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Abstract

We propose an approach to transformational planning
and learning of everyday activity. This approach is tar-
geted at autonomous robots that are to perform complex
activities such as household chore. Our approach oper-
ates on flexible and reliable plans suited for long-term
activity and applies plan transformations that generate
competent and high-performance robot behavior. We
show as a proof of concept that general transformation
rules can be formulated that achieve substantially and
significantly improved performance using table setting
as an example.

Introduction
AI planning — fueled by the AI planning competitions —
has seen tremendous successes over the last decade. Yet, the
application of AI planning techniques to autonomous robots
performing everyday activity, which has been one of the ul-
timate goals of planning research ever since its infancy, has
not benefited much from these successes.

Why is this so? What do AI planners have to do for ser-
vice robots? There are many situations where AI planning
can help robots to solve their problems more reliably and ef-
ficiently. For example, a planner could reason about how to
get a cup out of a cabinet. If the robot has to take several
objects out of the cabinet it can think of an order that simpli-
fies the reaching tasks or it could check whether temporarily
moving an obstacle out of the way would help. It could rea-
son about whether it could leave a cabinet door open until
it is back or whether it would be safer to close the door in
the meantime. The robot could also think about the over-
all structure of activities such as setting the table. Here,
the question is whether to carry the tableware one by one,
whether to stack the plates, or to use a tray. Which of the
option is the best critically depends on the robot’s dexterity,
the geometry of the room furnishing, other properties of the
environment, the availability of trays, etc.

Most AI planners cannot perform these planning opera-
tions for several reasons. First, the planners primarily ad-
dress the problem of generating partially ordered sets of ac-
tions that achieve some desired goal state. While some of
the planners reason about resources and generate resource-
efficient plans they do so at an abstract level considering
plan actions as black boxes. In contrast, the cases above

require much more detailed consideration of resources and
situation-dependent resource requirements. Also, current
planners make the assumption that complex activities are
sufficiently specified using the set of actions that must be
carried out and a set of ordering constraints that prevent neg-
ative interferences between the plan steps. In contrast, robot
activity requires sophisticated coordination using control
structures much more powerful than simple action chaining.
When the robot gets an object out of the way to pick up an-
other one, the obstacle should be put back immediately after
the pick up is completed and before the robot leaves its cur-
rent location.

In this paper we propose TRANER (TRAnsformational
PlanNER for Everyday Activity), a form of plan-based con-
trol that better matches the needs of autonomous service
robots. Its planning tasks are to find out how subtasks can be
performed more efficiently and reliably, and to transform de-
fault instructions into activity specifications that enable the
robot to improve its performance in a specific environment.

The ultimate goal of our research is the development of
1. a library of general plans for everyday activities. The

library contains a single plan for picking up a variety of
objects in different situations: whether a pinch grasp or
a wrap grasp is needed, whether one or two hands, or
even a container are needed.

2. a set of transformation rules that implement general
plan revisions such as “transport the objects using a
container instead of one by one”. Such revisions
require substantial changes of the complex intended
courses of action.

Thus, our approach assumes that we can implement plans
and transformation rules of the required generality and that
our approach scales to the range of activities and the plan
improvements needed for a household robot. This means a
plan library that contains tens or even hundreds of general
plans and tens of general plan transformation rules.

This paper describes a proof of concept in which we use
a plan library for picking up and placing objects and a small
set of general transformation rules for optimizing transporta-
tion tasks.

We apply TRANER to a simulated robot operating in a
kitchen (see Figure 1) and performing complex activities
such as setting the table, cooking pasta, cleaning, etc. The
simulator uses realistic physical simulations of actions and



sensing devices. This application domain requires (1) plans
to include control structures that make plans reliable and
flexible — they need control structures for performing care-
fully synchronized concurrent activity, for behavior moni-
toring and failure recovery at all levels of activity specifica-
tion; (2) transformations to restructure the intended course
of action. For example, instead of transporting a set of ob-
jects one by one a transformation might suggest the use of
a container and thereby change the activity into getting the
container, loading it, transferring it, and unloading it.1

Figure 1: Kitchen scenario with a simulated B21 robot
equipped with a camera, laser, sonar sensors, and two arms.

We show, in a household domain and for a table
setting task that TRANER can learn flexible and reli-
able environment-specific default plans that improve the
problem-solving behavior of the agent substantially and in
a statistically significant way.

In the remainder of this paper we proceed as follows. The
next section gives an overview of TRANER. After that, we
describe the system in more detail and give examples of plan
transformations. We conclude with presenting experimental
results and related work.

Overview
TRANER operates in two modes. In the online mode
TRANER retrieves plans for the given tasks and executes
them. It also measures the performance of the plans with
a given cost function that includes the time needed to com-
plete tasks and the execution failures that occurred. Based
on the measured performance TRANER decides whether or
not it should try to improve the respective plans. In idle
times, e.g. at night, TRANER generates alternative candi-
date plans and evaluates them by simulating them. If the
candidate plans achieve better performance than the respec-
tive plan in the library, the library plan is replaced by the
new one. Before explaining TRANER’s software architec-
ture shown in Figure 2, we demonstrate the working of our
system with an example.
Example. Consider a robot that is to prepare a meal with a
main dish and a dessert. Let’s assume that some ingredients
for both dishes are in the larder. The robot should realize that
the same subtask — go to the larder to fetch an ingredient
— occurs in both plans, the one for preparing the main dish
and the one for making the dessert. In this case it should
combine the two steps into one and only go to the larder

1A video showing our plan transformations can be found at
http://cogito.cs.tum.edu
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Figure 2: Overview of TRANER. Libraries are illustrated as
boxes with rounded corners. Plans are depicted as diamond-
shaped objects, transformation rules as circles. Plans sur-
rounded by thicker lines have been transformed more often
than those with thin lines. The boxes mark operations on
data structures like plans or transformation rules.

once. But possibly the robot cannot carry all the things at
once. Then it should transform the plan again in a way that
it uses a container for transporting the ingredients. So the
resulting plan would be to go to the larder once and get all
ingredients at once, possibly by using a container.

But wait, is this really the best plan? Maybe there is
no container at hand and the getting of the container needs
more time than just going to the larder twice. Or the kitchen
might be very small and the ingredients for the dessert are
in the robot’s way while preparing the main dish. So the
best plan can actually not be determined without knowl-
edge and experience about the environment. Depending on
the robot’s dexterity, the size of the kitchen, the way to the
larder, the places where possible containers are kept, etc.
different plans should be favored.
Plan Library. All plans are stored in a plan library. It
contains default plans (surrounded by thin lines) that can be
expected to work in any kitchen as well as plans that have al-
ready been enhanced by transformations and are adapted to
the specific needs of the environment and the robot working
in it (depicted with thicker lines).

The default plans must be robust and general without
making assumptions about the specific situation they are ex-
ecuted in. For example, a plan telling the robot to get the
ingredients from the larder one by one is probably subop-
timal for most environments and situations, but it is quite
certain to work. We have already described how this plan
can be transformed to be more efficient.
Plan Execution. When the robot is to perform a job, a
plan is chosen from the plan library. All the plans in the li-

http://cogito.cs.tum.edu


brary are expected to work, so that in a known situation, the
chosen plan produces the desired result with high probabil-
ity. The chosen plan is then executed and monitored in the
environment.
Plan Evaluation. After it has ended (either successfully or
with a failure) the result of the execution is evaluated. For
this purpose, some benchmark data is observed during plan
execution, for example the time and resources needed or the
number of occurred failures, the fraction of them that could
be repaired etc. Then a cost function is applied to this data.
If the execution fulfills all the quality criteria, the plan is
not changed and stays in the plan library. However, if the
evaluation finds that the plan doesn’t work optimally, it is
tried to be enhanced by plan transformation.
Plan Transformation and Rules. For making plans better,
a set of transformation rules is given. A transformation rule
accepts a plan with a certain structure and produces several
new plans according to the specified rule. For improving
plans, a possible transformation rule is chosen and applied.
The resulting plans are then executed in simulation, moni-
toring the same quality criteria as in the real plan execution
before. Some of the new plans might fail completely, pos-
sibly because they aren’t even syntactically correct. In any
case, all transformed plans are evaluated against the old one.
If new plans fail or perform worse than their parent based on
several simulation runs, they are discarded and other trans-
formations are tried, otherwise the best plan is chosen as the
new default plan for the activity.

TRANER performs exhaustive search in order to find bet-
ter plans. Plan improvement as just described doesn’t nec-
essarily have to end after one transformation step, instead it
is an iterative process. If the new plan is better than the old
one, but still doesn’t fulfill the demands of the evaluation
function, it is stored and transformed further. Besides, if the
original plan fits the structural conditions of several transfor-
mation rules, all possible rules are applied and the resulting
plans are evaluated against each other. This procedure cor-
responds to an unguided search in the space of plans, where
plan transformations describe the possible state transitions.
Discussion. TRANER’s exhaustive search strategy waste
resources. To make this search more efficient, especially
when many transformation rules are available, the transfor-
mation rules provide an applicability condition, which uses
the benchmark data observed during plan execution to deter-
mine if the transformation rule might be a good choice. For
example, if the robot dropped objects when it had to trans-
port several things, a rule that adds the use of a container
would be more useful to make the plan stable than one that
changes the order in which the objects are needed. As an-
other way to focus the search more we envisage the follow-
ing system operation: the planner is coupled to an imitation
learning system, which will hypothesize that people set ta-
bles faster because they carry objects as stacks. The planner
would consequently apply the stacking transformations and
then debug the resulting plan candidates.

For testing transformed plans a realistic accurate sim-
ulation environment is needed. Therefore, we use the
Gazebo simulator, which provides a very good physics en-

gine and realistic, non-deterministic simulation. At the mo-
ment “real” and simulated environment are identical. This
ensures that when we have a real robot also a realistic simu-
lation is available. We describe more details about the sim-
ulation in section “Empirical Results and Discussion”.

At the moment, our default plans and transformation rules
are coded by hand. In the future, plans could be extracted
from web sites like eHow.com or knowledge bases like
Cyc. The implementation of transformation rules is quite
straightforward for special cases, but needs experience and
care if the rules are to be formulated in a general way.2

TRANER
In the following, we explain TRANER in more detail. The
sections are organized along the main components of Fig-
ure 2. As a running example we use the task of setting the
table for an arbitrary number of persons.

Plan Library
Our plan library contains plans for reaching, grasping, pick-
ing up objects, navigating, etc. — routines that can be used
as building blocks of more complex activity specifications.
These are the plans that are either implemented with great
care or are already adapted to the specific environment, so
that they are usually not changed by plan transformations.

More complex plans are filling a container with a liquid,
carrying an object from one position to another, stacking ob-
jects and even more abstract plans like setting the table or
cooking pasta. These are the plans that gain most by plan
transformation.

The default plans, which are to be adapted to the environ-
ment, must be designed in a way that makes them general,
robust, and transformable. General means that these plans
are not optimized for a special environment. They should
not make any assumptions about the robot’s abilities, the dy-
namics, the spatial layout or the users.

To achieve reliability, the robot’s default plans detect,
monitor and recover failures during execution. Failures can
be detected and recovered on any level of abstraction. For
example, if the robot detects that it was unable to grip a cup,
the low-level grip plan would try to grip again. If after sev-
eral trials the cup still couldn’t be reached, the grip plan fails
and passes the failure description to the higher-level plan.
This plan might try to grip with the robot’s other gripper or
from another location. If that still doesn’t help, a higher-
level plan might decide to get a different cup that can be
reached more easily.

Furthermore, we want the default plans to be trans-
formable, in order to make them better by applying plan
transformations. This means that the plans must follow a
structure that can be understood by TRANER, so that trans-
formation rules fit the plan.

Both for the failure handling abilities and the explicit
structure of the plans, the plan language RPL (Reactive Plan

2Sussman (1977) learned transformation rules automatically,
but in an artificial domain. In the kitchen domain, possible trans-
formation rules could be deduced by watching humans. This, how-
ever, still requires tremendous research effort.

eHow.com


1 (define-plan (achieve ( table-set ?persons))
2 ( achieve-for-all
3 (lambda (person)
4 (with-designators
5 ( ( table ’( the entity (type table)
6 (used-for meals)))
7 ( seating-location ‘( the location (at , table)
8 (preferred-by ,?person)))
9 (plate ‘( an entity (type plate)

10 (status unused)))
11 (cup ‘(an entity (type cup)
12 (status unused))) )
13 (achieve (placed-on
14 plate
15 table
16 ‘( the location (on , table)
17 (matches (entity-location ,plate ))
18 (matches ,seating-location ))))
19 (achieve (placed-on
20 cup
21 table
22 ‘( the location (on , table)
23 (matches (entity-location ,cup))
24 (matches ,seating-location ))))))
25 ?persons))

Figure 3: The default plan for setting the table. An example
for calling the plan is (achieve ( table-set ’( Alvin Theodore Dave))).

Language) [McDermott, 1991] together with some exten-
sions proposed by Beetz (2001; 2002) provides an ideal ba-
sis. Unfortunately, space limitations do not allow us to in-
troduce the language. We can only give a flavor of what the
plans look like.

As the plans are to work in different environments, ob-
jects cannot be addressed by unique identifiers, which is
in any event undesirable in real-world settings. Therefore,
TRANER supports the concept of designators, logical de-
scriptions of objects, which are resolved to object instances
at run-time. For example, when setting the table, one sub-
task is to bring a plate to the table. The identity of the plate is
irrelevant, but it should be a clean plate, not a used one. With
designators, such a plate can be described declaratively and
the robot tries to find one in the given situation (see lines 9
and 10 in Figure 3).

The default plan for setting the table is shown in Figure 3.
It first places the plate and the cup for one person on the
table, then for the next one, and so on. The low-level plan
for placing an object on the table involves the two steps of
picking it up and then placing it on the table. The pick-up
routine searches for the object described by the appropriate
designator, navigates to a location where it can grip the ob-
ject and finally picks up the object. Putting down the object
includes navigating to a suitable put down position and plac-
ing it on the table. These basic routines are implemented in
a robust way and can recover from local failures, like losing
the object during navigation.

Plan Execution
The environment our robot works in is a very realistic sim-
ulation of a real-world kitchen. In such a complex environ-
ment failures are unavoidable. Figure 4 shows a small vari-
ety of failures that occur while the robot is handling objects.
The robot sometimes cannot grip the object reliably, things
slip from the grippers, or the robot places an object at a posi-
tion, where another object already is (either because its state
estimation is inaccurate or because it has placed one of the

Figure 4: Different failures observed during experiments:
dropping objects, not being able to grip objects, and putting
objects at the wrong position.

objects at the wrong position). These failures are sometimes
caused by the lacking dexterity of the robot, sometimes by
the uncertainty of the environment. In any case, it is impos-
sible to avoid them completely.

To achieve reliability and flexibility our plans monitor
eight types of failures. On averages 1–4 failures are dealt
with by a plan. If a failure occurred, which happened in
8% of the experimental runs, the robot achieved its goals in
roughly 86% despite the failure. The failure monitors and
handlers are not complete. They suffice to achieve a ro-
bustness for complete task achievement of more than 90%.
Flexibility and reliability also require synchronized concur-
rent activity: on average 10–15 threads of activity are exe-
cuted concurrently. During one run of the table setting plan
approximately 700 conditions (perceptual changes, failures)
are monitored.

Plan Evaluation
When evaluating plans, not only efficiency, but also stability
criteria must be considered. On the other hand, not every
failure causes the whole plan to fail. For assessing the im-
portance of failures that have occurred during testing, it is
necessary to test a plan several times and then decide if a
failure is intrinsic in the plan (if it occurs several times) or
has been observed as an instance of the uncertainty in the
environment (if it is observed infrequently).

For making this testing phase efficient and safe, this step
is to take place in simulation. Of course, the simulation must
be near enough to reality in order to give valid results. We
use the Gazebo simulation environment described below.

The system doesn’t depend on the transformation rules to
generate valid plans. Even syntactically invalid plans can
be simulated (the controller aborts and the robot doesn’t do
anything afterwards) and can therefore be evaluated. Spec-
ifying good transformations only ensures that not too many
garbage plans are generated.

Transformation Rules
For optimizing plans, the robot can choose from a set of
predefined transformation rules of the following form:

input schema
output plan

transformation

applicability



( partial-order
( ?steps-a

( at-location ?loc-1 ?body-1)
?steps-b
( at-location ?loc-2 ?body-2)
?steps-c )

?orderings)

( partial-order
( ?steps-a ?steps-b ?steps-c

( at-location ?loc-1
( partial-order ?body-1 ?body-2)) )

?orderings)

(same-location ?loc-1 ?loc-2 )

(and (sub-task ?task-1 ?benchmark-data)
(sub-task ?task-2 ?benchmark-data)
(task-goal ( at-location ?loc ?()) ?task-1)
(task-goal ( at-location ?loc ?()) ?task-2 ))

Figure 5: Rule using the at-location macro. When plans are
tested, the tasks they trigger are protocolled in a feedback
trace. This rule is only applicable when the benchmark data
contains two tasks operating at the same location.

Each transformation rule includes an applicability condi-
tion, which decides whether or not the rule is applicable to
the current plan in the current situation. The input schema
determines the subplan to be transformed by specifying a
pattern, which requires the plan to match certain structural
conditions. When the applicability condition is fulfilled and
the input schema matches, the plan is transformed according
to the transformation rule, which specifies how code parts
matching the input schema must be altered. The output plan
states how the resulting plan is to be constructed from the
transformed code pieces.

While all kinds of plan transformations can be expressed
with these rules, careful design of the plan transformation
rules as well as the plans is necessary in order to keep the
rules general — so that they can do the same modification to
many plans and are not restricted to very specific syntactic
forms. We do this by introducing new classes of macro plans
that syntactically represent their purpose, are modular, and
work in a variety of task contexts.

For example, to realize transformation rules to sort
subplans according to the locations where the actions
are to be executed we introduce a new plan macro
( at-location loc body). The code for the macro ensures that
body can only be executed when the robot is at location loc.
If the subplan is executed and the robot is not at loc the plan
asks the robot to first go to loc and starts executing body
after the robot’s arrival at loc. The point is that if every sub-
plan that is to be executed at particular locations is made
explicit using the at-location macro, then general transfor-
mation rules that automatically group and order subplans ac-
cording to the locations where they are to be executed (see
Figure 5) can be specified. Besides, we have introduced
macros for specifying the objects that are to be manipulated,
used as containers, needed as tools or serve as ingredients.

Plan Transformations
We can now assume that the plans in the plan library and the
transformation rules are implemented and designed in a way
that makes them appropriate for TRANER. In the following,
we show how transformation rules can be applied to the de-

( achieve-for-all
(lambda (?lambda-args) (with-designators ?desigs

(step-1 ?args-1)
...
(step-n ?args-n)))

?args)

(with-designators ?mod-desigs
( achieve-for-all (lambda (?lambda-args) (step-1 ?mod-args-1)) ?args)
...
( achieve-for-all (lambda (?lambda-args) (step-n ?mod-args-n)) ?args)) tr
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Figure 6: Transformation rule changing the order of plan
steps. The rule is applicable in any situation and only the in-
put schema and output plan are shown explicitly. The trans-
formation code contains rules specifying how to compute
values like ?mod-desigs and ?mod-args-1.

( achieve-for-all
(lambda (?lambda-args) (placed-on ?top-obj ?bottom-obj ?rel-loc))
?args)

(with-designators ( (stack ’( a stack ?stack-description )) )
; build stack
(achieve ( entities-stacked stack))
; move stack
(achieve (placed-on stack ?bottom-obj ?mod-rel-loc))
; unstack
( achieve-for-all

(lambda (?lambda-args) (placed-on ?top-obj ?bottom-obj ?rel-loc))
?args)

tr
an
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or

m
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n
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Figure 7: Transformation rule inserting a stacking plan step.
The ?stack-description is generated by rules from the trans-
formation code and includes the designators of the objects
composing the stack.

fault plan from Figure 3 to make it work more efficiently.
It certainly shows potential for improvement, since bringing
the necessary objects to the table one by one for every person
takes a lot of time. For this we wrote three transformation
rules.
1st Transformation: Regroup Plan Steps. The first trans-
formation (see Figure 6) reorders the plan steps. This means
that now first all plates and then all cups are placed on the ta-
ble separately. The performance of the new plan is the same
as of the old one, but now the next two transformations are
possible.

This rule is an instance of a class of transformations re-
grouping plan steps, which is possible when a plan contains
steps working on the same type of objects or performs the
same task for different types of objects.
2nd Transformation: Use Containers. The second trans-
formation (see Figure 7) inserts two new steps into the plan.
Before placing each plate separately on the table the plates
are stacked and the stack is placed on a suitable location on
the table. A good choice is the final location of the bottom
plate. Afterwards all plates are placed at their correct loca-
tions. But this time the robot needs to navigate less than in
the other plan, or in the best case not at all. The stacking
step is skipped if the plates are already stacked.

This rule can be regarded as a special case of using a
container, where the bottommost object constitutes the con-
tainer. Using containers is usually useful when many objects
must be transported to similar locations or when objects can
easily be lost like in the case of cutlery.



3rd Transformation: Exploit Resources. The second
transformation is also applicable for the cups. But when the
robot simulates the transformed plan, it will detect that it is
not stable to stack cups and carry the stack. Now the third
transformation is applied to the part of the plan concerned
with carrying the cups. Since the robot has two arms and
only one arm is used for carrying cups the third transforma-
tion always picks up two cups at once and puts down both
on the table. If the table is to be set for an uneven number of
persons, then in the last step only one cup is picked up and
placed on the table.

Again, we can state a more general rule: Transform plans
such that they use the robot’s resources optimally.
Discussion. Usually one could expect the plates to be
stacked in a cupboard. So why didn’t we construct the de-
fault plan in a way that it assumes the plates to be stacked
and takes a stack of plates out of the cupboard instead of sin-
gle plates? One reason is that the default plan should be con-
structed in a way that it works in any situation, albeit it might
not be efficient. This includes situations where the plates are
in the dishwasher or are lying around in the kitchen. Another
point is that sometimes people prefer specific plates, which
might be located at special places.

We justified the first transformation step of reordering
plan steps by referring to the later transformations of stack-
ing the plates and the cups. If this step was not performed,
the second transformation rule could still be used to stack a
cup on a plate (the plate being the container for the cup).

The transformations presented here are general in that
they can be applied to a variety of kitchen tasks. When
dishes are taken out of the dishwasher they could be brought
to their respective locations one by one or in a stack depend-
ing on the object properties and on the positions they are to
be moved to. When clearing the dishes after a meal, again
it could be useful to combine different plan steps. In con-
trast to setting the table, there might be other constraints for
clearing like not to stack dirty dishes.

Empirical Results and Discussion
For our experiments we used a simulated household and
robot based on the Gazebo simulator. The decision to use
a simulator was made, because a kitchen is a complex envi-
ronment where the robot needs sophisticated actuators, es-
pecially arms and grippers. Such equipment, together with
the kitchen itself, is very expensive and hard to maintain.
The simulation is much cheaper, better available and more
flexible concerning different robot hardware and different
environments. We state that the performance of plan trans-
formations relies heavily on the environment. This is hardly
to be tested with only one kitchen. The simulation gives
us the possibility to have different testing environments at
hand. Besides, we can adapt the features of the environment
according to our research focus. For example, for cooking
or setting the table our robot needs to open and close cup-
board doors. However, for opening and closing doors in a
kitchen, sophisticated motor control and plans are necessary,
in which we are not interested. Therefore we added auto-
matic doors to the kitchen, which can be remote-controlled

by the robot. This is an assumption that could very well be
built into a real kitchen, but the simulation could be imple-
mented with much less effort.

On the other hand, the danger of a simulation is that inter-
esting aspects of the environment are abstracted away from
and the results gotten in simulation aren’t applicable to real-
istic settings. To avoid this danger, we chose the Gazebo
simulator, which includes the physical simulation engine
ODE. All objects in the kitchen and the robot are composed
of solid entities, whose interaction is simulated very realisti-
cally by ODE. The interface between our robot program and
the simulator is the same as between the program and a real
robot. This is possible with Player [Gerkey, Vaughan, and
Howard, 2003], which provides a device-layer that provides
a network interface to the hardware (or simulated hardware)
underneath. This makes it possible to use the same control
program in simulation and on a real robot, which we are cur-
rently building.

As we aren’t concerned with state estimation, we assume
that the robot’s position (x/y-coordinates and orientation) are
given as percepts (which is quite realistic in a known envi-
ronment and with a laser-equipped robot) and the position
of all objects in the robot’s field of view can be determined
accurately. The simulation is very realistic with respect to
non-determinism in the robot’s actions. Because there are
several processes involved (Gazebo, Player, the robot pro-
gram) the execution of a robot control program in a given
situation in the simulator never causes exactly the same re-
sult. This is due to the delays in normal process and network
communication and makes the simulation very realistic.
Experiments. With our experiments we want to show that
(1) applying fairly general transformation rules to robust and
flexible plans leads to a performance improvement. (2) it
depends on the environment and the dexterity of the robot,
which transformed plan the robot should use.

For our experiments we used two different kitchens (Fig-
ure 8). In both kitchens there are a table and a kitchenette.
For our experiments the robot had to set the table for Alvin
(A), Theodore (T) and Dave (D) in four different combina-
tions (A & T, A & D, T & D, and A, T & D). As predefined
knowledge we assumed that the preferred seating locations
at the table of all three persons are known, and that it doesn’t
matter which plate or cup they get. Also, the relative loca-
tions of the dishes (plate, cup, fork, knife, and spoon) for one
cover were given. For our experiments we only used plates
and cups to be fetched from the accordant kitchenette.

For setting the table we used five plans, the default plan
and four transformed plans (resulting from applying only the
1st, the 1st and 2nd, the 1st and 3rd, and all three transfor-
mations respectively). Every plan was executed ten times
for the eight test cases while recording the time needed for
setting the table. Only if no failure occurred during one run
the data was used, otherwise the run was repeated until it
succeeded.
Results. Figure 9 shows a representative excerpt from the
experimental results we have obtained in the way described.
It shows the average time the agent needed to set the table
for Alvin & Dave and Alvin, Theodore & Dave respectively
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Figure 8: Top view of our two kitchens. A, T, and D de-
note the preferred seating locations at the tables of Alvin,
Theodore, and Dave respectively.

for all of the five plans together with the maximum and min-
imum derivation.

As could be expected, the first transformation (grouping
similar actions) has nearly no influence on the performance
of the plan. But it is a necessary prerequisite for applying
the other two transformations.

The second transformation (stacking the plates) improves
the time needed in two of the four cases. In one case the
time is nearly the same as the default plan and in the last
case it takes even longer to set the table. Here the problem is
that stacking and unstacking consumes more time than just
carrying the plates one by one.

The third transformation (exploiting resources) always ac-
celerated setting the table. Not surprisingly, the plan result-
ing from all three transformations is the sum of the improve-
ments achieved by the second and third transformations.

These data already show that not always applying all three
transformations results in the best plan. Instead, it depends
on the environment and the robot which plan is the best. Fig-
ure 10 shows the best plans for each of the eight test cases.
In five cases applying all three transformations is the best
solution, twice not stacking plates, but using both arms for
carrying cups is the choice and once only stacking.
Discussion. In our experiments we only regarded success-
ful runs, which explains the deviation of only three seconds.
Also when choosing the best plan, the time of successful
runs, which we have just presented, is only one criteria, an-
other is the success probability or how many failures occur.
At first glance the time improvement achieved by the trans-
formations isn’t too impressive. The reason for this is that
our simulation is relatively close to the state of the art in
robotics. Thus, manipulation and dexterity are much more
immature than navigation (compared to humans). Most of
the plan execution time is taken up by low-level manipula-
tions, which lessens the impact of our transformations.

More interesting than the results themselves is the fact
that the results are as we expect. This is something that
doesn’t come for free in the robotics domain. Notably, in
order to achieve the results the robot had to accomplish the
tasks reliably. In some runs serious action failures (e.g. an
object slipping out of the gripper) occurred. In most of these
cases (86%) the top-level tasks could be achieved despite
such failures. The robot never failed to achieve its tasks
without recognizing these failures. This level of reliability
and failure awareness is a required precondition for improv-

ing robot behavior using AI planning mechanisms.
Failure awareness is also needed to filter out experimental

data that are corrupted by random failures. Only with small
variances in the resulting behavior the planner can make
valid inferences that one plan variant is better than another
one in a statistically meaningful way (for example, passing
a t-test). In our experiments the maximum difference to the
average execution time was three seconds.

Of course, the most important result is that we can ap-
ply fairly general transformation rules to flexible and reliable
robot plans for long-term activity and obtain substantial per-
formance improvements. In our ongoing research we scale
TRANER along two dimensions. First, we extend the task
domain from setting the table to include cooking and clean
up tasks. The second dimension of scaling are the aspects of
activity that are handled by the transformation rules.

Our plans show that a plan representation as sequence of
actions doesn’t suffice by far to represent general plans for
complex tasks. The original default plan for setting the table
contains a loop so that the number of dishes can vary. At
application time this plan can be used without any costs of
planning. The optimization, too, works on the control struc-
tures so that the optimized plan is still general in the way
that the number of dishes needn’t be known in advance. We
have shown that even on plans with complex control struc-
tures specifying robust and flexible behavior it is possible
to define modular and transparent transformation rules that
lead to better behavior.

As we have already argued, the best plan relies heavily on
the characteristics of the underlying routines. The perfor-
mance of lower-level routines depends strongly on the en-
vironment and their behavior must be adapted accordingly.
For this reason it is impossible to determine the best plan for
a problem analytically. Transformations only make sense in
the context of a fixed environment and with empirical evi-
dence as to the quality of a plan.

Related Work
TRANER can be viewed as a modern version of Sussman’s
(1977) Hacker. Like Hacker, TRANER aims at learning plan
libraries by debugging the flaws of default plans. Unlike
Hacker, which worked in the idealized Block’s World do-
main, TRANER applies to real-world robot control.

Other transformational planners are Chef [Hammond,
1990] and Gordious [Simmons, 1988]. The main differ-
ence between these systems and TRANER is that TRANER
reasons about concurrent robot control programs while Chef
and Gordious reason about plans that are sequences of plan
steps. Another difference is that they try to produce correct
plans while TRANER adapts plans to specific environments
and corrects failures during execution. Botelho and Alami
2000 show how robots can enhance plans cooperatively by
merging partially ordered plans using social rules.

TRANER is most closely related to more recent vari-
ants of transformational planning techniques. Most notably,
to McDermott’s (1992) XFRM planner that performs im-
proving transformations on an idealized grid world agent.
Beetz (2001) successfully applies transformational planning



Alvin, Dave Alvin, Theodore, Dave
kitchen A kitchen B kitchen A kitchen B

default plan 191.7 ( +1.2, -0.8) 240.3 ( +0.6, -0.5) 293.4 ( +1.8, -1.6) 337.8 ( +1.4, -0.9)
group (1st) 190.5 ( +0.9, -0.9) 241.1 ( +1.2, -0.7) 295.1 ( +3.4, -1.1) 336.7 ( +1.4, -0.7)
stack (1st & 2nd) 191.5 ( +0.8, -1.2) 233.1 ( +1.7, -0.9) 285.7 ( +1.4, -1.0) 373.0 ( +1.4, -1.4)
resources (1st & 3rd) 184.2 ( +0.8, -1.3) 210.5 ( +0.9, -0.7) 268.8 ( +1.2, -0.8) 330.1 ( +1.4, -1.8)
stack & resources (1st, 2nd & 3rd) 185.0 ( +1.7, -0.9) 202.7 ( +1.7, -0.9) 259.1 ( +2.6, -1.3) 363.7 ( +4.0, -2.7)

Figure 9: Time in seconds needed for setting the table in both kitchens for Alvin & Dave and Alvin, Theodore & Dave
respectively. The values inside the parenthesis are the maximum and minimum derivation of the time needed.

A, T A, D D, T A, T, D
kitchen A stack & resources resources stack & resources stack & resources
kitchen B stack & resources stack & resources stack resources

Figure 10: Best combination of transformation rules applied to the default plan resulting in a plan with the shortest time needed
for setting the table.

mechanisms to autonomous robot control, in particular of-
fice delivery tasks for a robot without manipulators. Trans-
formational planning, however, is particularly promising
and challenging if the robots’ tasks are the manipulation
of objects. This is what TRANER does. Still, several of
TRANER’s methods for plan representation and specifying
transformation rules are taken from McDermott (1992) and
Beetz (2001) and have been further extended.

Discussions of specifying everyday activity incorporated
and to be incorporated into TRANER can be found in Ham-
monds’ et al. (1995) article on environment stabilization and
Agre’s and Horswill’s (1997) work on lifeworld analysis.

Conclusions
In this paper we have proposed TRANER as a transfor-
mational planner for (still simulated) autonomous service
robots performing complex everyday activity. Although the
transformations TRANER performs are still quite limited we
consider the results important for several reasons. First,
TRANER demonstrates as a proof of concept that AI plan-
ning techniques can be successfully applied to autonomous
robot control and show promise to substantially improve
their performance. Second, improving the performance of
service robots in our view requires planning mechanisms to
reason through and revise plans that produce flexible and
reliable long-term problem-solving behavior. Third, causal
link planning, which is commonly considered to be general
purpose planning, is only a small subset of the planning op-
erations needed by service robots. Reasoning about activ-
ity restructuring, about the usage of partially described ob-
jects, about when and how to stabilize the environment (e.g.
through cleaning up), are examples of planning techniques
that are equally important. Fourth, we believe that a promis-
ing approach lies in the co-design of plan representations
and plan transformations. Plan representations must make
aspects of activity transparent and modular, so that we can
state more general transformation rules.

The research described in this paper constitutes an im-
portant first step towards developing a computational model
for plan-based control that enables service robots to substan-
tially improve their performance doing training on the job.
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