Automatic Selection of Stochastic Watershed Hierarchies

Abstract : The segmentation, seen as the association of a partition with an image, is a difficult task. It can be decomposed in two steps: at first, a family of contours associated with a series of nested partitions (or hierarchy) is created and organized, then pertinent contours are extracted. A coarser partition is obtained by merging adjacent regions of a finer partition. The strength of a contour is then measured by the level of the hierarchy for which its two adjacent regions merge. We present an automatic segmentation strategy using a wide range of stochastic watershed hierarchies. For a given set of homogeneous images, our approach selects automatically the best hierarchy and cut level to perform image simplification given an evaluation score. Experimental results illustrate the advantages of our approach on several real-life images datasets.
Type de document :
Communication dans un congrès
European Conference of Signal Processing (EUSIPCO), 2016, Budapest, Hungary
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Amin Fehri <>
Soumis le : mercredi 7 septembre 2016 - 14:00:18
Dernière modification le : lundi 12 novembre 2018 - 11:00:08
Document(s) archivé(s) le : jeudi 8 décembre 2016 - 12:52:05


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01361512, version 1
  • ARXIV : 1609.02715



Amin Fehri, Santiago Velasco-Forero, Fernand Meyer. Automatic Selection of Stochastic Watershed Hierarchies. European Conference of Signal Processing (EUSIPCO), 2016, Budapest, Hungary. 〈hal-01361512〉



Consultations de la notice


Téléchargements de fichiers