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Abstract

In the 1980s, Helffer and Sjöstrand examined in a series of articles
the concentration of the ground state of a Schrödinger operator in the
semiclassical limit. In a similar spirit, and using the asymptotics for
the Szegő kernel, we show a theorem about the localization properties
of the ground state of a Toeplitz operator, when the minimal set of
the symbol is a finite set of non-degenerate critical points. Under the
same condition on the symbol, for any integer K we describe the first
K eigenvalues of the operator.
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1 Introduction

1.1 Motivations

In classical mechanics, the minimum of the energy, when it exists, is a
critical value, and any point in phase space achieving this minimum corre-
sponds to a stationary trajectory. In quantum mechanics, the situation is
quite different. A quantum state cannot be arbitrarily localized in phase
space and occupies at least some small amount of space, because of the
uncertainty principle. Nevertheless, due to the correspondence principle,
one expects the quantum states of minimal energy to concentrate, in some
way, near the minimal set of the Hamiltonian, when the effective Planck
constant is very small.

In a series of articles [17, 18, 19, 20, 21], Helffer and Sjöstrand considered
the Schrödinger operator P (~) = −~

2∆ + V , acting on L2(Rn), where V
is a smooth function. If V is smooth, bounded from below and coercive,
then the infimum of the spectrum of P (~) is a simple eigenvalue. Helffer
and Sjöstrand then studied the concentration properties of associated unit
eigenvectors, named ground states, in the semiclassical limit ~ → 0. It is
well known that the ground state is O(~∞) outside any fixed neighbourhood
of {x ∈ R

n, V (x) = min(V )}. If there is only one such x, then the ground
state concentrates only on x. But if there are several minima, it is not clear
a priori whether the ground state is evenly distributed on them or not.
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In the first articles [17, 18, 19], the potential V is supposed to reach
its minimum only on a finite set of non-degenerate critical points, named
“wells”. It is proven that only some of the wells are selected by the ground
state, that is, the sequence of eigenvectors is O(~∞) outside any fixed neigh-
bourhood of this subset of wells. The selected wells are the flattest ones,
in a sense that we will make clear later on. Sharper estimates lead to a
control, outside of the wells, of the form exp(−C~

−1), where C is expressed
in terms of the Agmon distance to the selected wells. Moreover, when the
potential V has two symmetric wells, the ground state “tunnels” between
these wells, so that there exists another eigenvalue which is exponentially
close to the minimal one.

In the two last papers [20, 21], the potential V is supposed to reach its
minimal value on a submanifold of Rn. Again, it is easy to prove that the
ground state concentrates on this submanifold. From this fact, a formal
calculus leads to the study of a Schrödinger operator, on the submanifold,
with an effective potential that depends on the 2-jet behaviour of V near
the submanifold. The authors treated the case of an effective potential
with one non-degenerate minimum, which they call the miniwell condition.
In this case, the ground state concentrates only at the miniwell. On the
contrary, when the minimal submanifold corresponds to a symmetry of V ,
the ground state is spread out on the submanifold.

This is an instance of what is called quantum selection: not all points in
phase space where the classical energy is minimal are equivalent in quantum
mechanics. When there is a finite set of minimal points, only some of them
are selected by the ground state. Similarly, when the minimal set is a
submanifold, the ground state may select only one point (or not). The
series of articles [17, 18, 19], and also [34, 35] were adapted to more general
pseudodifferential operators [16, 30, 38]. In the physics literature, these
effects are believed to appear in other settings; for example, the miniwell
condition was used in [14], without mathematical justification, to study
quantum selection effects for the Heisenberg model on spin systems, when
the classical phase space is a product of 2-spheres. However, the arguments
used by Helffer and Sjöstrand depend strongly on the fact that they deal
with Schrödinger operators, when the phase space is T ∗

R
n. Thus, it is a

priori not clear to which extent the quantum selection can be generalised
to a quantization of compact phase spaces.

We propose to study the Kähler quantization, which associates to a
symbol on a phase space a Toeplitz operator. In the particular case of
the coordinate functions on S

2 = CP
1, the Toeplitz operators are the spin

operators [5], so that our approach contains the physical case of spin sys-
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tems. In this article we prove (Theorem A) that quantum selection occurs
in the case of wells, with O(~∞) remainder, extending some of the results of
[17, 18, 19]. The case of miniwells is in preparation. Exponential estimates
will be the object of a separate investigation.

1.2 Kähler quantization

When a compact symplectic manifold is endowed with a Kähler structure,
there is a natural way to define a quantization scheme, which is compatible
with abstract geometric quantization [26, 36].

Definition 1.1. A Kähler manifold is a complex manifold M where the
tangent space at each point is endowed with a hermitian metric, i.e. an
inner product, whose imaginary part is a closed 2-form on M .

In particular, a Kähler manifold has both a symplectic and a Rieman-
nian structure, which are respectively the imaginary part and the real part
of the inner product.

Let L be a holomorphic complex line bundle over a Kähler manifold
M , and h denote a hermitian metric on L. Let ω denote the imaginary
part of the hermitian metric. There exists a unique connection (the Chern
connection) compatible with h and the complex structure. We wish to
consider a prequantum bundle (L, h), such that the curvature of the Chern
connection is −iω. This is always locally possible, but the global existence
of a prequantum bundle is equivalent to the fact that ω/2π has integral
cohomology class (see for instance [40], pp 158-162, or Prop. 2.1.1 of [26]).
From now on we suppose that ω/2π has integral cohomology class, and we
let (L, h) be a prequantum bundle.

There are two equivalent formulations for the basic objects of Kähler
quantization, one dealing with holomorphic sections of powers of line bun-
dles [9, 10, 27], the other using equivariant functions on a circle bundle, the
Grauert tube [7, 41, 33]. In this article we use the circle bundle approach.

Let L∗ denote the dual bundle of L, with h∗ the dual metric. It is itself
a Riemannian manifold. Define

D = {(m, v) ∈ L∗, h∗(v) < 1}
X = ∂D = {(m, v) ∈ L∗, h∗(v) = 1}.

Then X is a circle bundle on M , with a S
1-action on the fibres rθ :

(m, v) 7→ (m, eiθv). We will also denote by π the projection from X onto
M . As X is a submanifold of a Riemannian manifold, it inherits a volume
form. Since (L, h) is a prequantum bundle, D is pseudoconvex, and the
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volume form on X coincides with the Levi form. The scalar product on
L2(X) is related to the one on L2(M) via the S

1 action. Indeed, if s0

denotes any smooth section of X, one has, for any u, v ∈ L2(X):

〈u, v〉 =
∫∫

S1×M
u(rθs0(m))v(rθs0(m))dθdm.

Let us consider the Hardy space, defined as follows.

Definition 1.2. The Hardy space on X, denoted by H(X), is the closed
subspace of L2(X) consisting of functions which are boundary values of
holomorphic functions inside D. The orthogonal projector from L2(X)
onto H(X) is denoted by S, the Szegő projector.

Using the S
1 action, the space H(X) can be further decomposed. For

N ∈ N, an element f of H is said to be N -equivariant when, for each x ∈ X
and θ ∈ S

1, there holds f(rθx) = eiNθf(x). The space of N -equivariant
functions is denoted by HN (X); then H(X) is the orthogonal sum of the
different spaces HN (X) for N ≥ 0. We will call SN the orthogonal projec-
tion on HN (X). Then the Schwartz kernel of SN is itself N -equivariant,
that is:

SN (rθx, rφy) = eiN(θ−φ)SN (x, y).

For every N , the space HN (X) is finite-dimensional, the dimension
growing with N . To see this, note that the trace of SN is finite as a
consequence of Proposition 2.3. It also comes from the fact that HN(X)
can also be formulated as a space of holomorphic sections of an ample line
bundle over the compact manifold M .

Now we define the Kähler quantization, which associates to any smooth
function f on M a sequence of operators (TN (f))N∈N:

Definition 1.3 (Toeplitz operators). Recall π : X → M is the natural
projection. If f ∈ C∞(M) is a smooth function, one defines the Toeplitz
operator with symbol f as the sequence of operators TN (f) : u 7→ SN (π∗f u)
from HN (X) to itself.

In this article we are interested in the asymptotics, as N → +∞, of
Toeplitz operators and their eigenvectors. Alternative conventions exist
for the quantization (associating an operator to a symbol), though they
define the same class of operators. The convention of Definition 1.3 is
sometimes called contravariant [3, 10]. The reason for this choice is that
we rely crucially on the positivity condition: if f is real and nonnegative,
then TN (f) is nonnegative.
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For any N , the operator TN (f) acts on a finite-dimensional space, more-
over for real-valued f this operator is obviously self-adjoint. Thus, the
spectrum of TN (f) consists only of a finite number of eigenvalues, each of
which having a finite multiplicity. We will call the “lowest eigenvalue” the
minimum of the spectrum of a Toeplitz operator.

We slightly extend the definition of Toeplitz operators in order to deal
with the Kähler manifold M = C

n, which is not compact. This does not
affect the definitions of HN (M,L) and SN , except that the space HN (Cn, L)
has infinite dimension in this case. If f ∈ C∞(Cn), one can define the
Toeplitz operator T flatN (f) as an unbounded operator, and it is an essentially
self-adjoint operator with compact resolvent, at least when the symbol is a
positive quadratic form (see section 3.3).

1.3 Main results

In this article, we adapt the results from [17] to the setting of Kähler
quantization. In particular, we are only interested in the following situation:

Definition 1.4. A function h ∈ C∞(M) is said to satisfy the wells condi-
tion when the following is true:

• min(h) = 0;

• Every critical point at which h vanishes is non-degenerate.

Observe that, by definition, Morse functions whose minimum is zero
satisfy the wells condition, as does the square modulus of a generic holo-
morphic section of L⊗N for N large. Note that a function that satisfies the
wells condition has a finite cancellation set.

We need the following definition to state our main theorems:

Definition 1.5. Let Z be a subset of M , and let

Vδ(N) = {(m, v) ∈ X, dist(m,Z) > N−δ}.

A sequence (uN )N∈N of norm 1 functions in L2(M,L) is said to concen-
trate on Z when, for every δ ∈ [0, 1

2 ), one has

‖uN1Vδ(N)‖L2(X) = O(N−∞).

Note that concentration, in the sense of the definition above, implies
microsupporting in the sense of Charles [10], that is, for any open set V at
positive distance from Z, as N → +∞, one has ‖uN1V ‖L2 = O(N−∞). The
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microsupport is contained in the concentration set, while the concentration
set is included in any open neighbourhood of the microsupport.

In Subsection 2.2, we consider convenient local maps of “normal co-
ordinates” around any point P ∈ M , which preserve infinitesimally the
Kähler structure. If a non-negative function h vanishes with positive Hes-
sian at P ∈ M , the 2-jet of h at P reads in these coordinates as a positive
quadratic form q(P ) on C

n. The first eigenvalue µ of the Toeplitz operator
T flat1 (q(P )) (which we call model quadratic operator) does not depend on
the choice of normal coordinates. We define this value to be µ(P ).

Let now h be a smooth function on M that satisfies the wells condition
of Definition 1.4.

Theorem A. For every N ∈ N, let λN be the first eigenvalue of the op-
erator TN (h), and uN an associated normalized eigenfunction. Then the
sequence (uN )N∈N concentrates on the vanishing points of h on which µ is
minimal.

If there is only one such point P0, then there is a real sequence (ak)k≥0

with a0 = µ(P0) such that, for each K, one has

λN = N−1
K∑

k=0

N−kak +O(N−K−2).

Moreover, λN is simple, and there exists C > 0 such that λN is the only
eigenvalue of TN in the interval [0, N−1(µ(P0) + C)].

Theorem B. Let C > 0. There is a bounded number of eigenvalues
(counted with multiplicity) of TN (h) in the interval [0, CN−1]. More pre-
cisely, for C ′ > C, let K and (bk)1≤k≤K be such that

{bk, k ≤ K} =
⋃

P ∈M

h(P )=0

Sp
(
T flat1 (q(P ))

)
∩ [0, C ′]

with multiplicity. Then one can find c > 0 and a list of real numbers
(ck)1≤k≤K such that, for each k, one of the eigenvalues of TN (h) lies in the
interval

[N−1bk +N−3/2ck − cN−2, N−1bk +N−3/2ck + cN−2].

Moreover, there are at most K eigenvalues of TN (h) in [0, CN−1] and each
of them belongs to one of the intervals above.

Among the smooth functions satisfying the wells condition, there is a
dense open subset of “non-resonant” symbols such that, for every k ≥ 0,
the k-th eigenvalue of the associated operator has an asymptotic expansion
in powers of N−1/2.
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The case of “miniwells”, a transposition of [20], will be treated in future
work. Under analyticity conditions, we also hope to state results on expo-
nential decay in the forbidden region, as in [19]. In the one-dimensional
case, a full asymptotic expansion for the first eigenvalues of TN (h) was
given in [27], with a fixed domain of validity [0, E0].

1.4 Methods – semiclassical properties of Kähler quantiza-

tion

If M is compact or C
n, the Kähler quantization has many similarities with

the Weyl quantization on cotangent bundles. One can indeed find a star
product on the space of formal series C∞(M)[[η]] that coincides with the
composition of Toeplitz operators when η = N−1 (see [32] for a short proof),
that is, such that

TN (f ⋆ g) = TN (f)TN (g) +O(N−∞).

Thus, the limit N → +∞ for Toeplitz operators can be thought of
as a semiclassical limit, with semiclassical parameter N−1 → 0. Unless
otherwise stated, we will state results under this limit.

It has been known since at least [10] that there is a microlocal equiva-
lence between the semiclassical calculus of Toeplitz operators and that of
Weyl quantization. Such a correspondence was already given in the homo-
geneous setting (without a semiclassical parameter) in [7].

Thus, a possible approach to the spectral study of Toeplitz operators
(such as this one, which focuses on low-lying eigenvalues) would be a con-
jugation by a Fourier Integral Operator to an operator known by previous
work. This could be a pseudodifferential operator, in the spirit of [17], or a
Toeplitz operator with a simpler symbol, cf [37, 31]. However, each of these
approaches require a priori results on the concentration of eigenvectors.

We will use a direct approach in this paper. Indeed, our future work
(in preparation) will focus on the case when the minimal set of the symbol
is a submanifold, where a priori concentration is not known, so it is un-
clear whether the previous approaches are sufficient. Moreover, the main
theorems in this paper depend on subprincipal effects, and the criterion
for quantum selection would be less natural if we should keep track of it
through a Fourier Integral Operator. Finally, we believe that Proposition
3.1 is of independent interest. It can easily be generalized into a result on
the microsupport of low-energy states for any smooth symbol, and it does
not depend on estimates on the asymptotics of the Szegő kernel but only
on the nature and symbolic calculus of Toeplitz operators. It could be used
as an elementary proof of microsupporting for pseudodifferential operators.
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1.5 Outline

We review in Section 2 the definitions and semiclassical properties of the
Szegő kernel. Using well-known results about its semiclassical expansion
[33, 10, 13, 4], we derive Proposition 2.7, which states that the Szegő kernel
on C

n is a local model for any Szegő kernel.
In Section 3, we remind the reader of the symbolic properties of Toeplitz

operators [32]. The state of the art is such that one can compose Toeplitz
operators with classical symbols. We then show, with a new method, a
standard result on localization: low-energy eigenvalues concentrate where
the symbol is minimal. Finally, we study in detail a particular case of
Toeplitz operators, when the base manifold is C

n and the symbol is a
positive quadratic form.

Section 4 is devoted to the proof of Theorem A. We build an approxi-
mate eigenfunction of the Toeplitz operator and prove that the correspond-
ing eigenvalue is the lowest one. The most important part is Proposition
4.2 for which we use the same method than in [17]. For this, we consider
the Hessian of h at a cancellation point, as read in local coordinates; this
is a real quadratic form q on C

n. Then we compare the Toeplitz operator
TN (h) with the Toeplitz operator T flatN (q), which we call model quadratic
operator.

In Section 5, we modify the arguments used in Section 4 to describe, un-
der the same hypotheses on the symbol, the spectrum of a Toeplitz operator
in the interval [0, CN−1] where C > 0 is arbitrary (Theorem B).

The Appendix is independent from the two main results of the paper.
We recover, in the Kähler setting, the off-diagonal estimate for the Szegő
kernel of [13, 10, 4], in local coordinates. For this we use the techniques
developed in [41, 33], which yield estimates on a shrinking scale, and slightly
modify them to recover an estimate on a fixed scale.

2 The Szegő projector

2.1 Bargmann spaces

As a helpful illustration for the general case (which originates from [1, 2],
see also [15], pp. 39-51), we first consider the usual n-dimensional complex
space C

n, with the natural Kähler structure, with ω =
∑n
i=1 dzi ∧ dzi. In

this example, the Szegő kernel is explicit.
Because C

n is contractible, the bundle L is isomorphic to C
n+1, but the

hermitian structure h is not the flat one, for which the associated curvature
is zero. Indeed, one can show that h(m, v) = e−|m|2|v|2 is the correct choice.
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Here, the spaces HN (Cn, L) are called the Bargmann spaces and will be
denoted by BN . They can be expressed as

BN = L2(Cn) ∩
{
z 7→ e− N

2
|z|2f(z), f holomorphic in C

n
}
.

The space BN is a closed subspace of the Hilbert space L2(Cn) and
inherits its scalar product:

〈f, g〉 =
∫

Cn
fg.

The functions in BN are not holomorphic for the standard structure.
However, let us introduce the following deformation of ∂:

dN = e− N
2

|z|2∂e
N
2

|z|2 = ∂ +
N

2
z.

We will further denote by dNi the i-th component of dN . The space BN
is the space of L2 functions in the kernel of dN . The adjoint of dN is
dN = e− N

2
|z|2∂e

N
2

|z|2. The orthogonal projector on BN has a Schwartz
kernel. Indeed, one Hilbert basis of BN is the family (eν)ν∈Zn with

eν(z) = NnN
|ν|/2zν

πn
√
ν!
e− N

2
|z|2.

Hence the kernel may be expressed as:

ΠN (x, y) =
Nn

πn
exp

(
−N

2
|x|2 − N

2
|y|2 +Nx · y

)
. (1)

Note that, by definition, ΠN commutes with dN . Moreover

[ΠN , zi] = ΠNdNi.

The space BN is isometric to B1 by an isometric dilatation (or scaling)
of factor N1/2:

BN ↔ B1

f 7→ N−nf(N−1/2·).

Moreover, there is a unitary transformation between B1 and L2(Rn),
called the Bargmann transform. The transformation B1 : L2(Rn) 7→ B1

reads:

B1f(z) = e− 1

2
|z|2
∫

exp
[
−
(

1
2
z · z +

1
2
x · x−

√
2z · x

)]
f(x)dx.
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This transformation conjugates the position operators zi into the position
operators xi, and the momentum operators d1 i into the momentum opera-
tors 1

i
∂
∂xi

.
From B1, one can deduce an isometry from BN to L2(Rn) by composing

the scaling isometry and the Bargmann transform.
One noteworthy subspace of B1 is the dense subset of functions f ∈ B1

such that fP ∈ B1 for any polynomial P ∈ C[z]. This space is denoted
by D. Any element of the previously given Hilbert basis belongs to D
and the Bargmann transform is a bijection from S(Rn) to D; the preimage
of eν is the function x 7→ Cνx

νe−|x|2/2, where Cν is a normalizing factor.
Moreover, because of the commutation relations above, the image of S(Cn)
by the Szegő projector ΠN is D.

2.2 Semiclassical asymptotics

Semiclassical expansions of SN are derived in [41, 33, 28, 9, 4], in different
settings. In [41, 33], the Fourier Integral Operator approach is used to prove
an asymptotic expansion of SN in a neighbourhood of size N−1/2 of a point.
In [9, 28, 4], one derives asymptotic expansions of SN in a neighbourhood
of fixed size of a point.

The Szegő kernel is rapidly decreasing away from the diagonal as N →
+∞:

Proposition 2.1 ([10], Corollary 1, or [13], Prop. 4.1 in a more general
setting). For every k ∈ N and ǫ > 0, there exists C > 0 such that, for every
N ∈ N, for every x, y ∈ X, if

dist(π(x), π(y)) ≥ ǫ,

then
|SN (x, y)| ≤ CN−k.

The analysis of the Szegő kernel near the diagonal requires a convenient
choice of coordinates. Let P0 ∈ M . The real tangent space TP0

M carries
a Euclidian structure and an almost complex structure coming from the
Kähler structure on M . We then can (non-uniquely) identify C

n with
TP0

M .

Definition 2.2. Let U be a neighbourhood of 0 in C
n and V be a neigh-

bourhood of P0 in M . Let π denote the projection from X to M . Let R

cover S
1. The group action rθ : S1 → X lifts to a periodic action from R to

X, which we will also call rθ. A smooth diffeomorphism ρ : U×R → π−1(V )
is said to be a normal map or map of normal coordinates under the following
conditions:
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• ∀z ∈ U, ∀θ ∈ R, ρ(z, θ) = rθρ(z, 0);

• Identifying C
n with TP0

M as previously, one has:

∀(z, θ) ∈ U × R, π(ρ(z, θ)) = exp(z).

Through this paper we will often read the kernel of SN in normal coor-
dinates. Let P0 ∈ X and ρ a normal map on X such that ρ(0, 0) = P0. For
z,w ∈ C

n small enough and N ∈ N, let

SP0

N (z,w) := e−iN(θ−φ)SN (ρ(z, θ), ρ(w,φ)),

which does not depend on θ and φ as SN is N -equivariant.
The following proposition states that, as N → +∞, in normal coordi-

nates, the Szegő kernel has an asymptotic expansion whose first term is the
flat kernel of equation (1):

Proposition 2.3 ([13], theorem 4.18). There exist C > 0, C ′ > 0, m ∈ N,
ǫ > 0 and a sequence of polynomials (bj)j≥1, with bj of same parity as j,
such that, for any N ∈ N, K ≥ 0 and |z|, |w| ≤ ǫ, one has:

∣∣∣∣∣∣
SP0

N (z,w) − ΠN (z,w)


1 +

K∑

j=1

N−j/2bj(
√
Nz,

√
Nw)




∣∣∣∣∣∣
≤

CNn−(K+1)/2
(
1 + |

√
Nz| + |

√
Nw|

)m
e−C′

√
N |z−w| +O(N−∞). (2)

Remark 2.4. We will use Proposition 2.3 as a black box, as we do not
want to divert the reader into considerations on the asymptotics of SN ,
which are more technical than the rest of this paper.

The scope of [13] is much more general than the case of Kähler mani-
folds; by specialising to this case, one obtains stronger estimates. Indeed,
a result very close to this proposition can be found in [4], and also in [10],
Theorem 2. However, these results are stated without local coordinates,
hence the link with the Bargmann spaces is not obvious.

For the sake of the argument, we derive in the Appendix a precised
formulation of this stronger version, adapting the techniques presented in
[33].

Remark 2.5. The Proposition 2.3 gives asymptotics for the kernel of SN ,
read in local coordinates. However, the normal maps of Definition 2.2 do
not preserve the volume form, except infinitesimally on the fibre over P0.
For the associated operators to be preserved, one has to pull-back Schwartz

12



kernels as half-forms. We claim that it does not change the structure of the
asymptotics.

Indeed, if dVol is the volume form on X and dLeb is the Lebesgue form
on C

n, one has, for any normal map ρ:

ρ∗(dLeb⊗ dθ) = adVol,

for some function a on the domain of ρ with a(0) = 1. We want to study
the asymptotics of (z,w) 7→ SP0

N (z,w)
√
a(z)a(w), which is the kernel of the

pull-back of SN .
The function (z,w) 7→

√
a(z)a(w) is smooth on the domain of ρ. We

write the Taylor expansion of this function at 0 as:

√
a(z)a(w) = 1 +

K∑

j=1

aj(z,w) +O(|z|K+1, |w|K+1)

where aj is homogeneous of degree j, so that aj(z,w) = N−j/2aj(
√
Nz,

√
Nw).

We let now b̃j be such that


1 +

K∑

j=1

N−j/2bj(
√
Nz,

√
Nw)




1 +

K∑

j=1

N−j/2aj(
√
Nz,

√
Nw)




= 1 +
K∑

j=1

N−j/2b̃j(
√
Nz,

√
Nw) +O(N−(K+1)/2).

Then
∣∣∣∣∣∣
SP0

N (z,w)
√
a(z)a(w) − ΠN (z,w)


1 +

K∑

j=1

N−j/2b̃j(
√
Nz,

√
Nw)




∣∣∣∣∣∣
≤

CNn−(K+1)/2
(
1 + |

√
Nz| + |

√
Nw|

)m
e−C′

√
N |z−w| +O(N−∞).

Hence, the effects of the volume form can be absorbed in the error terms
of equation (2), and the Proposition 2.3 also holds when SN is replaced by
the corresponding half-form.

Thus, we can use the asymptotics of Proposition 2.3 to study how the
operator SN acts. For instance, we are able to refine the Proposition 2.1:

Corollary 2.6. For every k ∈ N and δ ∈ [0, 1/2), there exists C > 0 such
that, for every N ∈ N, for every x, y ∈ X with dist(π(x), π(y)) ≥ N−δ, one
has:

|SN (x, y)| ≤ CN−k.

13



In particular, if u ∈ L2(X) is O(N−∞) outside the pull-back of a ball
of size N−δ, then SN (u) is O(N−∞) outside the pull-back of a ball of size
2N−δ.

2.3 Universality

In the previously given local expansions of the Szegő kernel (2), the domi-
nant term is the projector on the Bargmann spaces of equation (1). Thus
the Bargmann spaces appear to be a universal model for Hardy spaces,
at least locally. To make this intuition more precise, we derive a useful
proposition.

We can pull-back by a normal map the kernel of the projector ΠN by
the following formula:

ρ∗ΠN (ρ(z, θ), ρ(w,φ)) := eiN(θ−φ)ΠN (z,w).

By convention, ρ∗ΠN is zero outside π−1(V )2.

Proposition 2.7 (Universality). Let ǫ > 0. There exists δ ∈ (0, 1/2), a
constant C > 0 and an integer N0 such that, for any N ≥ N0, for any
function u ∈ L2(X) whose support is contained in the fibres over a ball on
M of radius N−δ, one has:

‖(ρ∗ΠN )u− SNu‖L2(X) ≤ CN−1/2+ǫ‖u‖L2(X).

Proof. Let again SP0

N : (z, θ, w, φ) 7→ e−iN(θ−φ)SN (ρ(z, θ), ρ(w,φ)) denote
the kernel SN as read in local coordinates, which does not in fact depend
on (θ, φ).

Equation (2), for K = 0, can be formulated as:

SP0

N (z,w) = ΠN (z,w) +R(z,w) +O(N−∞), (3)

with

|R(z,w)| ≤ CNn−1/2(1 + |
√
Nz| + |

√
Nw|)me−C′

√
N |z−w|

for every z and w such that (z, 0) and (w, 0) belong to the domain of ρ.
Let δ ∈ (0, 1/2) and u a function contained in the pull-back of a ball of

size N−δ.
Let v = SNu−(ρ∗ΠN )u. Because of Corollary 2.6, v is O(N−∞) outside

ρ(B(0, 4N−δ)×S
1). Hence, up to a O(N−∞) error, it is sufficient to control

the kernel of SN −ρ∗ΠN on ρ(B(0, 4N−δ)×S
1)×ρ(B(0, 4N−δ)×S

1), where
equation (3) is valid.

It remains to estimate the norm of the operator with kernel R, using a
standard result of operator theory:

14



Lemma 2.8 (Schur test). Let k ∈ C∞(V ×V ) be a smooth function of two
variables in an open subset V of R

d. Let K be the associated unbounded
operator on L2(V ).

Let

‖k‖L∞L1 := max

(
sup
x∈V

‖k(x, ·)‖L1(V ), sup
y∈V

‖k(·, y)‖L1(V )

)
.

If ‖k‖L∞L1 is finite, then K is a bounded operator. Moreover

‖K‖L2(V )7→L2(V ) ≤ ‖k‖L∞L1 .

Thus, we want to estimate the quantity:

sup
|z|≤4N−δ

∫

|w|≤4N−δ
Nn−1/2(1 + |

√
Nz| + |

√
Nw|)me−C′|z−w|.

After a change of variables and up to a multiplicative constant, it remains
to estimate:

N−1/2 sup
|z|≤4N1/2−δ

∫

|u|≤4N1/2−δ
(1 + |z| + |u|)m e−C|u|.

This quantity is O(N (m−1) 1

2
−mδ). Thus, for any ǫ > 0, there exists δ such

that the above quantity is O(N− 1

2
+ǫ).

By the Schur test, the L2 norm of a symmetric kernel operator is con-
trolled by the L∞L1 norm of the kernel. When restricted on B(0, 4N−δ)2,
the kernel of SP0

N − ΠN has a L∞L1 norm of order N− 1

2
+ǫ, from which we

can conclude. �

3 Toeplitz operators

3.1 Calculus of Toeplitz operators

The composition of two Toeplitz operators is a formal series of Toeplitz
operators. The theorem 2.2 of [32] states for instance that there exists a
formal star-product on C∞(M)[[η]], written as f ⋆ g =

∑+∞
j=0 η

jCj(f, g),
that coincides with the Toeplitz operator composition: as N → +∞, one
has, for every integer K, that

TN (f)TN (g) −
K∑

j=0

N−jTN (Cj(f, g)) = O(N−K−1).

The functions Cj are bilinear differential operators of degree less than 2j,
and C0(f, g) = fg. An explicit derivation of Cj(f, g) is given by the Propo-
sition 6 of [10].

15



3.2 A general localization result

Using the C∗-algebra structure of Toeplitz operators, one can prove a fairly
general localization result:

Proposition 3.1. Let h be a smooth nonnegative function on M . Let
Z = {h = 0}, and suppose that h vanishes exactly at order 2 on Z, that is,
there exists c > 0 such that h ≥ cdist(·, Z)2.

Let t > 0, and define

Vt := {(m, v) ∈ X, dist(m,Z) < t}.

For every k ∈ N, there exists C > 0 such that, for every N ∈ N, for
every t > 0, and for every u ∈ HN (X) such that TN (h)u = λu for some
λ ∈ R, one has

‖u1X\Vt
‖2
L2 ≤ C

(
max(λ,N−1)

t2

)k
‖u‖2

L2 .

Remark 3.2. Here M is a Kähler manifold, so dist is the Riemannian
distance, but since M is compact, the condition on h does not depend on
the chosen Riemannian structure.

Proof. By a trivial induction, the k-th star power of a symbol f is of the
form

f⋆k = fk + ηC1,k(f, · · · , f) + η2C2,k(f, · · · , f) + . . . ,

where Ci,k is a k-multilinear differential operator of order at most 2i.
We want to study Ci,k(h, · · · , h) for i ≤ k. The function h is smooth

and nonnegative, hence
√
h is a Lipschitz function. In other terms, there

exists C such that, for every (x, ξ) ∈ TM with ‖ξ‖ ≤ 1, one has |∂ξh(x)| ≤
C
√
h(x). In local coordinates, the function Ci,k(h, · · · , h) is a sum of terms

of the form a∂ν1h∂ν2h . . . ∂νkh, where
∑k
j=1 |νj | ≤ 2i and a is smooth.

• If νj = 0, then ∂νjh = h.

• If |νj | = 1, then |∂νjh| ≤ C
√
h.

• If |νj | ≥ 2, then |∂νjh| ≤ C.

Hence |a∂ν1h∂ν2h . . . ∂νkh| ≤ Ch
k− 1

2

∑
j

min(2,|νj |), moreover
∑
j min(2, |νj |) ≤∑

j |νj | ≤ 2i, from which we can conclude:

|Ci,k(h, · · · , h)| ≤ Chk−i.
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This means that, for every k ≥ 0, the function h⋆k is of the form:

h⋆k = hk +
k−1∑

i=1

ηifi,k + η−kg(η),

where g is bounded independently on η and where, for each i and k there
exists C such that |fi,k| ≤ Chk−i.

Using this, we can prove by induction on k that there exists Ck such
that, for every N and for every eigenvector u of TN (h) with eigenvalue λ,
one has

|〈u, hku〉| ≤ Ck max(λ,N−1)k‖u‖2.

Indeed, this is clearly true for k = 1, because 〈u, hu〉 = λ‖u‖2.
Let us suppose that, for all 1 ≤ i ≤ k, there exists C such that

|〈u, hk−iu〉| ≤ Cmax(λ,N−1)k−i‖u‖2.

Because u is an eigenvector for TN (h), it is an eigenvector for its powers,
hence

TN (h⋆k)u = TN (h)ku+O(N−∞) = λku+O(N−∞).

Replacing h⋆k by its expansion and using the fact that h ≥ 0, we find:

|〈u, hku〉| ≤ λk‖u‖2 +
k−1∑

i=1

N−i〈u, fi,ku〉 + CN−k‖u‖2.

Here we used the fact that the function g is bounded.
Now recall |fi,k| ≤ Ci,kh

k−i, and the induction hypothesis:

|〈u, hk−iu〉| ≤ Ci max(λ,N−1)k−i‖u‖2

for every i > 0. Hence

|〈u, hku〉| ≤ C max(λ,N−1)k‖u‖2 +
k−1∑

i=1

Ci,kCiN
−i max(λ,N−1)k−i‖u‖2,

hence there exists Ck such that |〈u, hku〉| ≤ Ck max(λ,N−1)k‖u‖2.
Now we can conclude: for every k, there exists C such that, for every

t > 0 one has
∀z /∈ Vt, h

k ≥ Ct2k.

Finally, for every k there exists C such that, for every N ∈ N, t > 0
and u an eigenvector of TN (h) with eigenvalue λ, there holds

‖u1X\Vt
‖2
L2 ≤ C

(
max(λ,N−1)

t2

)k
‖u‖2

L2 .
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Recalling Definition 1.5, let us specialize the Proposition 3.1 to the case
λ = O(N−1) and t = N−δ for 0 < δ < 1/2:

Corollary 3.3. Let u = (uN )N∈N be a sequence of unit eigenvectors of
TN (h), with sequence of eigenvalues λN = O(N−1). If h vanishes at order
two on its zero set, then u concentrates on this set.

We can reformulate the Proposition 3.1 in these terms: if h is a positive
smooth function on M , which vanishes at order two on its zero set, then
any sequence of normalized eigenvectors of TN (h) whose eigenvalues are
O(N−1) concentrates on the zero set of h.

Remark 3.4.

• An independent work by Charles and Polterovich, that appears par-
tially in [11], treats the case of an eigenvalue close to a regular value
of the symbol, with a result very similar to Proposition 3.1.

• The proof of Proposition 3.1 uses cancellation at order two only when
dealing with Vt. Indeed, a more general result is

‖u1X\Vt
‖2
L2 ≤ C

(
max(λ,N−1)

max(h(x), x ∈ Vt)

)k
‖u‖2

L2 ,

which holds for any smooth h and any eigenfunction u of TN (h) with
eigenvalue λ.

3.3 Quadratic symbols on the Bargmann spaces

Toeplitz operators can also be defined in the Bargmann spaces setting, but
one should be careful about the domain of such operators.

This section is devoted to a full survey of the quadratic case, which is
very useful as a model case for the general setting. Let q be a positive
definite quadratic form on C

n. Let

AN =
{
f ∈ BN ,

√
q(·)f(·) ∈ L2(Cn)

}
.

Then AN is a dense subspace which contains the image of D by the iso-
morphism between B1 and BN . It is the domain of the positive quadratic
form tN : (u, v) 7→

∫
quv, and AN is closed for the norm ‖u‖2

AN
= ‖u‖2

L2 +
tN (u, u). Moreover, the injection

(AN , ‖ · ‖AN
) →֒ (BN , ‖ · ‖L2)
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is compact. Using the usual results of spectral theory, the associated op-
erator T flatN (q) is positive and has compact resolvent. The spectrum of
T flatN (q) thus consists of a sequence of nonnegative eigenvalues, whose only
accumulation point is +∞.

Observe that, since q is even, T flatN (q) sends even functions to even func-
tions, and odd functions to odd functions. Moreover, q is 2-homogeneous.
Recalling that the normalized scaling on C

n by a factor N1/2 sends BN into
B1, the conjugation by this scaling sends T flatN (q) to N−1T flat1 (q).

Proposition 3.5. The first eigenvalue µN of T flatN (q) is simple.

Proof. As q is positive a.e, the quadratic form tN is strictly convex, hence
the first eigenvalue is simple. �

We now compare Toeplitz quantization with Weyl quantization for
quadratic symbols. Let OpN

−1

W (q) denote the Weyl quantization of q, as
a symbol in T ∗

R
n ≃ C

n, with semiclassical parameter N−1:

OpN
−1

W (q)u(x) =
Nn

(2π)n

∫
eiN〈ξ,x−y〉q

(
ξ,
x+ y

2

)
u(y)dydξ.

Recall that BN is the N -th Bargmann transform.

Proposition 3.6. BNT
flat
N (q)B−1

N = OpN
−1

W (q) +N−1
tr(q)

2
.

In particular, the first eigenvalue of T flatN (q) is positive.

Proof. These computations belong to the folklore on the topic. Never-
theless, for the comfort of the reader, we recover them explicitly.

It is sufficient to consider the N = 1 case which is conjugated with the
general case through the usual scaling: indeed OpN

−1

W (q) = N−1Op1
W (q).

Here we shorten the notations for the momentum operators: on the
Bargmann side, we let dj = ∂zj + 1

2zj ; on the R
n side, we let ∂xj = 1

i
∂
∂xj

.
Let j, k be two indices in [|1, n|].
If q : z 7→ zjzk = (xj+iyj)(xk+iyk), then tr(q) = 0, so the two operators

should coincide. T flat1 (q) is the operator of multiplication by zjzk. This
operator is conjugated via B1 to the operator (xj + i∂xj )(xk + i∂xk

) =
xjxk − ∂xj∂xk

+ ixj∂xk
+ i∂xjxk. Moreover, the Weyl quantization of q is

the operator

Op1
W (q) = xjxk − ∂xj∂xk

+
i

2
(∂xk

xj + xj∂xk
+ ∂xjxk + xk∂xj ).

These two operators coincide whether j = k or not.
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The case q : z 7→ zjzk = (xj−iyj)(xk−iyk) is the adjoint of the previous
one.

If q : z 7→ zjzk = (xj + iyj)(xk − iyk), then tr(q) = 2δjk. In that case,
T flat1 (q) = dkzj. This operator is conjugated to (xk − i∂xk

)(xj + i∂xj ). The
Weyl quantization of q is

Op1
W (q) = xjxk + ∂xj∂xk

+
i

2
(−∂xk

xj − xj∂xk
+ ∂xjxk + xk∂xj ).

The two operators coincide when k 6= j, and when k = j the difference is
1.

From the conjugation, it is clear that the first eigenvalue of T flatN (q) is
positive, because the Weyl quantization of q is nonnegative (see Remark
3.7) and tr(q) > 0. �

Because T flatN (q) is conjugated to N−1T flat1 (q), one has µN = N−1µ1,
and for some C > 0,

dist(µN , Sp(T
flat
N ) \ {µN}) = CN−1.

The first eigenvalue µ1 of T1(q) depends on q, but is invariant under an
unitary change of variables on C

n. From now on we will use the notation
µ(q) to denote µ1.

Remark 3.7. The computation of µ(q) is non-trivial. As explained in [29],
Lemma 2.8, or as a direct consequence of the classification in [39], the first
eigenvalue of Op1

W (q) can be obtained the following way: let M ∈ S+
2n(R)

denote the symmetric matrix associated with q in the canonical coordinates.
Let J be the matrix of the symplectic structure:

J =

(
0 −Id
Id 0

)
.

Then the matrix JM is skew-symmetric with respect to the scalar prod-
uct given by M . Hence A = iJM can be diagonalized; the eigenvalues of
A appear in pairs of opposite values λ and −λ. Then µ is the sum of the
positive diagonal elements of A. In particular, this explicit formulation
shows that OpN

−1

W (q) is nonnegative.

We can use Proposition 3.6 to transpose well-known results for the quan-
tization of quadratic symbols to the Bargmann case. Since µ(q) is simple,
the operator T flat1 (q) −µ(q) has a continuous inverse on the orthogonal set
of the associated eigenfunction. This inverse sends D into itself, because
one can build a Hilbert base of D with eigenfunctions of T flat1 (q). Moreover
the eigenfunction associated with µ(q) is even.
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Remark 3.8. To illustrate the Proposition 3.6, we solve completely the
n = 1 case. Up to a U(1) change of variable, any real quadratic form on C

can be written as αx2 +βy2. The associated Weyl operator is −β∆ +αx2,
with first eigenvalue

√
αβ. On the other hand, the first eigenfunction of

α− β

4
(z2 + d

2) +
α+ β

2
dz is a squeezed state of the form z 7→ e− 1

2
|z|2e

λ
2
z2

,

with λ =
(
√
α−

√
β)2

α− β
(or λ = 0 in case α = β). The associated eigenvalue

is then
(
√
α+

√
β)2

2
. The difference is

α+ β

2
, which is exactly half of the

trace of q.

Remark 3.9. If instead of TN (h) one would consider TN (h − ∆h
2N ), as in

[10], then the Toeplitz quantization of a quadratic form would be exactly
conjugated to its Weyl quantization: indeed tr(q) = ∆q. We recover in this
particular case the computations in [27].

4 The first eigenvalue

This section is devoted to the proof of Theorem A.
Let P0 ∈ M , one can find normal coordinates from a neighbourhood

of P0 to a neighbourhood of 0 in C
n. If at P0 a non-negative function

h vanishes with positive Hessian, the 2-jet of h at P0 maps to a positive
quadratic form q on C

n, up to a U(n) change of variables. Hence, the map
associating to P0 the first eigenvalue µ of the model quadratic operator
T flatN (q) is well-defined. From now on, we will also call µ this map.

The method of proof for Theorem A is then as follows: for each van-
ishing point P0, we construct a sequence of functions which concentrates
on P0, consisting of almost eigenfunctions of TN (h), and for which the as-
sociated sequence of eigenvalues is equivalent to N−1µ(P0) as N → +∞.
We then show a positivity estimate for eigenfunctions concentrating on a
single well. The uniqueness and the spectral gap property follow from a
similar argument. At every step, we compare TN (h) with the operator on
BN whose symbol is the Hessian of h at the point of interest.

4.1 Existence

We let h denote a smooth function satisfying the wells condition. At every
cancellation point of h, we will find a candidate for the ground state of
TN (h). Instead of finding exact eigenfunctions, we search for approximate
eigenfunctions. This is motivated by the following lemma:
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Lemma 4.1. Let T be a self-adjoint operator on a Hilbert space, let λ ∈ R,
and u ∈ D(T ) with norm 1.

Then dist(λ, Sp(T )) ≤ ‖T (u) − λu‖.

Let P0 ∈ M be a point where h vanishes. Let ρ be a local map of normal
coordinates in a neighbourhood of π−1(P0). Let ΩN be the set of z ∈ C

n

such that (z/
√
N, 0) belongs to the domain of ρ. Recall from equation (2)

that, for every N ∈ N and every z,w ∈ ΩN , there holds:

N−nSP0

N

(
z√
N
,
w√
N

)

= Π1(z,w)

(
1 +

K∑

k=1

N−k/2bk(z,w))

)
+RK(z,w,N) +O(N−∞). (4)

Here the bj ’s are polynomials of the same parity as j, and there exist
C > 0,m > 0 such that, for every (z,w,N) as above:

|RK(z,w,N)| ≤ CN−(K+1)/2e−C′|z−w|(1 + |z|m + |w|m).

The main proposition is

Proposition 4.2. There exists a sequence (uj)j≥0 of elements of S(Cn),
with 〈u0, uk〉 = δ0

k, and a sequence (λj)j≥0 of real numbers, with λ0 = µ(P0)
and λj = 0 for j odd, such that, for each K and N , if uK(N) ∈ L2(X) and
λK(N) ∈ R are defined as:

uK(N)(ρ(z, θ)) := eiNθNn
K∑

j=0

N−j/2uj(
√
Nz),

uK(N) is supported in the image of ρ,

λK(N) = N−1
K∑

j=0

N−j/2λj,

there holds, as N → +∞,

‖SNhSNuK(N) − λK(N)uK(N)‖L2(X) = O(N−(K+3)/2).

Remark 4.3. The functions uK(N) do not lie inside HN (X), because they
are identically zero on an open set. Nevertheless, the operator SNhSN on
L2(X) decomposes orthogonally into TN (h) on HN , and 0 on its orthogonal.
Hence a nonzero eigenvalue of SNhSN must correspond to an eigenvalue of
TN (h) with same eigenspace. The same holds for almost eigenvalues.
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Introducing λK as a polynomial in N−1/2 whose odd terms vanish may
seem surprising. However, in the proof, we construct λK as a polynomial
in N−1/2, as we do for uK . The fact that it is a polynomial in N−1 is due
to parity properties.

Proof. Let us solve the successive orders of

(SNhSN − λK(N))uK(N) ≈ 0.

We write the Taylor expansion of h around P0 at order K as

h(x) = q(x) +
K∑

j=3

rj(x) + EK(x).

Because of equation (4), the kernel of SNhSN , read in the map ρ, is:

N−nei(φ−θ)SNhSN
(
ρ
(
N−1/2z,N−1θ

)
, ρ
(
N−1/2w,N−1φ

))

= N−1
∫ (

q(y) +
K−2∑

k=1

N−k/2rk+2(y) +NEK(N−1/2y)

)

×

Π1(z, y)


1 +

K∑

j=1

N−j/2bj(z, y)


 +RK(z, y,N)




×
[
Π1(y,w)

(
1 +

K∑

l=1

N−l/2bl(y,w)

)
+RK(y,w,N)

]
dy

+O(N−∞). (5)

Let us precisely write down the K = 0 and K = 1 case.
The dominant order (that is, N−1) of the right-hand side is simply:

(z,w) 7→ N−1
∫

Cn
Π1(z, y)q(y)Π1(y,w)dy.

It is N−1 times the kernel of the Toeplitz operator Q = T flat1 (q) on B1

associated to the quadratic symbol q, which we studied in Subsection 3.3.
Its resolvant is compact, the first eigenvalue µ(P0) is simple, and if u0 is an
associated eigenvector, the operator Q−µ(P0) has a continuous inverse on
u⊥

0 which sends D into itself. Moreover u0 is an even function.
This determines u0 and λ0 = µ(P0). Here u0 ∈ D, so we can truncate

the function (z, θ) 7→ eiNθNnu0(N1/2z) to a function supported on the
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domain of ρ, with only O(N−∞) error. The push-forward by ρ of this
truncation, extended by zero outside the image of ρ, is denoted by u0(N).

Now u0 ∈ D so u0 concentrates on P0. The error is thus:

‖SNhSNu0(N) −N−1λ0u
0(N)‖2

L2(X)

≤ CN−2
∫

Ω3
N

A(z, y, w,N)2|u0(w)|2dydwdz +O(N−∞),

where

A(z, y, w,N) = N |E2(N−1/2y)Π1(z, y)Π1(y,w)|

+ h(y)
(

|R0(z, y,N)|Π1(y,w) + |R0(y,w,N)|Π1(z, y)

+ |R0(z, y,N)R0(y,w,N)|
)
.

Here, E2 is a Taylor remainder of order 3 on a compact set, so

|NE2(N−1/2y)| ≤ C|y|3N−1/2.

Moreover, recall that, on Ω2
N , one has

|R0(z, y,N)| ≤ CN−1/2e−C′|z−y|(1 + |z|m + |y|m).

Hence, on Ω3
N , there holds:

|A(z, y, w,N)| ≤ CN−1/2e−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m).

Because u0 ∈ D, one deduces:

N3
∫

X
|SNhSNu0 −N−1λ0u

0|2

≤ C

∫

Ω3
N

e−2C′|z−y|−2C′|y−w|(1 + |z|2m + |y|2m + |w|2m)|u0(w)|2dydzdw

+O(N−∞)

≤ C

(∫

Cn
|v|2me−C′|v|dv

)2 ∫

Cn
|w|2m|u0(w)|2dw +O(N−∞)

≤ C.

This method (estimating an error kernel using polynomial growth and
off-diagonal exponential decay) will be used repeatedly again.
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From there we deduce that u0 is an approximate eigenvector:

‖SNhSNu0(N) −N−1λ0u0(N)‖L2(X) = O(N−3/2).

This proves the proposition for the case K = 0.
The construction of u1 and λ1 is different, moreover there are supple-

mentary error terms. The term of order N−3/2 in the right-hand side of
equation (5) is:

(z,w) 7→ N−3/2
∫

Cn
Π1(z, y)[r3(y) + q(y)(b1(z, y) + b1(y,w))]Π1(y,w)dy.

Let J1 denote the operator with kernel as above. We are trying to find
u1 and λ1 such that

(Q− λ0)u1 + J1u0 = λ1u0, (6)

with the supplementary condition that 〈u1, u0〉 = 0: indeed if (u1, λ1) is
a solution of equation (6), then so is (u1 + cu0, λ1) for any c ∈ C. The
orthogonality condition makes the solution unique as we will see.

The functions r3, q and b1 are polynomials, so J1(D) ⊂ S(Cn). This
ensures that the problem is well-posed. Note that J1 does not map D into
holomorphic functions; this is because the normal map ρ does not preserve
the holomorphic structure.

Now r3 and b1 are odd, so J1u0 is odd. In particular, 〈u0, J1u0〉 = 0,
and because Q is self-adjoint, 〈u0, (Q − λ0)u1〉 = 0. From this we deduce
that λ1‖u0‖2 = 0, hence λ1 = 0.

To find u1, we use again the fact that J1u0 is orthogonal to u0. Since
λ0 is a simple eigenvalue, Q− λ0 is invertible from u⊥

0 to itself, and maps
S ∩ u⊥

0 to itself. Hence there exists a unique u1 ∈ S orthogonal to u0, such
that (u1, 0) solves (6). Moreover u1 is odd.

Now we investigate the error terms. With u1 and λ1 as in the statement,
let

f1(N) = (SNhSN − λ1(N))u1(N).

As u0 and u1 belong to S, the function u1 concentrates on P0, and so
does f1. Hence it is sufficient to control f1 near P0. After a change of
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variables, one has:

N−ne−iθf1(N)(ρ(N−1/2z,N−1θ)) = N−2J1u1(z)

+
∫

Π1(z, y)Π1(y,w)E3(
y√
N

)(1+
b1(z, y)√

N
)(1+

b1(y,w)√
N

)(u0(w)+
u1(w)√
N

)dydw

+N−1
∫
R1(z, y,N)Π1(y,w)(1+

b1(y,w)√
N

)(q(y)+
r3(y)√
N

)(u0(w)+
u1(w)√
N

)dydw

+N−1
∫

Π1(z, y)(1+
b1(z, y)√

N
)R1(y,w,N)(q(y)+

r3(y)√
N

)(u0(w)+
u1(w)√
N

)dydw

+N−1
∫
R1(z, y,N)R1(y,w,N)(q(y) +

r3(y)√
N

)(u0(w) +
u1(w)√
N

)dydw

+O(N−∞).

As u1 ∈ S, the first line of the right-hand term is well-defined, and
‖N−2J1u1‖ = O(N−2).

There holds a uniform Taylor estimate on the domain of ρ:

E3(y) ≤ C|y|4,

so E3(N−1/2y) is bounded by N−2 times a function with polynomial growth
independent of N . In particular, there exist C,C ′,m > 0 such that, on Ω3

N :

|E3(N−1/2y)Π1(z, y)Π1(y,w)|

≤ CN−2e−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m).

Of course the same type of estimate (with different C and m) applies
if we multiply the left-hand side by b1(z, y), b1(y,w), or both. Hence,
following the last part of the K = 0 case, we can estimate the second line
of the expansion of f1 as OL2(X)(N−2).

The three following lines are treated the same way: because u0 and u1

belong to S, it is sufficient to prove estimates for the error kernels, of the
form

|A(z, y, w,N)| ≤ N−2Ce−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m),

which are easily checked.
We construct by induction on K the following terms of the expansion.
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For j ≥ 1, we let Jj : L2(Cn) 7→ L2(Cn) the unbounded and symmetric
operator with kernel

Jj(x, z) =
∫

Cn
Π1(x, y)Π1(y, z)




∑

k+l+m=j
k,m,l≥0

bk(x, y)r2+l(y)bm(y, z)


 dy.

Here we use the convention b0 = 1, and r2 = q. The dense subspace S(Cn)
is included in the domain of Jj , moreover Jj(S) ⊂ S because all the bj ’s
and rl’s are polynomials. Moreover Jj has the same parity as j.

Let K ∈ N, and suppose we found functions (uk)k≤K ∈ S, orthogonal
to u0, and of the same parity as k, and real numbers λk that vanish when
k is odd, and such that, for each k ≤ K, there holds:

(Q− λ0)uk +
k∑

j=1

Jjuk−j = λku0 +
k−1∑

j=1

λjuk−j. (7)

Let us find uK+1, orthogonal to u0, and λK+1 so that equation (7) also
holds for k = K + 1.

Take the scalar product with u0. As Q is symmetric, the left-hand side
vanishes, and we get a linear equation in λK+1, whose dominant coefficient
is ‖u0‖2 = 1. Hence λK+1 is uniquely determined. Moreover, if K + 1 is
odd, then JjuK+1−j and λjuK+1−j are odd functions for every j, so their
scalar products with u0 are zero, hence λK+1 = 0.

We now are able to find uK+1 because we can invert Q − λ0 on the
orthogonal set of u0. Finally, uK+1 is of the same parity as K + 1.

It remains to show that this sequence of functions u corresponds to an
approximate eigenvector of SNhSN .

Let K ≥ 0, fixed in what follows. For each N ∈ N, we can build a
function uK(N) on X, supported in the image of ρ and such that, for x
in the image of ρ, one has uK(N)(ρ(z, θ)) = eiNθNn∑K

k=0N
−k/2uk(

√
Nz).

Note that uK(N) concentrates on P0.
Let

λK(N) = N−1
K∑

k=0

N−k/2λk.

We evaluate (SNhSN − λK(N))uK(N) =: fK(N). Consider an open set
V1, containing P0, and compactly included in the image of ρ. One has

‖fK(N)‖L∞(cV1) = O(N−∞)

because uK(N) concentrates on P0.
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To compute fK(N) in V1, we use the equation (4) at order K. A change
of variables leads to:

N−ne−iNθfK(N)
(
ρ(N−1/2z, θ)

)

= N−1
K∑

k=0

N− k
2



(Q− λ0)uk(z) −
k∑

j=1

Jjuk−j(z) − λku0(z) −
k−1∑

j=1

λjuk−j(z)





+N−1
2K∑

k=K+1

N− k
2


−

K∑

j=k−K
(Jj − λj)uk−j(z)




+
K∑

k,j,l=0

N− k+j+l
2 Aj,l,Nuk(z)+

K∑

k,j=0

N− k+j
2 A′

j,Nuk(z)+
K∑

k=0

N− k
2A′′

Nuk(z).

By construction, the first line of the right-hand term vanishes. The
second line is O(N−(K+3)/2). There are three error terms in the last line.
Aj,l,N is the operator with kernel:

Aj,l,N(z,w) =
∫

ΩN

Π1(z, y)Π1(y,w)bj(z, y)bl(y,w)EK(N−1/2y)dy.

The function EK is a Taylor remainder at order K + 3, so there exist
constants C > 0, C ′ > 0,m > 0 such that, on Ω3

N :

|Π1(z, y)Π1(y,w)bj(z, y)bl(y,w)EK(N−1/2y)|

≤ CN−(K+3)/2e−C′|z−y|+C′|y−w|(1 + |z|m + |y|m + |w|m).

Hence, for each function u ∈ S, one has

‖Aj,l,N (u)‖L2 = O(N−(K+3)/2).

In particular it is true of the functions uk.
A′
j,N is the operator with kernel:

A′
j,N(z,w) =

∫

ΩN

Π1(z, y)bj(z, y)h(N−1/2y)RK(y,w,N)dy

+
∫

Π1(y,w)bj(y,w)RK(z, y,N)h(N−1/2y)dy.

One has h(N−1/2y) ≤ CN−1|y|2, so there are constants C > 0, C ′ >
0,m > 0 such that, on Ω3

N :

|Π1(z, y)bj(z, y)h(N−1/2y)RK(y,w,N)|

≤ CN−(K+3)/2e−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m).
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As usual we get, for every k, that

‖A′
j,N (uk)‖L2 = O(N−(K+3)/2).

A′′
N is the operator with kernel

A′′
N (x, z) =

∫

Ω3
N

RK(x, y,N)h(N−1/2y)RK(y, z,N)dy.

Again there exist constants C > 0, C ′ > 0,m > 0 such that, on Ω3
N :

|RK(z, y,N)h(N−1/2y)RK(y,w,N)|

≤ CN−K−3e−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m).

To conclude, the L2-norm of all the error terms is O(N−(K+3)/2). �

From this proposition we conclude that, at every well P , there exists an
eigenvalue of TN (h) which has an asymptotic expansion in inverse powers
of N , the dominant term being N−1µ(P ). In particular, the first eigenvalue
of TN (h) is O(N−1).

4.2 Positivity

The following proposition implies that the first eigenfunctions only concen-
trate on the wells that are minimal:

Proposition 4.4. Let (vN )N∈N a sequence of normalized functions in L2(X).
Suppose v concentrates at a point P0, on which h vanishes. Then for each
ǫ > 0 there exists N0 and C such that, if N > N0,

〈vN , hvN 〉 ≥ N−1µ(P0) − CN−3/2+ǫ.

Proof. Let δ < 1
2 be close to 1

2 . Let ρ denote a normal map around P0.
Then the sequence (wN )N>0 = (ρ∗vN )N>0 is such that ‖wN‖L2(cB(0,N−δ)) =
O(N−∞). Then one has as well:

‖ΠNwN‖L2(cB(0,2N−δ)) = O(N−∞)

‖SP0

N wN‖L2(cB(0,2N−δ)) = O(N−∞).

Using the Proposition 2.7, for δ close enough to 1
2 , if ρ∗ΠN is a pull-back

of ΠN by ρ, one has ‖(SN − ρ∗ΠN )vN‖ ≤ CN− 1

2
+ǫ. Hence,

‖(SP0

N − ΠN )wN‖ ≤ CN− 1

2
+ǫ.
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If q is the Hessian of h at P0 read in the chosen coordinates, the spectrum
of the model quadratic operator ΠNqΠN is known: one has

〈wN ,ΠNqΠNwN 〉 ≥ N−1µ(P0)‖ΠNwN‖2.

Moreover, on B(0, 2N−δ) the following holds: CN−2δ ≥ h ≥ q − CN−3δ.
Now, if δ is close enough to 1

2 , one has:

〈wN , SP0

N hSP0

N wN 〉

≥ 〈wN , SP0

N qSP0

N wN 〉 − CN−3δ

= 〈wN , SP0

N qΠNwN 〉 + 〈wN , SP0

N q(SP0

N − ΠN )wN 〉 − CN−3δ

≥ 〈wN , SP0

N qΠNwN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

= 〈wN ,ΠNqΠNwN 〉 + 〈wN , (SP0

N − ΠN )qΠNwN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

≥ 〈wN ,ΠNqΠNwN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

≥ N−1µ(P0) − CN−2δ−min(δ, 1

2
−ǫ).

Choosing δ such that δ ≥ 1
2 − ǫ concludes the proof. �

Remark 4.5. In the proof, it appears that the condition of concentration
on P0 can be slightly relaxed. We only used the fact that, for some fixed δ
determined by the geometry of M and by ǫ, one has

‖vN1π(x)/∈B(P0,N−δ)‖L2 = O(N−∞).

Thus, this proposition could be used in a more general context.

4.3 Uniqueness and spectral gap

Proposition 4.6. Suppose h satisfies the wells condition, and that there
is only one well with minimal µ. Then the approximate eigenvalues of
proposition 4.2 associated to this well correspond to the first eigenvalue λN
of TN (h), namely, for every K ∈ N, there holds:

|λK(N) − λN | = O(N−(K+3)/2).

This eigenvalue is simple; moreover there exists C > 0 such that, for N
large enough:

dist(λN ,Sp(TN (h)) \ {λN}) ≥ CN−1.
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Proof. The proposition is equivalent to the claim that there exists K such
that the following is true: let uK(N) denote the approximate eigenvector of
order K associated to the well with minimal µ. Let FN be the orthogonal
complement of uK(N) in HN (X), and pN be the orthogonal projection
from HN (X) to FN . Then the operator T ♯N (h) : FN → FN , defined as
T ♯N (h) = pNTN (h), is bounded from below by λN + CN−1.

Let vN be a sequence of normalized eigenvectors of T ♯N (h), and µN the
sequence of associated eigenvalues. One has TN (h)vN = µNvN+CNuK(N).
Because uK(N) is a sequence of normalized functions and SN is bounded,
the sequence CN is bounded.

Assume µN = O(N−1). In this slightly different setting, we can adapt
the proof of Proposition 3.1 using the fact that uK(N) is itself an almost
eigenfunction of TN (h). There holds:

TN (h⋆k)vN = µkNvN + CN

k∑

j=1

µj−1
N λk−j

N uK(N) +O(N−(K+3)/2).

We can proceed as in 3.1 but the induction process stops at k = K+3
2 .

One concludes that, for every ǫ > 0, the L2 norm of vN is O(N− K+3−ǫ
4 )

outside the union of balls centred at the vanishing points of h, and of radius
N− 1

2
+ ǫ

K+3 .
In particular, if P0, P1, . . . , Pd denote the vanishing points of h, and P0

is the only one with minimal µ, one can decompose vN = v0,N + v1,N +
. . .+ vd,N +O(N−(K+3−ǫ)/4), where each sequence vi,N concentrates on Pi.
The proposition 4.4 gives estimates for vi,N if i 6= 0. Indeed µ(Pi) > µ(P0)
by construction, and λN ≤ N−1µ(P0) + O(N−3/2), so one can find C > 0
small enough such that NλN + C < µ(Pi) for all i 6= 0 and for N large
enough. Then

〈vi,N , SNhSNvi,N 〉 ≥ (λN + CN−1)‖vi,N‖2
2.

Recall that uK(N) has an asymptotic expansion whose first term u0

is the pull-backed ground state of the operator on the Bargmann space
with quadratic symbol. This operator has a (fixed) nonzero specral gap.
Moreover 〈v0,N , uK(N)〉 = O(N−(K+3−ǫ)/4) because vN is orthogonal to
uK(N) and uK(N) concentrates only at P0. Then for C strictly smaller
than the spectral gap of the quadratic operator T flat1 (q0) at P0, one has for
N large

〈v0,N , SNhSNv0,N 〉 ≥ (λN + CN−1)‖v0,N‖2
2.
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The functions vi,N have disjoint supports, so that 〈vi,N , SNhSNvj,N〉 =
O(N−∞) whenever i 6= j, and ‖vN‖2

2 =
∑
j ‖vj,N‖2

2 + O(N−(K+3−ǫ)/4).
Thus the two inequalities allow us to conclude when K ≥ 2. �

4.4 End of the proof

It remains to show that, in the case where only one well P0 has minimal
µ, then the ground state is O(N−∞) in a fixed neighbourhood of the other
wells. Let K ∈ N. We have constructed in Subsection 4.1 a sequence
(uK(N))N∈N which vanishes outside a fixed neighbourhood of P0, and which
is a sequence of approximate unit eigenvectors of TN (h), with approximate
eigenvalue λK(N). One has

λK(N) = N−1µ(P0) +O(N−3/2),

and
dist(λK(N),Sp(TN (h)) = O(N−(K+3)/2).

Moreover we proved in Subsection 4.3 that there can be only one eigenvalue
of TN (h) in [0, N−1(µ(P0) + C)] for some C, and that this eigenvalue is
simple. Hence, denoting λ∞(N) this sequence of eigenvalues, one has

λ∞(N) = min Sp(TN (h)),

and
|λ∞(N) − λK(N)| = O(N−(K+3)/2).

Let U∞(N) denote a sequence of unit eigenvectors associated to λ∞(N),
and decompose uK(N) = c(N)U∞(N) +wK(N), where wK(N) ⊥ U∞(N).
Then

(TN (h) − λ∞(N))wK(N) = O(N−(K+3)/2).

The operator TN (h)−λ∞(N) is invertible on U∞(N)⊥ and its inverse has a
norm bounded by N , so wK(N) = O(N−(K+1)/2). Since both uK(N) and
U∞(N) are normalized, one has c(N) → 1.

Finally, if V is a neighbourhood of another well, then uK(N) is zero on
V , so that

‖U∞(N)‖L2(V ) = ‖wK(N)‖L2(V ) = O(N−(K+1)/2).

This concludes the proof.
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5 Eigenvalues in a scaled window

This section is devoted to the proof of Theorem B. The method of proof is
very similar to that of Theorem A: we will exhibit approximate eigenvectors,
then show that they cover the low-energy spectrum.

5.1 Approximate eigenvectors

In the proof of the Proposition 4.2, the first guess for an approximate eigen-
vector of TN (h) was the first eigenvector of the model quadratic operator
at one of the wells. If, instead of the first eigenvector, we start from any
eigenvector of the model quadratic operator, we can proceed the same way;
however the recursion stops after one step, in general.

Proposition 5.1. Let P ∈ M on which h cancels, and Q be a model
quadratic operator in some normal map ρ around P . Let λ be an eigenvalue
of Q and Eλ the corresponding eigenspace. Then one can find a suitable
orthonormal basis (v1, . . . , vd) of Eλ, functions (w1, . . . , wd) in S(Cn) and
real numbers (b1, . . . , bd) such that, for any integer i ∈ [1, d], the function

ṽi(N) : ρ(z, θ) 7→ NneiNθ(vi(N1/2z) +N−1/2wi(N1/2z))

is such that

SNhSN ṽi(N) = N−1λ+N−3/2bi +O(N−2),

Moreover, if dimEλ = 1, then if u0 is an eigenvector of Q, one can find
a sequence of Schwartz functions (uk)k≥1, orthogonal to u0, and a sequence
of real numbers (λk)k≥1, such that, for every K > 0, the function

uK(N) : ρ(z, θ) 7→ NneiNθ
K∑

k=0

N−k/2uk(N1/2z)

is such that

SNhSNuK(N) = N−1λ+N−1
K/2∑

k=1

N−kλk = O(N−(K+3)/2).

Proof. Recall from Proposition 4.2 that one can find an approximate
eigenvector at any order, starting from the ground state u0 of Q.

Let now u0 denote an arbitrary eigenfunction of Q, which still belongs
to D. Let λ be the associated eigenvalue. When λ is simple, the operator
Q−λ has a continuous inverse on u⊥

0 , so one can solve equation (7) at any
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order. Observe that u0 is either even or odd, so that only negative integer
powers of N remain in the expansion of the eigenvalue.

If Q− λ is not invertible on u⊥
0 , the equation (7) can still be solved for

K = 1 if u0 is one of the vectors of a convenient basis of Eλ; but the con-
struction fails at higher orders. Consider an orthonormal basis (v1, . . . , vL)
of the eigenspace Eλ. Suppose u0 = vl. The equation (7) reads:

(Q− λ)u1 + J1u0 = λ1u0.

Taking the scalar product with u0 yields λ1(l) = 〈vl, J1vl〉. But we also
need to check that 0 = 〈vl, J1vj〉 for l 6= j. This is done by choosing an
orthogonal basis in which the corestriction of J1 on Eλ is diagonal (recall J1

is symmetric and Eλ is finite-dimensional). One can then find u1(l) in E⊥
λ .

The proof of the error estimate is the same. To conclude we let bl = λ1(l)
and wl = u1(l).

Once the K = 1 step is done, the basis (v1, . . . , vL) is fixed. Let us try
to solve equation (7) with u0 = v1, for K = 2. We write

(Q− λ)u2 + J2u0 + J1u1 = λ2u0 + λ1u1.

Taking the scalar product with u0 yields λ2 as previously:

λ2 = 〈u0, J2u0〉 + 〈u0, J1u1〉.

Now recall u1 is orthogonal to Eλ. If v denotes an element of Eλ orthogonal
to u0, then one must check

〈v, J2u0〉 + 〈v, J1u1〉 = 0.

This equation does not hold in general, hence the obstruction. �

5.2 Uniqueness

Let C ′ > 0, and N ∈ N. Consider the set eN of approximate eigenvectors
in Proposition 5.1, such that λ < C ′. Then EN = span(eN ) is a subspace
of L2(X), with small energy: there exists C1 such that, for every N ,

max{〈u, TN (h)u〉, u ∈ EN , ‖u‖2
2 = 1} < C ′N−1 + C1N

− 3

2 .

We claim that, reciprocally, any function approximately orthogonal with
EN has an energy bounded from below:
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Proposition 5.2. Let C ′ > 0. There exists ǫ0 > 0 and a function ǫ 7→
N0(ǫ) such that, for 0 < ǫ < ǫ0, the following is true. Let vN be a normal-
ized eigenfunction of TN (h), with associated eigenvalue λN , and suppose
that the angle between vN and EN is greater than cos−1(ǫ), that is, for ev-
ery u ∈ EN normalized, one has |〈u, vN 〉| < ǫ. Then for N ≥ N0(ǫ), one
has

λN ≥ (C ′ − ǫ)N−1.

Proof.

Let P0, . . . , Pd denote the points at which h cancels. If λN = O(N−1),
then vN concentrates on the Pi’s. We decompose vN = v0,N + v1,N + . . .+
vd,N +O(N−∞), where each vi,N concentrates only on Pi.

Let ρi be a normal map associated with Pi, and qi the Hessian of h at Pi
read in the map ρi. Let Ei,N be the span of eigenfunctions of T flatN (qi) whose
eigenvalues are less than C ′N−1. Then for N large, for every normalized
u ∈ Ei,N , one has |〈ρ∗

i vi,N , u〉| ≤ 2ǫ. Indeed functions in EN are N−1/2-close
to sums of pull-backs of functions in Ei,N .

Hence, for N large enough,

〈ρ∗
i vi,N ,ΠN (qi − C ′N−1)ΠNρ

∗
i vi,N 〉 ≥ −C ′N−1(4ǫ2).

Since vi,N concentrates on Pi, one can deduce that, for N large enough,

〈vi,N , SNhSNvi,N 〉 ≥ C ′N−1‖vi,N‖2 − C ′N−1(5ǫ2),

hence
〈vN , SNhSNvN 〉 ≥ C ′N−1 − C ′N−1(5(d + 2)ǫ2).

To conclude, we let ǫ0 =
1

5(d+ 2)C ′. Then for every ǫ < ǫ0, for N large

enough,
〈vN , SNhSNvN 〉 ≥ (C ′ − ǫ)N−1.

�

To conclude the proof of Theorem B, if the rank of the spectral projector
of TN (h) with interval [0, CN−1] was greater than K, then one could find an
eigenfunction of TN (h) which forms an angle greater than cos−1(N−1) with
EN , and with eigenvalue less than CN−1. This is absurd since C < C ′.
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Appendix : a proof for the off-diagonal estimate

This last section is an appendix about Proposition 2.3. As we already
explained, the knowledge of the result is sufficient for our needs. However,
as this proposition appears in [13], it is stated in a case that is much more
general than prequantum bundles on Kähler manifolds.

In this specific setting, and with a more direct approach, we propose to
show a different version of this estimate, with a somewhat stronger estimate
on the remainder (see Proposition A.8). We also replace the normal maps
of Definition 2.2 with Heisenberg maps, satisfying different assumptions.
This version could be of use in situations where it is crucial that the local
map is a biholomorphism.

The proof relies on the theory of Fourier Integral Operators with complex-
valued phase functions, in the sense of Hörmander ([22], section 7.8). In-
deed, we will follow the lines of [33] (restricting ourselves to exact Kähler
structures), which gives asymptotics at a shrinking scale; we modify the
proof in order to estimate the remainder at a fixed scale, recovering results
from [10, 4].

The starting point in [33] is the study by Boutet de Monvel and Sjös-
trand [8] of the general Szegő projector (Definition 1.2). The structure of
the Szegő projector, for the boundary of a relatively compact open set,
has been subject to a thorough study ([23, 24, 25, 6, 8, 7]). Under the
assumption of strong pseudo-convexity, which is verified for the unit ball
D of L∗, the boundary of D inherits a Riemannian metric from the Levi
form (which is identical to the one we use in this paper). The projector
S is then a Fourier Integral Operator with complex phase, in the sense of
Hörmander [22]:

Proposition A.1 ([8]). Let Y be the boundary of a strongly pseudo-convex,
relatively compact open set in a complex manifold. Then there exists a skew-
symmetric almost holomorphic complex phase function ψ ∈ C∞(Y ×Y ) (in
the sense of [22]), whose critical set is diag(Y ), and a classical symbol

s ∼
∑

i

tn−isi ∈ C∞(Y × Y × R
+),

such that the Schwartz kernel of the Szegő projector on Y is

S(x, y) =
∫ +∞

0
eitψ(x,y)s(x, y, t)dt+ E(x, y),

where the function E is smooth. Moreover the principal symbol s0 is such
that s2

0 = h−1
ψ , where hψ(x, y) is the Hessian of the function

Y × R
+ ∋ (z, σ) 7→ ψ(x, z) + σψ(z, y)
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at the critical point (which is unique and lies in a complex extension of
Y × R

+).

In this setting, “almost holomorphic” means that, near the diagonal
z = w ∈ Y , one has ∂zψ(z,w) = O(|z − w|∞). The fact that the function
(z, σ) 7→ ψ(x, z) + σψ(z, y) has exactly one critical point in the complex
extension of Y ×R

+, with nondegenerate Hessian, is encoded in the require-
ments on ψ to be a complex phase function in the sense of Hörmander.

In the specific case where X is a circle bundle over M , one can use
the microlocal information on S to deduce the asymptotics of its Fourier
components SN . Indeed, the N -th Fourier component of a smooth function
on a compact set has a sup norm bounded by O(N−∞). Thus, one has

SN (x, y) =
∫∫

exp(itψ(x, rηy) + iNη)s(x, rηy, t)dtdη +EN (x, y),

where ‖EN‖L∞ = O(N−∞). Here, as in the introduction, rη denotes the
circle action on X.

As announced, we will deal with a less restrictive class of local maps
than the normal maps of Definition 2.2. Because we are dealing with exact
Kähler manifolds, as opposed to the more general almost complex structure,
we slightly modify the definition of [33]:

Definition A.2. Let P0 ∈ M . Let U be a neighbourhood of 0 in C
n and

V be a neighbourhood of P0 in M .
A smooth diffeomorphism ρ : U ×R → π−1(V ) is said to be an Heisen-

berg map or map of Heisenberg coordinates under the following conditions:

• π(ρ(0, 0)) = P0;

• ρ∗ω(P0) = ω0(0).

• ∂ρ = 0.

• ρ(m, θ) = rθρ(m, 0).

The crucial point is that, in these coordinates, the phase ψ from the
Boutet-Sjöstrand theorem reads, for all (z, θ) and (w,φ) in the domain of
ρ (cf. [33], equation 61):

ψ(ρ(z, θ), ρ(w,φ)) = i
[
1 −A(z,w)ei(θ−φ)

]
,

Here, the 2-jet of A is known at the origin ([33], Lemma 2.4):

A(z,w) = 1 − 1
2

|z − w|2 + iℑ(z · w) +O(|z|3, |w|3).
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We will need to control the off-diagonal behaviour of A. Recall

Π1 : (z,w) 7→ 1
πn

exp
(

−1
2

|z − w|2 + iℑ(z · w)
)
.

Up to a reduction of the definition set of ρ, the usual logarithm is well-
defined, and we can define RA as the unique function such that A/Π1 =
πneRA .

Proposition A.3. The two following estimates hold as z,w → 0:

ℜ(RA)(z,w) = O
(
|z − w|2(|z| + |w|)

)

ℑ(RA)(z,w) = O
(
|z − w|(|z|2 + |w|2)

)
.

In particular, up to a restriction of the Heisenberg map ρ to a smaller
neighbourhood of P0, one has, for every z and w in the domain of ρ:

|A/Π1|(z,w) ≤ πne
1

4
|z−w|2. (8)

Proof. The functions A and πnΠ1 are equal up to order 2 at P0, so that
RA(z,w) = O(|z|3, |w|3).

The two functions A and πnΠ1 are both smooth and are equal to 1
on the diagonal. Moreover the first derivatives of both ℜ(A) and ℜ(Π1)
vanish on the diagonal. For Π1 this is a straightforward computation.
For A it comes from the fact that ψ is a complex phase function whose
critical set is the diagonal. It is also a natural consequence of the fact
that ∂1A(z, z) = −1

2∂φ(z) and ∂1A(z, z) = 1
2∂φ(z), where φ is a complex

potential: i∂∂φ = ω. Hence there is a constant C such that, for every z
and w in the domain of ρ, there holds:

|ℑ(A− πnΠ1)(z,w)| ≤ C|z − w|(|z|2 + |w|2)

|ℜ(A− πnΠ1)(z,w)| ≤ C|z − w|2(|z| + |w|).

From which we deduce that

|ℜ((A− πnΠ1)2)(z,w)| ≤ C|z − w|2(|z| + |w|)
|ℑ((A− πnΠ1)2)(z,w)| ≤ C|z − w|3

|A− πnΠ1|3 ≤ |z − w|3.

Now

RA = log(A/πnΠ1) =
A− πnΠ1

πnΠ1
− 1

2

(
A− πnΠ1

πnΠ1

)2

+O



(
A− πnΠ1

πnΠ1

)3

 .
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Taking the real and imaginary part of this equation, one deduces

ℜ(RA)(z,w) = O
(
|z − w|2(|z| + |w|)

)

ℑ(RA)(z,w) = O
(
|z − w|(|z|2 + |w|2)

)
.

In particular,
|A/Π1|(z,w) ≤ πneC|z−w|2(|z|+|w|).

Reducing the domain of the Heisenberg map ρ to a smaller neighbourhood
of P0, one gets, for every z and w in the domain of ρ:

|A/Π1|(z,w) ≤ πne
1

4
|z−w|2.

�

In fact, the symbol s of the operator can also be chosen to be very
simple in the given coordinates:

Proposition A.4. In Heisenberg coordinates, the symbol s of S in propo-
sition A.1 can be chosen to be factorized as:

s(ρ(z, θ), ρ(w,φ), t) = e−in(θ−φ)ξ(z,w, t),

where

ξ(z,w, t) ∼
+∞∑

k=0

tn−kξk(z,w)

and where each ξk is a smooth function. Moreover the principal symbol ξ0

does not vanish in a neighbourhood of diag(M).

Proof. The expression of the phase ψ in local coordinates gives im-
mediatly that any derivative of order ≥ 2 of the function (t, z, θ, w, φ) 7→
tψ(ρ(z, θ), ρ(w,φ)) is of the form ei(θ−φ)f(z,w, t) where f is constant or
linear wrt t. It follows that hψ(ρ(z, θ), ρ(w,φ)) = e2in(θ−φ)g(z,w) for some
function g. Hence, we can write s0(ρ(z, θ), ρ(w,φ)) = e−in(θ−φ)ξ0(z,w) for
some smooth function ξ0. Of course, any partial derivative of s0 is also, in
local coordinates, of the form e−in(θ−φ)f(z,w) for some function f .

Let us assume that for k ≤ K, each function sk reads in local coordinates
as ein(θ−φ)ξk(z,w) for some smooth function ξk. The coefficient sK+1 can be
derived from (si)i≤K via a stationary phase lemma, in which the differential
operators come from the Taylor expansion of ψ. Thus, sK+1 is a priori of
the form

sK+1(ρ(z, θ), ρ(w,φ)) = e−in(θ−φ)




C∑

j=−C
eik(θ−φ)ξK+1,j(z,w)


 ,
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where C is finite (but depends on K) and the ξK+1,j are smooth functions.
We can get rid of all coefficients except j = 0 by adding a conve-

nient multiple of ψ. Indeed, the operator with symbol (f + ψg)tk is equal,
after integration by parts, to the operator with symbol ftk + ikgtk−1,
modulo a smoothing operator. For instance, replacing sK+1 with sK+1 +
e−i(θ−φ)ξK+1,1a(z,w)ψ eliminates the j = 1 term.

We conclude by induction. �

The N -th Fourier component SN of the Szegő projector at a point (x, y)
reads

SN (x, y) =
∫∫

exp(itψ(x, rηy) + iNη)s(x, rηy, t)dtdη +O(N−∞).

A change of variables leads to

SN (x, y) = N

∫∫
exp(iN(tψ(x, rηy) + η))s(x, rηy,Nt)dtdη +O(N−∞).

If x and y belong to different fibres, the phase tψ(x, rηy) + η has no crit-
ical point, so SN (x, y) = O(N−∞); this estimation is uniform outside a
neighbourhood of π−1(diag(M)).

Using the local expression of the phase, one can derive as in [33] an
expression for SN at a neighbourhood of size N−1/2 of the diagonal. Let
ΩN ⊂ C

n × R be the set of those (z, θ) such that (z/
√
N, θ/N) belongs to

the domain of ρ.

Proposition A.5 ([33], Theorem 3.1). There exists a sequence (bk)k∈N of
polynomials on R

4n, such that each bk is of same parity as k, and a smooth
function RK on C

2n×N, bounded on the compact sets of C2n independently
of the second variable, such that for all N , for all (z,w, θ, phi) ∈ Ω2

N ×R
2,

there holds

N−nei(φ−θ)SN

(
ρ

(
z√
N
,
θ

N

)
,

(
w√
N
,
φ

N

))

= Π1(z,w)

(
1 +

K∑

k=1

N−k/2bk(z,w, P0) +N−(K+1)/2RK(z,w,N)

)

+O(N−∞). (9)

Here, Π1 is the kernel of the projector on the Bargmann space, as in equa-
tion (1).

Remark A.6. The next step is Proposition A.8, an estimate for RK that
is valid in all of Ω2

N . For this, we have to keep the O(N−∞) term outside.
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In [33], the O(N−∞) term is absorbed into RK , without altering the
property that RK is bounded on compact sets independently on N . How-
ever, if an estimate such that the one in Proposition A.8 did hold without
the supplementary O(N−∞) term, then one could deduce exponential esti-
mates for the off-diagonal of SN , that is, |SN (x, y)| ≤ e−cN |x−y|2 for some C.
Such results are indeed known [4] but cannot be obtained via the Boutet-
Sjöstrand parametrix because the Boutet-Guillemin construction [7] adapts
the Szegő kernel parametrix to the more general case of almost Kähler man-
ifolds, where exponential estimates for the off-diagonal of SN fail to hold
[12].

The method of proof for the last proposition can be in fact adapted to
compute SN in a fixed neighbourhood of a point on the diagonal, giving a
result close to the Theorem 4.18 of [28], which also appears in [9, 4]. Recall

SN (x, y) = N

∫∫
exp(iN(tψ(x, rηy) + η))s(x, rηy,Nt)dtdη +O(N−∞).

Replacing ψ and s by their expressions we get, after a change of variables,

SN (ρ(z, θ), ρ(w,φ))

= NeiN(θ−φ)
∫∫

e−N(t(1−A(z,w)eiη)−iη)einηξ(z,w,Nt)dtdη +O(N−∞).

We cannot use the stationary phase lemma, except if z = w, because the
phase has no critical points. But ψ and s depend holomorphically on eiη.
Thus, we can replace this integral, which is a contour integral on the unit
circle, with an integral on the circle of radius |A(z,w)| in order to get a
phase with a critical point. This corresponds to formally changing η into
η − i log(|A(z,w)|) in the computations. The integral now reads

SN (ρ(z, θ), ρ(w,φ)) =

NA(z,w)N eiN(θ−φ)
∫∫

e−N(t(1−eiη)−iη)einη
ξ(z,w,Nt)
A(z,w)n

dtdη +O(N−∞).

The last part of the product can now be computed using a stationary phase
lemma, and the fact that ξ is a classical symbol. Hence, we recover a result
similar to [28, 10, 4]:

Proposition A.7. There exists a neighbourhood V of (π, π)−1 diag(M) in
X × X such that one has, in local Heisenberg coordinates around a point
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P0 ∈ diag(X) with values in V , and for each integer K:

SN (ρ(z, θ), ρ(w,φ))

= NneiN(θ−φ)A(z,w)N



K∑

j=0

N−jBj(z,w, P0) +N−(K+1)rK(z,w,N,P0)




+O(N−∞). (10)

Each Bj is smooth and B0 is 1
πn on the diagonal. Moreover, rK is bounded

in a compact subset of the domain of definition of ρ, independently of P0

and N .

On the diagonal set, B0(z, z, P0) =
1
πn

because SN is a projector.

Since, in a neighbourhood small enough of the diagonal, one has

|A(z,w)| ≤ 1 − 1
4

|z − w|2,

equation (9) can be deduced from equation (10). This way, we obtain an
estimate on the remainder:

Proposition A.8. In the equation (9), there exist C and m such that
the remainder RK satisfies, for every N , for every z and w in ΩN , the
inequality:

|RK(z,w,N,P0)| ≤ Ce
1

4
|z−w|2(1 + |z|m + |w|m).

Proof. Rescaling the formula (10) yields:

N−nei(φ−θ)SN

(
ρ

(
z√
N
,
θ

N

)
,

(
w√
N
,
φ

N

))

= A

(
z√
N
,
w√
N

)N



K∑

j=0

N−jBj

(
z√
N
,
w√
N

)
+N−(K+1)rK

(
z√
N
,
w√
N
,N

)



+O(N−∞)

The functions Bj are smooth, and rK is bounded independently of N .
Thus, applying a Taylor expansion at the origin, there exist polynomials
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bsj , and a function rsK with polynomial growth independent of N , such that

N−nei(φ−θ)SN

(
ρ

(
z√
N
,
θ

N

)
,

(
w√
N
,
φ

N

))

= A

(
z√
N
,
w√
N

)N



2K+1∑

j=0

N−j/2bsj(z,w) +N−(K+1)rsK(z,w,N)





+O(N−∞). (11)

Let again RA be such that A(z,w) = πnΠ1(z,w)eRA(z,w). We wish to
control, for any integer N , the Taylor expansion at zero of

gN : (z,w) 7→ e
NRA

(
z√
N
, w√

N

)

.

For every multi-index α, the derivative of degree α of gN is a sum of
terms of the form

e
NRA

(
z√
N
, w√

N

)
4n∏

i=1

N1− 1

2
|βi|∂βi

i RA

(
z√
N
,
w√
N

)
,

where each index βi is nonzero and
∑
βi = α.

Recall that A and πnΠ1 coincide up to order 2 at the origin. In par-
ticular, the derivatives of order less than 2 of RA vanish at the origin. It
follows that a term of the form above is nonzero at the origin only if, for
each 1 ≤ i ≤ 4n, there holds βi ≥ 3. In particular, for each α there holds

∂αgN (0, 0) = O(N−|α|/6).

Moreover, ∂αgN (0, 0) is always a polynomial in N−1/2.
As we want to write an expansion with a remainder in O(N−K−1), let

us consider the Taylor expansion of gN at order 6K + 5. To control the
remainder, we make use again of the fact that RA is smooth on a compact
set and that RA(z,w) = O(|z|3, |w|3) at the origin. If βi = 1, then there is
a constant C such that, for every (z,w) and every N , one has

∣∣∣∣∂
βi
i RA

(
z√
N
,
w√
N

)∣∣∣∣ ≤ CN−1(|z|2 + |w|2).

Similarly, if βi = 2, there exists a constant C such that, for every (z,w)
and every N , one has

∣∣∣∣∂
βi
i RA

(
z√
N
,
w√
N

)∣∣∣∣ ≤ CN−1/2(|z| + |w|).
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If βi ≥ 3 we simply use the fact that the function ∂βi
i RA is bounded on its

set of definition. It follows that for every α there exist m and C such that,
for every N , for every z,w ∈ ΩN , one has

|∂αgN (z,w)| ≤ CN−|α|/6(1 + |z|m + |w|m) |gN (z,w)| .

Recall now from Proposition A.3 that

|g1(z,w)| ≤ e
1

4
|z−w|2.

From the definition of gN one deduces that

|gN (z,w)| ≤ e
1

4
|z−w|2.

Thus the Taylor expansion of gN of order 6K + 5 at the origin takes the
following form:

gN (z,w) =
2K+1∑

j=0

N−j/2bψj (z,w) +N−K−1rψK(z,w,N).

Here, the bψj are polynomials, and there exist C and m such that, for every
z,w and every N , one has

|rψK(z,w,N)| ≤ (1 + |z|m + |w|m)e− 1

4
|z−w|2.

We now return to equation (11). Replacing A with πnΠ1e
RA , using the

previous expression of gN and expanding, we find equation (9) with the
desired control of RK . �
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