→ H(t)

where H is a continuous cumulative distribution function. For n ∈ N, let In := [un, vn] where un → ∞

as n → ∞ and let (an) be a sequence such that there exist two functions ξ1 and ξ2 converging to 1 at

infinity with

sup
p∈In

ξ1(p)

an
≤ 1 ≤ inf

p∈In

ξ2(p)

an
.

Then, for all t ∈ R,

lim
n→∞

sup
p∈In
|P(anZp ≤ t)−H(t)| = 0.

Proof. We start by remarking that for all κ > 0,

sup
p∈In
|P(anZp ≤ t)−H(t)| ≤ Dn,p + sup

p∈In
P(|(an − 1)Zp| > κ),

where

Dn,p := sup
p∈In
|P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ})−H(t)| .

Now, since H is continuous, there exists κ > 0 such that for n large enough,

|H(t)−H(t+ κ)| ≤ ε

6
and |H(t)−H(t− κ)| ≤ ε

6
.

Furthermore, since ξ1(p) ≤ an ≤ ξ2(p) for any p ∈ In, using the inequality |x| ≤ |a|+ |b| which holds for

all x ∈ [a, b], one has for all p ∈ In that |an − 1| ≤ |ξ1(p)− 1|+ |ξ2(p)− 1|; besides, since Zp = OP(1) and

ξ1, ξ2 converge to 1 at infinity, we have |ξ1(p) − 1|Zp = oP(1) and |ξ2(p) − 1|Zp = oP(1). Therefore, for

all ε > 0,

sup
p∈In

P(|(an − 1)Zp| > κ) ≤ sup
p∈In

P(|ξ1(p)− 1||Zp|+ |ξ2(p)− 1||Zp| > κ) ≤ ε

6

for n large enough. Now remark that for all p ∈ In, P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) ≤ P(Zp ≤ t+ κ)

and that

P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) ≥ P({Zp ≤ t− κ} ∩ {|(an − 1)Zp| ≤ κ})

≥ P(Zp ≤ t− κ)− P(|(an − 1)Zp| > κ).

Hence, for all κ > 0, the inequality:

Dn,p ≤ sup
p∈In
|P(Zp ≤ t+ κ)−H(t+ κ)|+ sup

p∈In
|P(Zp ≤ t− κ)−H(t− κ)|

+ |H(t)−H(t+ κ)|+ |H(t)−H(t− κ)|+ ε

6

≤ sup
p∈In
|P(Zp ≤ t+ κ)−H(t+ κ)|+ sup

p∈In
|P(Zp ≤ t− κ)−H(t− κ)|+ ε

2
.
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By assumption, for n large enough:

|P(Zp ≤ t+ κ)−H(t+ κ)| ≤ ε

6
and sup

p∈In
|P(Zp ≤ t− κ)−H(t− κ)| ≤ ε

6
.

It is now straightforward to conclude the proof.
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Figure 1: Spectrometric curves for the data.
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Figure 2: Hill plot for the sample (y1, . . . , yn). On the x−axis at the top of the picture is the value of

the lower threshold for the computation of the Hill estimator, i.e. the lowest order statistic.
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Figure 3: Top picture, solid lines: a pair of typical covariates. Bottom picture, solid lines: the pair of

covariates farthest from each other. In both pictures the dotted line is the average covariate.
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Figure 4: Solid line: extreme quantile estimate in the direction of a typical pair of covariates, dashed line:

extreme quantile estimate in the direction of a pair of covariates farthest from each other. Top picture:

case β = 5/n, bottom picture: β = 1/n.
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