Equitability, edge-injectivity, and the 1-2-3 Conjecture

Abstract : This paper is dedicated to studying the following question: Is it always possible to injec-tively assign the weights 1, ..., |E(G)| to the edges of any given graph G (with no component isomorphic to K 2), so that every two adjacent vertices of G get distinguished by their sums of incident weights? We answer positively to this question for some classes of graphs, such as trees and regular graphs, while, for some other classes of graphs, such as 2-degenerate graphs and graphs with maximum average degree at most 3, we prove that, provided we use a constant number of additional edge weights, the claimed assignment always exists. Our investigations here, are strongly related to several aspects of the well-known 1-2-3 Conjecture and the Antimagic Labelling Conjecture.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

Contributeur : Julien Bensmail <>
Soumis le : mercredi 7 septembre 2016 - 13:37:01
Dernière modification le : mercredi 31 janvier 2018 - 10:24:05
Document(s) archivé(s) le : jeudi 8 décembre 2016 - 13:19:04


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01361482, version 1


Julien Bensmail, Mohammed Senhaji, Kasper Szabo Lyngsie. Equitability, edge-injectivity, and the 1-2-3 Conjecture. 2016. 〈hal-01361482v1〉



Consultations de la notice


Téléchargements de fichiers