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Development of a new family of monolithic calcium (pyro)phosphate

glasses by soft chemistry
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2 CIRIMAT, UMR 5085 INPT-CNRS-UPS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse, France
b [CGM, UMR5253, CNRS-UM-ENSCM, Place Eugéne Bataillon, 34095 Montpellier, France

ABSTRACT

The development of bioactive phosphate-based glasses is essential in biomaterials science, and especially
for bone substitution applications. In this context, the preparation of amorphous calcium-phosphorus
hydroxide/oxide monoliths at low temperature is a key challenge for being able to develop novel hybrid
materials for these applications. We herein report for the first time the synthesis and physical chemical
characterisation of a novel family of pyrophosphate-based glasses (with the formula: {[(Ca®*);_«(H*/
K")z,(]z[(PzO‘%’)l,y(PO?{)‘ty/;]} n(H,0)), which were prepared by soft chemistry using low temperatures
(T <70°C) and water as a solvent. The effect of the initial Ca/Pyrophosphate ratio on the structure and
morphology of these pyrophosphate glasses was investigated in detail. Depending on this ratio, a glass
(mixed calcium pyro- and orthophosphate) or a glass-ceramic (Ca;oK4(P;07)s-9H,0 crystals embedded
in the amorphous phase) was obtained. The proportion of the crystalline phase increased with an increase
in the Ca/Pyrophosphate ratio in the batch solution. As expected for a glass, the formation of the glassy
material was demonstrated not to be thermodynamically but rather kinetically driven, and the washing
step was found to be crucial to prevent crystallisation. The stability of the amorphous phase was dis-
cussed considering the structural degrees of freedom of pyrophosphate entities, ionic strength of the ini-
tial solution and the inhibitory effect of orthophosphate ions. Overall, this new strategy of preparation of
monolithic calcium-(pyro)phosphate based glasses using soft chemistry in water is highly promising in
view of preparing new functional organic-inorganic hybrids for bone substitution applications.

Statement of Significance

Phosphate-based glasses have gradually emerged as a potential alternative to silicate bioactive glasses in
order to induce different biological mechanisms of degradation. The synthesis of such monolithic glasses
at low temperature is a key step to allow new inorganic glass compositions to be reached and hybrid
materials to be prepared. Although sol-gel and coacervate methods (respectively orthophosphate and
metaphosphate precursors) have already been described to prepare such glasses, the use of toxic solvents
and/or the final temperature treatment associated to these processes could limit the use of these mate-
rials for biomedical applications and/or the further development of hybrids. It is shown here that
pyrophosphate precursors are an alternative strategy to obtain monolithic calcium (pyro)phosphate
glasses under soft conditions (water solvent, 70 °C).

1. Introduction

evaluate the performance of new silicate-based bioactive glasses.
Hench developed silica-based glasses (Fig. 1-a), which were first

Since their discovery by L.L. Hench in the 1960s [1], bioactive
glasses have been extensively studied as biomaterials for bone sub-
stitution. Bioglass® is currently commercialised for orthopaedics
and dental applications and has become a reference material to
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prepared as most glasses by fusion, and initially composed of four
kinds of oxides: Si0,-Ca0-P,05-Na,0. The use of the sol-gel route
(soft chemistry) was the second important step in the development
of bioactive glasses. The associated low temperature has allowed
new inorganic glass compositions (SiO,-CaO or Si0,-Ca0-P,05) to
be reached [2] and hybrid materials to be prepared [1,3]. Moreover
complex architectures such as mesoporous [4,5] or macroporous
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Fig. 1. Chemical formula of (a) Orthosilicate, (b) Orthophosphate, (c¢) Hexametaphosphate and (d) Pyrophosphate entities (X =H or R).

[6] materials including scaffolds [7], can be obtained thanks to
integrative chemistry [8].

Other glass compositions involving major elements naturally
present in the mineral phase of the human bone, namely phospho-
rus and calcium, have emerged as potential alternatives to bioac-
tive silicate glasses. They are however highly degradable
materials with fast dissolution rates, and they have been proposed
for different limited clinical applications [9]. The sol-gel develop-
ment of monolithic phosphate glasses using orthophosphate alkox-
ide precursors (Fig. 1-b) is another challenge that can be pointed
out, especially due to the difficulty in reaching a “gelation” step
considered as necessary to obtain monolithic glasses [10]. Phos-
phate alkoxides (PO(OR)3) cannot be easily hydrolysed whereas
phosphoric acid (PO(OH)3) reacts too quickly and leads to precipi-
tation rather than gelation. The use of (PO(OH);_x(OR)x) species
(x =1, 2) which exhibit chemical reactivities in between the previ-
ous families of phosphorus precursors has been proposed (PO(OH)
OBu" and/or PO(OH)OBu") [11], but the use of toxic solvents
(methanol, methoxyethanol) and the final temperature of heat-
treatment (250 °C) are not favourable for the further development
of interesting materials and in particular for the preparation of
hybrid organic-inorganic materials. The coacervation of polyphos-
phates such as the Graham salt (Fig. 1-c) has also been studied
[12,13] in order to form gels, however the resulting materials were
not obtained in the form of monoliths but rather as powders or
coatings [14], the conversion into monolithic materials only being
possible after fusion (800 °C) or sintering [15], i.e. at temperatures
incompatible with the development of hybrids.

An interesting alternative for the preparation of phosphate-
based glasses by soft chemistry would be the use of pyrophosphate
precursors (Fig. 1-d) whether in the form of salts or alkoxides. To
the best of our knowledge, this approach has never been described
in the literature despite a few publications showing the interesting
properties of pyrophosphates in biomaterials applications (acellu-
lar and cellular in vitro tests [16,17], in vivo animal studies [18],
and a clinical trial [19]).

The aim of this paper is to present an original strategy for the
synthesis of novel pyrophosphate-based glasses by soft chemistry
(low temperature, water solvent) and their physical chemical char-
acterisation. Among different synthesis parameters, the effect of
the Ca/Pyrophosphate ratio in the batch solution on the structure
and the morphology of these new pyrophosphate glasses has been

investigated, and the role of this ratio was more specifically
analysed.

2. Experimental section
2.1. Precursors

The synthesis method involved calcium and pyrophosphate
precursor salts. Anhydrous tetrapotassium pyrophosphate
(K4P,07) was prepared by heating dipotassium hydrogen phos-
phate (K;HPO4, VWR, Analytical reagent, 100 g) at 400 °C for 4 h
in a muffle furnace. The as-synthesised anhydrous tetrapotassium
pyrophosphate was characterised by Raman, FTIR and 3'P solid
state NMR spectroscopies. The FTIR spectrum showed the charac-
teristic vibrational modes of P,O%~ ions, and the total amount of
orthophosphate units relative to pyrophosphates (3'P NMR) is less
than 5% (data not presented). Analytical grade calcium chloride salt
(CaCl,-2H,0, Carlo Erba, ACS) was used as received, without further
purification. The reagents were stored in a dry place without
evidence of degradation after 6 months.

2.2. Synthesis

Calcium and pyrophosphate reagent solutions were prepared
separately by dissolving CaCl,-2H,0 and K4P,0- in deionised water
(respectively in 20 and 200 mL). Calcium solutions with different
concentrations were tested in order to study the role of the calcium
to pyrophosphate molar ratios (Ca/Pyro or Ca/P) on the nature of
the final material (PYG-XX); the higher the number XX after PYG
in the sample name, the higher the reagent Ca/Pyro molar ratio
used in the synthesis (Table 1). The calcium chloride solution
was then added to the K4P,07 solution using a peristaltic pump
at a constant volumetric flowrate (7.5 mL min~!) for all samples.
The mixture became translucent, and after the complete addition
of the pyrophosphate reagent, the solution was stirred for five min-
utes, and the final colloidal solution was centrifuged (7500 rpm).
The resulting gel was washed several times with deionised water.
Aliquots of the solution were collected during this step in order to
measure the pH of the solution and the zeta potential of the formed
particles. Particle diameters were measured by dynamic light scat-
tering, but they are not presented here because of the lack of

Table 1
Concentrations of Ca?* and P,0%" in the precursor solutions, molar ratios, pH and zeta potential in the resulting batch.
PYG-00 PYG-01 PYG-02 PYG-03 PYG-04 PYG-05 PYG-06

[CaCly] (mol L") 0.180 0.270 0.360 0.451 0.541 0.631 0.721
[K4P,07] (mol L) 0.083
(Ca*/P,0%7) molar ratio 0.216 0.325 0.433 0.541 0.649 0.758 0.866
(Ca/P) molar ratio 0.108 0.162 0.216 0.271 0.325 0.379 0.433
pH 9.55 9.30 9.06 9.00 8.74 8.45 8.34
Zeta potential (mV) —46.1 -423 -36.2 -29.9 -29.4 -215 -20.0




repeatability due to the gelation occurring during the measure-
ment period. The resulting transparent (PYG-00-PYG-03) or
translucent (PYG-04-PYG-06) gel was poured into 24-well micro-
plates and heated at 70 °C for 7 days.

The reference Ca;oK4(P;07)s:9H,0 crystalline phase was pre-
pared with a protocol adapted from [20] (double decomposition).
Briefly, Calcium reagent solution was prepared by dissolving Ca
(NO3),-2H,0 (7.16 g) in deionised water (200 mL). This solution
was then added into a buffer solution containing pyrophosphate
ions (5 g of K4P,07, 12 mL of acetic acid and a variable solution
of ammonia to 400 mL of water, pH 7) by using a peristaltic pump
at a constant volumetric flowrate (4.5 mL min~!). The solution was
stirred and heated at 90 °C. Then the precipitate was filtered using
a Biichner funnel, washed three times with deionised water and
finally dried in an oven at 37 °C overnight.

2.3. Characterisation of materials

The synthesised materials were characterised by structural,
microstructural, molecular, elemental and thermal characterisa-
tion methods.

Powder X-ray diffraction (XRD) measurements were performed
at room temperature using a CPS 120 INEL diffractometer with a Co
anticathode (A(Ky7)=1.789190A and A(K,2)=1.793210A). Sam-
ples were ground before measurements. A stepsize of 0.03° in
the 260 range 5-115° was used.

All 3P magic-angle spinning (MAS) NMR spectra were recorded
at 14.1 T, using a VNMRS-600 spectrometer operating at a >'P Lar-
mor frequency of 242.81 MHz. A Varian 3.2 mm HXY T3 MAS probe
was used, spinning at 15 kHz. Single-pulse experiments were per-
formed using the following parameters, which were verified to
account for the actual relative quantities of the different phospho-
rous environments: 45° 3!P excitation pulse of 1.25 us, spinal-64
'H decoupling (100 kHz RF) during acquisition, 90 s recycle delay,
4 scans (preceded by 4 dummy scans) [21]. 'H - 3'P cross-
polarization (CP) experiments were also performed at 15 kHz
MAS, using the following parameters: 90° 'H excitation pulse of
2.5 us, contact pulse of 0.3, 1.0 or 4.0 ms, spinal-64 'H decoupling
(100 kHz RF) during acquisition, 4 s recycle delay, 120 scans (pre-
ceded by 2 dummy scans). Temperature regulation was used dur-
ing all experiments, to ensure that the temperature inside the rotor
was ~20 °C. The 3'P chemical shifts were referenced to a synthetic
hydroxyapatite phase, used as a secondary reference with respect
to an 85% HsPO, solution.

Raman spectroscopy analyses were carried out using a confocal
Raman microscope (Horiba Labram HR 800 Jobin Yvon). The sam-
ples were exposed to a continuous laser radiation provided by an
AR-diode laser at 532 nm, delivering 14 mW of power. The
spectrum of each sample was acquired through a grating of
600 tr/mm with a spectral resolution of 1 cm~! and collected with
a quantum well detector cooled at —60 °C using a Synapse CCD. A
certified silicon standard allowed a calibrating frequency of the
equipment using the first order of silicon line at 520.7 cm~'. Each
point of each sample was acquired with an integration time of 20 s
and 4 accumulations. A baseline correction was performed using
the software Labspec5 (Horiba).

Thermogravimetric analyses (TGA) and differential thermal
analysis (DTA) were performed with Setaram instrumentation
(Setsys Evolution System) from 30 to 900 °C at a heating rate of
5 °C per minute.

Scanning electron microscopy (SEM) observations were per-
formed with a Leo 435 VP microscope. The accelerating voltage
was fixed at 15 kV. Samples were gently crushed in a mortar, stuck
on adhesive carbon discs and silver sputter-coated before
observation.

Inductively coupled plasma - optical emission spectrometry
(ICP-OES; Horiba Jobin Yvon Ultima 2 spectrometer) was used to
determine the Ca, P, K and Cl concentrations. For this, 50 mg of
each sample were dissolved in 2 mL of HNO3 (2 M), and diluted
with Milli-Q water (25 mgL™!). The instrument was calibrated
using IAPSO Standard Seawater (OSIL, UK), which was diluted with
Milli-Q water in various proportions. A standard was run during
the course of the analyses to check for possible instrumental drift.
All concentrations were drift and blank corrected. The standard
error was lower than 2%.

3. Results

Seven different Ca-pyrophosphate samples (PYG-00 to PYG-06)
were prepared in water under mild conditions, using initial Ca/
Pyro molar ratios ranging from ~0.2 to 0.9 (Table 1). Two synthe-
sised materials (PYG-00 and PYG-06 on Fig. 2) present a different
appearance depending on the Ca/Pyro ratio in the initial solution
(precursors). While materials with lower calcium amounts (PYG-
00, 01, 02, 03) are translucent monoliths (Fig. 2-a) with good
mechanical cohesion (it is difficult to grind these materials in a
mortar), samples prepared with higher Ca/Pyro molar ratio (PYG-
04 to PYG-06) appear as white and friable materials (Fig. 2-b).
These differences are confirmed by scanning electron microscopy
micrographs (Fig. 3). For the PYG-00 sample (Fig. 3-a) prepared
with the lowest amount of calcium, the particles appear to have
angular shapes, smooth and compact fracture surfaces with irreg-
ular morphologies. These features are typical of those of a glassy
material [22]. Fig. 3-b and ¢ show an increase in the surface rough-
ness for samples prepared by increasing the Ca/Pyro molar ratio
(PYG-03 and PYG-06 materials). Precipitated particles of about
10 um can also be observed. They are embedded in an apparent
non-crystalline matrix with a smooth surface at this scale (Fig. 3-
b). The amount of these precipitated particles seems to become

£ UK

Fig. 2. Optical image of synthesised materials: PYG-00 (a), and PYG-06 (b).



Fig. 3. SEM micrographs of the synthesised

particularly significant in sample PYG-06 (Fig. 3-c). This difference
in sample morphology depending on the initial Ca/Pyro atomic
ratio indicates that a second phase is progressively formed in the
initial matrix which could be linked to the difference of visual
appearance (from translucent to white) of the samples along the
series.

The nature of the phases involved in all these synthesised mate-
rials was analysed by X-ray diffraction (Fig. 4-a). Samples PYG-00
and PYG-01 show one very broad halo centred around 35° charac-
teristic of the presence of an amorphous material with no long-
range order. For sample PYG-02, this broad halo is still present
but a series of sharp peaks appear. These sharp peaks become more

materials: PYG-00 (a), PYG-03 (b), PYG-06 (c).

and more intense as the initial Ca/Pyro ratio increases (from PYG-
02 to PYG-06 samples). These diffraction peaks were identified to
correspond to a crystalline hydrated phase containing calcium,
potassium and pyrophosphate ions with a hexagonal structure
(P63cm space group): Ca;oK4(P207)s-9H,0 [23] (Fig. 4-a).

Raman spectroscopy was used to study the vibrational modes of
molecular entities in the synthesised materials. For the isolated
P,0%~ ion (free ionic group) in the C,, symmetry, twenty-one
Raman active modes can be predicted [24]. All these lines are not
resolved and seven domains can be distinguished. Six domains
can be attributed to pyrophosphates: v**POs;, between 1100 and
1300 cm™!, v°PO3, around 1045 cm~', v*POP, around 907 cm™!,

Ca,oK,(P,0,)s9H,0
1 1 1 1

a C
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Fig. 4. Characterisation of PYG materials prepared with different Ca/P molar ratios
Raman spectra, and (c) 3'P MAS solid state NMR spectra recorded using single-pul
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in solution: from PYG-00 (bottom) to PYG-06 (top). (a) X-ray diffraction patterns, (b)
se experiments. XRD pattern of Ca;oK4(P,07)s crystalline phase and Raman spectra of

Ca;0K4(P,05)s crystalline phase and of pure amorphous calcium pyrophosphate (a-CPP [20]) are also presented.



VSPOP, around 740cm~!, 6PO; and pPO; between 440 and
645 cm~', and 6POP and between 315 and 400 cm~'. The last
domain between 930 and 990 cm™! is related to the v*P0O; band
of orthophosphate entities. Pyrophosphate broad bands are
observed from PYG-00 to PYG-03, respectively at 348, 746 and
1045 cm~! for POP, V*POP and v*POs (Fig. 4b). These broad bands
are typical of amorphous calcium pyrophosphate phases (a-CPP)
[20]. The band associated to orthophosphates is also present on
these spectra. For PYG-04, PYG-05 and PYG-06, pyrophosphate
bands are sharper and can be related to Ca;gK4(P,07)s-9H,0 crys-
talline phase (Fig. 4-b). The orthophosphate band (960 cm™') is
not detected for these three materials.

31p solid state NMR spectra were recorded for all the samples
using single-pulse excitation experiments (Fig. 4-c). For PYG-00
and PYG-01, two distinct resonances are observed at ~—5.9 and
~+2.3 ppm, which can be assigned to pyrophosphate and
orthophosphate entities, based on previous NMR studies on cal-
cium (pyro)phosphates [25-27]. This assignment was also con-
firmed by additional 1D 3'P INADEQUATE NMR experiments
(Incredible Natural Abundance DoublE QUAntum Transfer Experi-
ment - see Supplementary material, Fig. S1). As the Ca/Pyro ratio
increases from PYG-02 to PYG-06, a second more narrow
pyrophosphate resonance (centred at ~—9.3 ppm) progressively
appears, which can be assigned to the Ca;oK4(P207)s-9H,0 phase
identified by XRD. The deconvolution of the 3!P NMR signals con-
firms that the relative concentration of this crystalline phase glob-
ally increases along the series, to the detriment of the more
amorphous pyrophosphate environments (Table 3).

The thermal evolution of samples was checked by TGA-DTA.
Fig. 5 shows the TGA and DTA curves respectively, of PYG-00,
PYG-03 and PYG-06. The TGA curves exhibit two distinct regions
of mass loss for PYG-00 and PYG-03 and an almost continuous
curve for PYG-06. The mass losses can be attributed to the release
of water either adsorbed or associated with the mineral structures
(in particular the first mass loss associated to an endothermic
event before 150 °C). The final mass losses (plateau after 600 °C)
were 14.3%, 13.0% and 12.3% for PYG-00, PYG-03 and PYG-06,
respectively. We recall here that PYG-00 was found to be purely
amorphous and PYG-06 to be composed of crystalline and amor-
phous phases. The beginning of the plateau (around 150 °C) corre-
sponds to an exothermic event followed by a sharp endothermic
peak. Complementary investigations by XRD on samples heated
at 200 °C (Supplementary material, S2) indicate the formation of
monetite and apatite crystals. The Raman spectra show a shift of
the line assigned to orthophosphate toward higher wavenumbers
corresponding to calcium phosphate apatite, however monetite
could not be clearly identified. These data suggest the crystallisa-
tion of orthophosphate moieties present in the glass into apatite
and monetite phases. The formation of additional orthophosphate
ions could also result from the endothermic hydrolysis of
pyrophosphate ions into orthophosphate (Eq. (1)), as reported for
other hydrated calcium pyrophosphates.

P05 + H,052HPO; (1)

As the amorphous phase is still present at 250 °C, the mass loss
above this temperature could be attributed to the loss of water
molecules involved in this phase and the condensation of HPO;~
into pyrophosphate ions (reverse reaction of Eq. (1)) corresponding
to the disappearance of monetite. At higher temperatures, two
exothermic peaks (580 and 620 °C) occur, probably corresponding
to a condensation of hydrogenophosphates into pyrophosphates
followed by a crystallisation event corresponding to the formation
of a high-temperature crystalline calcium pyrophosphate phase
(B-CayP,05 structure [27]). For PYG-06, the mass loss was continu-
ous (dehydration) until 600 °C.

Mass loss (%)

0 200 400 600 800
Temperature (°C)

Heat Flow (pV)

0 200 400 600 _ 800
Temperature (°C)

1000

Fig. 5. (a) TGA and (b) DTA curves for PYG-00, PYG-03, and PYG-06 synthesised
materials.

4. Discussion
4.1. Nature, structure and composition of the as-synthesised materials

Macroscopic and microscopic observations combined with X-
ray diffraction, Raman spectroscopy, and >!P solid state NMR anal-
yses suggest that i) Monolithic and translucent materials (PYG-00
and PYG-01) can be considered as glasses (angular shapes, smooth
and compact surfaces, irregular fractures morphologies) with
amorphous characteristics (broad bands in Raman spectroscopy,
broad peaks in 3'P MAS NMR, and absence of XRD sharp peaks)
although they do not show a vitreous transition; ii) Glass-
ceramics are formed for the other compositions (PYG-02 to
PYG-06) and the crystalline part increases as the initial Ca/Pyro
ratio is increased (nucleation and crystal growth of precipitates,
increase of sharp peaks in XRD, and of sharp bands in Raman spec-
troscopy, appearance of a narrow 3!P signal in solid state NMR),
which leads to a decrease of cohesiveness of the material.

Considering the chemical composition of materials (Table 2),
the 3'P solid state NMR results (Table 3) and the XRD patterns,
the glassy phase (PYG-00) is mainly composed of calcium,
pyrophosphate and to a lesser extent by orthophosphate (formed
through a partial hydrolysis of pyrophosphate, during one of the
synthesis steps: initial solution, centrifugation and gel washing
step, and/or final thermal treatment) and potassium ions. In order
to understand the nature of this material, the comparison with
melt-derived glasses is an interesting approach. The description



Table 2

Elemental composition of the synthesised materials and atomic ratios determined by ICP-AES analysis.

PYG-00 PYG-01 PYG-02 PYG-03 PYG-04 PYG-05 PYG-06
Ca (mol/100 g) 0.547 +0.011 0.613 +£0.012 0.605 +0.012 0.582+0.012 0.556 +0.011 0.543 +0.011 0.537+0.011
K (mol/100 g) 0.184 + 0.004 0.160 £+ 0.003 0.177 £ 0.004 0.198 + 0.004 0.217 £ 0.004 0.276 + 0.006 0.237 £ 0.005
P (mol/100 g) 0.610+0.012 0.665 +0.013 0.665 +0.013 0.651+0.013 0.632+0.013 0.640 +0.013 0.625+0.012
Cl (mol/100 g) 0.003 +0.169 0.004 +0.217 0.005 +0.241 0.006 +0.307 0.009 + 0.446 0.014+0.716 0.014 £ 0.699
Ca/P atomic ratio 0.897 +0.036 0.922 +0.037 0.910+0.036 0.895 +0.036 0.879 +0.035 0.849 +0.034 0.860 +0.034
K/P atomic ratio 0.302 +0.012 0.240+0.010 0.266 +0.011 0.305+0.012 0.342+0.014 0.431+0.017 0.380+0.015
Ca/K atomic ratio 2.975+0.119 3.837+0.153 3.423+0.137 2.936+0.117 2.568 +0.103 1.969 £+ 0.079 2.264 +0.091

Table 3

Relative intensities of the different phosphorous resonances obtained after integration of the single-pulse 3'P MAS NMR spectra shown in Fig. 4-c (maximum errors on the

absolute values of the intensities of the P resonances - in % - are estimated to ~3%).

Intensity of the different P resonances (%)

Relative intensity of the different P
resonances

Ortho (diso ~ 2.3 ppm) Pyro1 (diso ~ —5.9 ppm) Pyro2 (cryst) (diso ~ —9.3 ppm) Ortho/Pyrol Pyro2/Pyrol

PYG-00 17% 83% - 0.20 -

PYG-01 18% 82% - 0.22 -

PYG-02 18% 75% 7% 0.24 0.09
PYG-03 16% 73% 11% 0.22 0.15
PYG-04 16% 63% 21% 0.25 0.33
PYG-05 23% 56% 21% 0.41 0.38
PYG-06 16% 55% 29% 0.29 0.53

of melt-derived binary calcium phosphate glasses (P,05-Ca0) is
usually based on the connectivity of PO, tetrahedra (basic struc-
ture units), and the nomenclature of Q™ groups is generally used,
where [n] is the number of bridging oxygen atoms per PO, tetrahe-
dron. Several domains can be distinguished according to the Ca/P
ratio in the material [28]:

- Ultraphosphate glasses: Q> and Q? species and 0 < Ca/P < 0.5.
- Metaphosphate glasses: Q? species and Ca/P = 0.5.

- Polyphosphate glasses: Q% and Q! species and Ca/P > 0.5.

- Pyrophosphate glasses: Q! species and Ca/P=1.

- Invert glasses: Q' and Q° species and Ca/P > 1.

Even if the processes used for the synthesis are not the same
(soft chemistry vs “melt quench” processing), the low-
temperature glasses described in the present article (particularly
PYG-00 and PYG-01) with Q' and Q° species and Ca/P > 1 belong
to the “invert glasses” type. Such glasses do not have a continuous
random network of glass forming polyhedral (PO4), but are formed
of small molecular phosphate ions (one or two phosphorus) linked
together through bivalent “bridging” calcium. Invert melt-derived
glasses tend easily to crystallize (easier diffusion due to the small
size of the phosphate moieties involved) and the incorporation of
intermediate oxides such as TiO, [29] can be necessary for their
synthesis. However, it is important to note here that beyond the
economic perspective associated with the process used for prepar-
ing the PYG phases (low temperature, water solvent, and low cost
precursors), it does not need any glass forming additives.

In addition to calcium, pyrophosphates, and orthophosphates,
PYG glasses contain water, and TGA-DTA analysis provides infor-
mation on the localisation of water molecules. Indeed, between
25°C and 100 °C, the TGA curves of the samples are similar, but
the peak of PYG-00 is more endothermic than for PYG-03 and
PYG-06, which are both glass-ceramics containing the crystalline
hydrated phase Ca;oK4(P,07)s-9H,0. It means that for the same
overall amount of water, H,O molecules are energetically more
linked to their environment for PYG-00 than for PYG-03 and
PYG-06. So, it can be assumed that a part of water molecules are
involved in the amorphous network and not only adsorbed at the
interfaces. Solid state NMR analyses are consistent with this
assumption. Indeed, one main broad resonance centred at

~5.1 ppm was observed on the '"H MAS NMR spectra of the mate-
rials (which is consistent with the presence of water), and 'H — 3'P
cross-polarisation MAS experiments show that the different ortho
and pyrophosphate anions are all in close vicinity to protons (Sup-
plementary material, Fig. S3). Until 190°C DTA differences
between PYG-00 and PYG-06 could be attributed to the presence
of the mass loss plateau. This plateau indicates two different kinds
of water release: from 20 to 218 °C (see Supplementary material,
Fig. S4) it could be associated to weakly-bonded water (also pre-
sent in PYG-06), and after 218 °C to a fast removal of water from
the glass as demonstrated by an abrupt mass loss. This abrupt phe-
nomenon is due to an event occurring at a well-defined tempera-
ture in an amorphous material. One could propose that this
phenomenon could be a kind of a glass transition in this hydrated
glass. This assertion could be supported by several arguments:
i) the fast release (demonstrated both by DTA and TGA variations
at 218 °C) of water and ii) the crystallisation of orthophosphate-
based phases (monetite and apatite) in a pyrophosphate-rich
matrix, could be a consequence of the decrease of the viscosity
and consequently the increase of the mobility of small molecules
and ions, iii) finally it corresponds to a small endothermic peak
(206 °C, before the orthophosphate crystallisation peak) which is
not explained by a mass loss.

Even if the structure will need further characterisations to be
fully determined (in particular using pair distribution functions
derived from synchrotron X-ray data as well as more advanced
solid state NMR experiments including 4*Ca NMR [25]) a general
chemical formula (Eq. (2)) can be proposed at this stage to describe
these new glasses, by combining 3'P solid state NMR, ICP-AES, and
TGA-DTA analysis results:

{[(Ca2+),_y(H' /K" ),,],[(P2077); (PO} )y 5]10(H20) @)

where n is the weight percent of water. In the case of PYG-00, we
determined that the chemical formula (Eq. (3)) is:

{((Ca*")g g3 (H" /K )y 35],[(P207 )76 (PO3 ) 31]}14.3(H20) 3)

This formula is interesting because it highlights the role of
pyrophosphates as forming entities, Ca%* as bridging bivalent
cations between phosphate species (pyro and/or orthophosphates)
and protons/K" as non-bridging ions.



4.2. Formation of the monolithic amorphous phase

A key point of this study is the understanding of why a glass is
formed with lower initial Ca/Pyro ratios, while glass-ceramics are
formed for higher ones. Considering the results, one may wonder
if calcium concentration is not a key point in the process of
pyrophosphate glass formation: a low concentration could prevent
the crystallisation of PYG-00 and PYG-01. However, a sample syn-
thesised under the same conditions as PYG-00, but without the
washing steps was shown in the SEM micrographs (Fig. S5,
Supplementary material) to include several crystal morphologies
(embedded in an amorphous matrix) characteristic of crystalline
hydrated calcium pyrophosphate phases, which were identified by
XRD (Fig. S5, Supplementary material) as triclinic calcium pyrophos-
phate dihydrate (t-CPPD, Ca,P,0,-2H,0) (Fig. S5, A crystal type),
monoclinic pyrophosphate tetrahydrate beta (m-CPPT B, Ca,P,0;-
4H,0) (Fig. S5, B and C crystal types) [20] and Ca;oK4(P,07)s-9H,0
(Fig. S5, D crystal type). These results demonstrate that PYG-00
can thermodynamically evolve towards crystalline phases with
similar chemical composition. So, one can assume that a transient
amorphous phase is formed during the first step of the synthesis.
The evolution of this amorphous phase into a crystalline phase is
apparently avoided by the washing step and the formation of the
final amorphous phase is kinetically driven as generally observed.
However, an increase in the initial amount of calcium from PYG-02
to PYG-06 (Table 1) allows for the formation of the Ca;oK4(P>07)e:
9H,0 phase, even after the washing step. Another and complemen-
tary assumption is based on the surface charges of the initial
nuclei. Zeta potentials were measured for all the samples in the
batch solutions (Table 1). Particles leading to amorphous samples
(such as PYG-00) are more charged than those leading to glass-
ceramics (PYG-06). This charge is decreased with the increase of
the calcium concentration in the precursor solution added. Indeed
when more calcium is added, the ionic strength of the solution is
increased. These results suggest that the lower ionic strength of
synthesis solution for PYG-00 can prevent their aggregation (high
surface charges) and then their evolution toward crystalline
phases. The ICP-AES analyses (Table 2) show that the Ca/P ratio
in the final materials was quite equivalent (between 0.848 and
0.921) and close the Ca/P ratio of Ca;gK4(P0,)s-9H,O phase
(0.83). As previously stated, kinetics is preponderant and the addi-
tion of the calcium solution (increased concentration from PYG-00
to PYG-06) was achieved with a constant volumetric flow rate.
Consequently for a given time during the synthesis, the evolution
of PYG-06 from an amorphous to a crystalline state is more
advanced and could then explain the structural differences (glasses
versus glass-ceramics).

The amorphous state of nuclei and their evolution in the initial
solution is also an interesting question. The existence of amor-
phous calcium phosphate nanoprecursors is still discussed
[30,31] and models have been developed to explain their possible
stabilisation by surface species and crystallisation inhibitors (such
as amino acids) [32]. In our case, the stabilisation of amorphous
nuclei could be explained by several hypotheses that are not mutu-
ally exclusive. The first one is related to the large range of geomet-
ric configurations for pyrophosphate anions. Indeed, considering
the Raman spectrum (Fig. 5-b) of PYG-00 (and contrary to glass-
ceramic samples) the bands associated to P-O-P vibrations (V°POP,
Vv¥*POP) are broad. According to Lazarev [33], who suggested an
empirical relationship between the P-O-P angle 0 and these vibra-
tions (Eq. (4)), it can be assumed that these broad bands can be
partially associated to a large domain of angle conformation (it is
correlated with 3'P NMR broad signals). The latter could then
impede the formation of a crystalline structure during the first step
of the synthesis [27]. The structural degrees of freedom of
pyrophosphate entities and probably their size (bigger than

orthophosphate) slow down diffusion (steric hindrance), and could
then increase the stability of the amorphous phase.

A = (v*POP — v*POP)/(v**POP + v*POP) = f(0) (4)

Finally, the presence of orthophosphate in PYG (as demon-
strated by solid state NMR) could also play a key role in the amor-
phous state of nuclei. Pyrophosphate ions are well-known
inhibitors of orthophosphate phases crystallisation in vitro and
in vivo [34,35], because they prevent the growth of organised
domains due to surface interaction [36,37] but also could affect
the organisation of phases due to size or ion charge effect. By mir-
ror effect, this explanation could be applied to a possible inhibition
of the crystallisation of calcium pyrophosphate phases by
orthophosphates ions. Indeed, Gras [38] showed that the presence
of orthophosphate has always been found to be higher in amor-
phous calcium pyrophosphate phases than in the crystalline ones.
It is not clear at this stage if this observation could be related to
disproportionation effect reported in polyphosphate glasses
[28,39], an internal hydrolysis of pyrophosphate ions or simply
an easier incorporation of impurities in disorganised structures.

All in all, it appears that the reactant system used here was
particularly well suited for the formation of a new class of
Ca-phosphate-based glasses, due to the specific structure and reac-
tivity of the pyrophosphate anions involved.

5. Conclusion

For the first time, the synthesis of monolithic calcium phos-
phate glasses at low temperature (70 °C) has been described.
According to the initial Ca/Pyrophosphate molar ratio, a glass
(mixed calcium pyro-orthophosphate phase containing potassium
and water) or a glass-ceramic (Ca;oK4(P20-)s-9H,0 crystals embed-
ded in the amorphous phase) was formed. The proportion of the
crystalline phase increased with an increase in the Ca/Pyrophos-
phate ratio in the batch solution. It was demonstrated that the for-
mation of the glassy material is not thermodynamically but rather
kinetically driven and that the evolution of a transient amorphous
phase toward a crystalline phase could be avoided by the washing
step. The amorphous state of nuclei of glasses could be explained
by i) the ionic strength of the initial solution, ii) the structural
degrees of freedom of pyrophosphate entities and iii) the inhibi-
tory effect of orthophosphate ions on calcium pyrophosphate
phase crystallisation. Even if the different mechanisms involved
in the formation of such materials (chemical, structural, and mor-
phological evolution during the synthesis steps) are still to be
investigated in detail, the synthesis of these new monolithic cal-
cium pyrophosphate glasses in water-based solvent and at a low
temperature opens up many perspectives to develop the chemistry
of low-temperature calcium pyrophosphate-based materials for
various applications. In the field of materials for bone substitution,
these novel materials and their synthesis process should be partic-
ularly well-suited to the preparation of hybrid organic-inorganic
biomaterials, involving delicate biomolecules such as enzymes or
growth factors.
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