Reconstructing dynamic molecular states from single-cell time series

Abstract : The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time-evolution of the system in a self-consistent manner. It is a prerequisite for a principled understanding of the inner working of a system. Due to the complexity of intracellular processes experimental techniques that can retrieve such a sufficient summary are beyond reach. For the case of stochastic biomolecular reaction networks we show how to complete the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximation to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both, in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements.
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger
Contributeur : Loïc Paulevé <>
Soumis le : jeudi 8 septembre 2016 - 21:59:17
Dernière modification le : jeudi 7 février 2019 - 17:55:50
Document(s) archivé(s) le : vendredi 9 décembre 2016 - 13:24:34


Fichiers produits par l'(les) auteur(s)



Lirong Huang, Loïc Paulevé, Christoph Zechner, Michael Unger, Anders S. Hansen, et al.. Reconstructing dynamic molecular states from single-cell time series. Interface, Royal Society, The, 2016, 13 (122), 〈10.1098/rsif.2016.0533〉. 〈hal-01362502〉



Consultations de la notice


Téléchargements de fichiers