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Abstract

In the present study, a new 3D thermodynamic coupled model is proposed for SMAs.
The behavior of SMA structures is described through several strain mechanisms, each
associated with its proper internal variables. This model is built to capture the par-
ticular behavior of SMAs when subjected to complex loading, namely non-proportional
thermomechanical loading. To achieve this task, a new approach to describe the marten-
sitic reorientation mechanism has been introduced in conjuction with a new method to
account for forward and reverse transformation. Thermomechanical coupling, related to
dissipation and latent heat is fully implemented. The validity of the model is demon-
strated by comparing experimental results of complex thermomechanical loading paths
of SMA structures with numerical simulations.

Keywords: Shape memory alloys, Superelasticity, Phase transformation,
Reorientation, Non-proportional loading, Numerical simulation

1. Introduction

Shape memory alloys (SMAs) are metallic materials named after the discovery of their
unique capability to retrieve their original shape when their temperature is increased after
a mechanical loading. It is the result of the transformation at the crystallic level between
the two key solid phases that the material can adopt, austenite and martensite. The5

di�erence between these two phases lies on the architecture of the crystalline structure,
which varies between a cubic-like con�guration in austenite and a less symmetric con�g-
uration in martensite (Patoor et al, 2006; Otsuka and Wayman, 1999). Several di�erent
e�ects have been investigated, for instance superelasticity and actuation, depending on
the thermomechanical conditions imposed. Such capabilities rank those materials in the10

wider class of smart materials, according to their multi-physics (mechanical-thermal)
coupling.
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All those e�ects are based on the fact that such martensitic transformation can take
place in both ways, and that the martensitic phase can be reoriented under the action of
mechanical forces. The direction from austenite to martensite is systematically de�ned as15

forward transformation, whereas the inverse procedure is called reverse transformation.
This phase transformation can be the result of a change in temperature between critical
values, and/or a change in the mechanical state. In the absence of applied stress, forward
transformation occurs between martensite start (Ms) and �nish (Mf ) temperatures and
reverse transformation between austenite start (As) and �nish (Af ) temperatures. The20

development of appropriate stress levels can also lead to phase transformation. In par-
ticular, applying a mechanical loading/unloading cycle above Af demonstrates the e�ect
of superelasticity in SMAs. During forward transformation, the transformation starts
at a critical, temperature-dependent stress. A stress plateau is observed in the uniaxial
stress-strain diagram, before the start of the elastic section of martensite. In the case of25

mechanical loading at temperatures above Af , the strain that appears between the two
elastic sections on the stress-strain diagram corresponds to a transformation strain. This
strain is fully recovered after reverse transformation has �nished during unloading.

Martensite is the phase that appears at low temperatures/high stress state and con-
sists of zones with di�erent orientation directions found in a single crystal, called variants.30

Two main forms , distinguished on the basis of the con�guration of variants, are observed:
twinned martensite, for which the variants appear in multiple directions and form a self-
accommodated assembly ; and detwinned or oriented martensite, for which a principal
direction of variants dominates the martensitic composition (Merzouki et al, 2010). Con-
trary to the two-way direction of phase transformation, the transition between these two35

crystallic con�gurations occurs in one direction, resulting to detwinned martensite only
and is called orientation or detwinning. This occurs with the help of mechanical work-
ing, when stress is increased between critical levels. Such oriented martensite can still
be reoriented if the direction of mechanical forces change. Appropriate combination of
orientation and phase transformation processes result in the characteristic shape memory40

e�ect (Lagoudas, 2008).
The properties of shape memory and superelasticity render SMAs an interesting ma-

terial sought to be utilized in practical applications in the last twenty years (Lecce and
Concilio, 2014; Barbarino et al, 2014). A signi�cant increase in the interest given to
SMAs in publications and patents has recently been observed (Mohd Jani et al, 2014).45

Speci�cally, innovative systems were introduced in automotive and aerospace industries
(Hartl and Lagoudas, 2007; Van Humbeeck, 1999). SMAs have also found particularly
extended use in biomedical applications (Auricchio et al, 2015; Morgan, 2004). This
wide array of applications motivates research to develop mathematical models able to
capture their particular thermomechanical behavior (Khandelwal and Buravalla, 2009).50

These models aim at being utilized in robust computational tools, mostly Finite Element
Analysis (FEA) methods. Their contribution is associated with the assistance provided
to engineers to design SMA actuators and conceive innovative products.

In recent years, various phenomenological models have been proposed to explain
the physics behind SMA behavior (Cisse et al, 2015). They focus on the macroscopic55

variables, allowing for relatively simple numerical implementation with respect to mi-
cromechanical approaches based on the physics of the crystalline structure (Patoor and
Berveiller, 1997; Lagoudas et al, 2006). The primary macroscopic variable taken in mind
in such models is the martensitic volume fraction (MVF). The actual representation
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of phase transformation in the macroscopic level is the change of the concentration of60

martensite in the material, thus justifying this consideration(Hartl et al, 2010; Chemisky
et al, 2011; Lexcellent et al, 2006). The direction of strain appearing during transforma-
tion is taken in mind using necessarily a tensorial variable that depends on the loading
conditions(Luig and Bruhns, 2008). Generally, these models have proven su�ciently ac-
curate in capturing the material behavior under unidirectional loading (Peultier et al,65

2008).
The e�ect of orientation has also been investigated in recent works (Ameduri et al,

2015; Sedlák et al, 2012; Saleeb et al, 2011; Saint-Sulpice et al, 2009). These models add
the feature of simulating three-dimensional loading paths to previous simpler models
(Boyd and Lagoudas, 1994; Brinson, 1993; Saleeb et al, 2001). Interesting experimen-70

tal work has been carried with respect to such loading (Bouvet et al, 2004; Grabe and
Bruhns, 2009; Sittner et al, 1995). Reorientation consists in the change of the orientation
of the martensite variants in existing martensite volume, without inducing further trans-
formation. The procedure of reorientation has a visible e�ect on the preferred direction
of inelastic strains, whereas detwinning mostly concerns their magnitude (Liu and Favier,75

2000; Popov and Lagoudas, 2007). In certain models (Panico and Brinson, 2007; Helm
and Haupt, 2003; Arghavani et al, 2010) and subsequent works, two di�erent volume
fractions for martensite are considered as driving material properties, one for twinned
and one for the detwinned part. This proves a useful consideration, since the evolution
of the martensitic strain can be associated to thermally induced and stress induced for-80

ward transformation. However, most of these models operate under the assumption that
there is a direct relation between the stress induced martensitic fraction and an equiva-
lent transformation strain magnitude, as investigated in Souza et al (1998); Juhász et al
(2001); Taillard et al (2008).

In this paper, a phenomenological model, based on the physical interpretation of85

the processes that occur inside a SMA polycrystal is developed. The notion of mean
transformation strain inside the martensitic volume discussed in the articles of Peultier
et al (2008); Chemisky et al (2011) is examined from a macroscopic point of view to
rede�ne the principles of reorientation, forward and reverse transformation. This leads to
the introduction of independent scalar rate variables which drive each of the three strain90

mechanisms. Accordingly, a robust formalism is presented in terms of thermodynamics
which is based on a Gibbs free energy potential.

Moreover, the scope of this work extends to providing a general framework for ad-
dressing the numerical resolution of multiple strain mechanisms simultaneously activated,
allowing for adding even more inelastic strain mechanisms. Motivated by the work of95

Auricchio et al (2014), each mechanism is thought to have its proper activation criterion.
These criteria take the form of yield functions, depending on internal variables. Based
on simple observations, the methodology for carrying out the numerical algorithm is
presented and the mechanical and thermal tangent moduli are calculated. Furthermore,
recognizing the strong coupling of thermomechanical e�ects on SMA behavior (Peyroux100

et al, 1998; Morin et al, 2011), the heat caused by mechanical working is calculated under
the scope of multiple mechanisms in play. This investigation is able to cover the issue of
latent heat which a�ects mechanical tests in superelasticity (Brinson et al, 2004; Hartl
and Lagoudas, 2008).

In the �rst part of this work, a physical description of the three non-linear mecha-105

nisms considered is presented. It is followed by the presentation of the thermodynamic
3



framework which covers the current model. In the second part, certain important re-
marks allowing the numerical implementation of the model are given, along with a ther-
momechanical study. In the third part, results deriving from characteristic numerical
implementations are given, demonstrating the validity of the model.110

2. Physical description of deformation mechanisms in Shape Memory Alloys

Most successful SMA models describe the thermomechanical behavior of such mate-
rials with (at least) two important internal variables: The martensitic volume fraction
and the transformation stain (Lagoudas, 2008). The derivation of the last quantity as a
function of the applied stress has been addressed extensively in the case of transformation115

only (Qidwai and Lagoudas, 2000). While reorientation of martensitic variants occurs
together with a forward or reverse martensitic transformation, the proper derivation of
the evolution equation for the transformation strain has to be de�ned accordingly. Here,
a physical representation of the particular behavior of SMAs is described to provide more
insight about the derivation of such evolution, depending on the physical deformation120

mechanisms activated. Its physical and mathematical description constitute the major
contribution of the proposed model. However, this description necessitates to entirely
review the de�nition of modeling within a thermodynamical framework, and also imposes
the development of a numerical resolution scheme for the strongly coupled resulting set
of equations. These two points also constitute major advancements in the simulation of125

the behavior of SMAs subjected to complex loadings.

2.1. Deformation mechanisms: Phase transformation and reorientation

The total continuum of the material is considered divided in a mass of representative
volume elements (RVEs). Each of the RVEs has its own continuum for which the proper
kinematical relations can be derived. From the work of Chemisky et al. (Chemisky et al,
2011), the notion of the mean transformation strain over the martensitic volume fraction
of a RVE is already examined. Since it will be an important variable in the formulation of
the model, it is chosen here to be the key element in describing the physical representation
of the kinematics.

ε̄T =
1

VM

∫
VM

ε̃Tr dV (1)

In the above expression, ε̃Tr as the �eld of transformation strains inside the whole volume
V of the RVE for any given point with coordinates r, VM as the martensitic volume in
the RVE and ε̄T is the average value of transformation strain inside VM . On the other
hand, the total transformation strain of the RVE is considered a variable of the material
continuum: it is called here εT :

εT =
1

V

∫
V

ε̃Tr dV =
1

V

∫
VA

ε̃Tr dV +

∫
VM

ε̃Tr dV


where VA is the austenitic volume inside the RVE. Knowing that the �rst integral is zero,
and by e�ect of (1):

εT =
VM
V
ε̄T ⇔ εT = ξε̄T (2)
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ξ being the representation of the martensitic volume fraction (MVF).
The variables used so far correspond to di�erent levels of continua. ε̃Tr is a local

variable. ξ, εT and ε̄T are average values over the of the RVE, corresponding to the130

material continuum. Each RVE is thus treated as a point of the material continuum,
achieving the transition to macroscopical considerations.

Note that the macroscopic e�ective inelastic strain εT is here taken as the volume
average of the inelastic strain. This is an assumption that holds only if the average stress
in both phases is equal, which is adopted here for such a phenomenological model.135

Each particular strain mechanism comes in e�ect in the evolution of the inelastic
strain and the MVF. From (2), the time rate formula will be:

ε̇T = ξ̇ε̄T + ξ ˙̄ε
T

(3)

Figure 1: Time step representation of a SMA RVE behavior

An incremental scheme of the RVE of a SMA is studied in Fig. 1. Two consecutive
steps in the loading of a RVE are considered, which are observed with a time di�erence
of dt. Two mechanisms contribute to the change of ε̄T : (i) The transformation strain

found in the newly added martensitic volume dVM , which has a mean value Λ̄
T
; (ii) The

change of transformation strain in the martensitic volume that already exists, causing a140

change dε̄re;
Here, it is assumed that these two contributions are the e�ect of two mechanisms phys-

ically separated and independent. The �rst is the direct e�ect of the martensitic trans-
formation: in the case of forward transformation, it results to the addition of martensitic
volume and, if this volume contains detwinned material, to the addition of the corre-145

sponding transformation strain. Accordingly, in the case of reverse transformation, it
results to the suppression of martensitic volume and the corresponding transformation
strain. Forward and reverse transformation do not a�ect the transformation strains
within the preexisting martensitic volume, and therefore are considered independent of
reorientation. The second is the direct e�ect of reorientation and takes place only inside150

the pre-existing martensitic volume. It can appear without any change of the martensitic
volume fraction, and therefore is considered independent of transformation.

The value of the mean transformation strain in the second step will be a weighted
average between the contributions of the two mechanisms, based on the volume in which
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they occur. The mean transformation strain in the second step is thus considered equal
to:

(ε̄T + dε̄re)VM + Λ̄
T
dVM

VM + dVM
and the respective di�erential is:

dε̄T =
(ε̄T + dε̄re)VM + Λ̄

T
dVM

VM + dVM
− ε̄T ⇒ dε̄T =

(Λ̄
T − ε̄T )dVM + VMdε̄

re

VM + dVM
(4)

Here, it is assumed that:
dVM � VM (5)

which is acceptable in the scope of di�erential calculus. Thus:

dε̄T =
(Λ̄
T − ε̄T )dVM + VMdε̄

re

VM
= (Λ̄

T − ε̄T )
dVM
VM

+ dε̄re (6)

To simplify the term
dVM
VM

, the di�erential dξ is considered as:

dξ = d(
VM
V

) =
dVM
V
− VM
V 2

dV (7)

The martensitic transformation is considered to be an isochoric process in the sense
that

tr(dεT ) = 0

(Patoor et al, 1995) and therefore it is recognized that:

dV = V tr(dε) = V tr(dεel + dεth) (8)

The contribution of the elastic and thermal expansion of the volume of the RVE
could be taken in mind to the full extent. However, for the sake of simplicity, these155

contributions are considered negligible. As a consequence:

dξ =
dVM
V

(9)

which is used to write:

dξ =
dVM
VM

VM
V

=
dVM
VM

ξ ⇔ dVM
VM

=
dξ

ξ
(10)

Under the light of (10), the equation (6) is written:

dε̄T = (Λ̄
T − ε̄T )

dξ

ξ
+ dε̄re (11)

The rate ˙̄ε
re

is viewed as the foremost e�ect of reorientation: it is the mean rate of
change of transformation strains inside a martensitic volume which is considered constant
in time (in two consecutive increments):

˙̄ε
re

=
1

VM

∫
VM

ε̇T (r) dV (12)
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After giving the de�nitions for transformation and reorientation, it is considered
important to clarify the term �transformation strain". In the scope of this article, it is
used to describe the sum of all inelastic strains in the continuum. All non-thermoelastic
strain is included into the term transformation strain. It is stressed that this inelastic160

strain is not the direct product of only the phase transformation itself; it is also a�ected
by reorientation. In this sense, both transformation (either forward or reverse) and
reorientation contribute in the evolution of transformation strain. Still, this strain is
linked to the lattice transformation/orientation in the martensitic, that is �transformed",
volume.165

The above description does not in fact constitute a mathematical demonstration
of the form of the transformation strain, involving average quantities over subdomains
with moving boundaries. Such description is given to present a physical insight in the
selection of the averaging quantities and the pragmatic signi�cance of the �nal form 12.
A mathematical formulation of the evolution equation for transformation strain is given170

in Annex A.

Figure 2: E�ect of inelastic mechanisms on a SMA RVE

2.2. Macroscopic coupling of phase transformation and reorientation strains

The macroscopic e�ects of the activation of di�erent strain mechanisms on a RVE are
visualized in Fig. 2. The areas with the �lled pattern correspond to martensitic volume,
whereas the void areas represent the austenitic volume. All the possible combinations175

are visualized and compared with the starting con�guration of the initial step. The ori-
entation of the �lled pattern represents the direction of transformation strains inside the
martensitic fraction. When reorientation is activated, this orientation changes. During
forward transformation it is visible that the added martensitic volume does not neces-
sarily follow the existing strain orientation. Reverse transformation induces the removal180

of a piece of martensitic volume and along with it the associated transformation strain.
In the macroscopical level, three rate variables are introduced, each of those repre-

senting the activation and the magnitude of the e�ect of their respective mechanisms.
ξ̇F represents the rate of change of the MVF induced by forward transformation is acti-
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vated. It is de�ned by:

ξ̇F =
V̇ FM
V

(13)

ξ̇R represents the rate of change of the MVF induced by reverse transformation is acti-
vated:

ξ̇R =
V̇ RM
V

(14)

V̇ FM is the increment rate produced by the addition of martensitic volume when forward
transformation occurs. Respectively, V̇ RM is the increment rate produced by the suppres-
sion of martensitic volume during reverse transformation.
The third rate variable ˙̄pre represents the rate of change of the magnitude of the mean
transformation strain inside a martensitic part of constant volume. It is de�ned as:

˙̄pre =

√
2

3
˙̄ε
re

: ˙̄ε
re

(15)

Accordingly,
˙̄ε
re

= ˙̄preΛreε (16)

where Λreε is a tensor named reorientation tensor representing the direction for the
increment of the mean transformation strain induced by reorientation.

Following these de�nitions, it is necessary that each of these three variables are zero
when the respective mechanism is not activated and positive when activated. As for the
rate of martensitic volume fraction, it is deduced to take the form of:

ξ̇ = ξ̇F − ξ̇R (17)

Indeed, the expression

ξ̇ =
V̇ FM
V
− V̇ RM

V

complies with the suggestion made in equation (9), where dVM can take positive values
for forward and negative values for reverse transformation. It is directly implied that at
any given moment,

ξ =

t∫
0

ξ̇F dτ −
t∫

0

ξ̇Rdτ (18)

These time integrals are denoted as:

ξF =

t∫
0

ξ̇F dτ (19)

and

ξR =

t∫
0

ξ̇Rdτ (20)

8



In order to comply with the physical limitation of the notion of a volume fraction, it is
necessary that:

0 ≤ ξ ≤ 1⇔ ξR ≤ ξF ≤ 1 + ξR (21)

Furthermore, the e�ect of each mechanism in the rate of transformation strain is as-
sumed to follow a linear relation with its respective rate variable. The rate of the total
transformation strain is partitioned into three contributors, each driven by the di�erent
mechanisms:

ε̇T = ε̇F + ε̇R + ε̇re (22)

For forward transformation:
ε̇F = ξ̇FΛFε (23)

where ΛFε is de�ned as the forward transformation tensor and gives the relation between
ξ̇F and the magnitude and direction of the induced increment of transformation strain.
For reverse transformation:

ε̇R = ξ̇RΛRε (24)

Here, the de�nition reverse transformation tensor is presented, which gives the relation
between ξ̇F and the magnitude and direction of the induced increment of transformation
strain. As already established at the beginning of the subsection, this should be:

ΛRε = −ε̄T (25)

For reorientation, the e�ect of the rate of increment of mean transformation strain within
the martensitic part contributes to the rate of transformation strain in the RVE propor-
tionally to its fraction:

ε̇re = ξ ˙̄ε
re

and, following equation (16):
ε̇re = ξ ˙̄preΛreε (26)

Here, the product ξ ˙̄pre is replaced by the new rate variable ṗre to reach:

ε̇re = ṗreΛreε (27)

Thus, equation (22) is rewritten:

ε̇T = ξ̇FΛFε + ξ̇RΛRε + ṗreΛreε (28)

An important assumption is implied here: Since forward and reverse transformation
are considered to appear independently, they may occur simultaneously. In this case,

recalling the de�nition of Λ̄
T
at A.7, it is deduced that, at any moment:

ξ̇FΛFε + ξ̇RΛRε = ξ̇Λ̄
T

(29)

A simultaneous activation of forward and reverse transformation that may take place185

during loading presents interesting e�ects. The increment of forward transformation
strain is thought to follow the direction of evolving stress (see Fig. 2). The exact relation
will be examined later. The evolution of stress is not necessary colinear with previous
stress states nor with preexisting strain, thus leading to new average strain direction.
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An e�ect of �apparent reorientation" is therefore observed, even if the mechanism of190

reorientation is activated. A similar phenomenon is proposed in (Saint-Sulpice et al,
2009). In that work, the term reorientation is used to describe the exact e�ect of coupled
forward and reverse transformation. Careful consideration should be taken when referring
to this term in our present article. Still, simulations conducted in our work demonstrate
that this e�ect would not be enough to fully capture the change in the direction of195

inelastic strains and that a full model should be used for complex loading cases.
By using the time integral of equation (22), a partition of the total transformation

strain in the contribution of forward and reverse transformation and reorientation is
proven evident:

εT = εF + εR + εre (30)

3. Thermodynamic formulation of the phenomenological model

Having de�ned the main variables that are actually representative of the deformation
mechanisms described in the previous sections, it is essential to describe hereafter the
general framework of thermodynamics in which this work is developed. Also, the proper200

selection of internal variables, associated to each phenomenon, and the formulation of
a thermodynamic potential will lead to the couplings (i.e. the reciprocal impact of the
progression of physical mechanisms on each other) that naturally arise during arbitrary
complex loadings. Next, criteria for transformation and reorientation are de�ned from
those thermodynamic considerations. Finally, evolution equations are expressed accord-205

ingly, taking into account the important features highlighted with respect to reverse
transformation (see also Lagoudas et al (2012)).

3.1. Free energy potential and general thermodynamic forces

Generally, the macroscopic behavior of SMAs is approached by means of using suitable
constitutive equations which involve state variables of the material (Patoor et al, 2006).210

Thermodynamic state variables are those that represent all quantities that characterize
a material body at a certain state (Coleman and Gurtin, 1967). If they can be observed,
they are called external state variables, otherwise internal state variables (Lagoudas,
2008). Henceforth, the set of all the internal variables will be denoted as V .

Those constitutive equations are derived through a prescribed thermodynamic po-215

tential. This is a function that characterizes a certain thermodynamic state of the body
and depends on the state variables. At every state, the thermodynamic potential repre-
sents a quantity of energy within the material system. Therefore, it evokes products of
the state variables with their thermodynamically conjugant quantities, called the general
thermodynamic forces (GTFs). The set of all GTFs will be henceforth denoted as A.220

It is commonly shown that the transformation strain is thermodynamically conju-
gant to stress, usually by implementing the procedure �rst applied by Coleman and Noll
(1963) under the conditions described by Lubliner (1972). All the basic laws of contin-
uum mechanics need to be validated through the implementation of the thermodynamic
potential, including the second law of thermodynamics, usually expressed by the local225

form of the Clausius-Duhem inequality (Lemaitre and Chaboche, 2002).
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In the thermodynamic framework, it is aimed to incorporate the assumptions made
in section 2. A Gibbs free energy potential is chosen to be the base of our model:

G =Uo − soT + Cv

[
∆T − T ln

(
T

To

)]
− 1

2
σ : S : σ − σ : α∆T − σ : εT+

(1 + λre)X : vre +H(ξ)

(31)

where:
σ is the Cauchy stress.
S is the elastic compliance tensor.
α is the thermal expansion coe�cient.230

∆T = T − To is the di�erence between the current temperature T and the temperature
at the reference state To.
Uo is the speci�c internal energy at the reference state.
so is the speci�c entropy at the reference state.
Cv is the speci�c heat capacity.235

H(ξ) is a function accounting for the isotropic hardening associated with transformation,
linked to the martensitic volume fraction (Hartl et al, 2010).
vre is de�ned as the hardening strain for reorientation.
X is de�ned as backstress.
Finally, λre is a limiting cofactor for reorientation.240

It is noted that the variables S, α, Uo, so and Cv are assumed to vary linearly
according to the martensitic volume fraction. For example:
S = SA + ξ(SM − SA) for the elastic compliance tensor, where the superscripts A and
M stand for the austenitic and martensitic phases respectively. Similar assumption has245

been adopted in Lagoudas et al (2012), supported by the analysis of Boyd and Lagoudas.
In the case of mechanical elastic properties, it was shown that using either the rule of
mixtures on the compliance tensors (which is assumed here) or a micromechanical scheme
(Mori-Tanaka) has little impact on the e�ective response (Boyd and Lagoudas, 1994).

The internal variables are chosen to be: σ, T, εF , εR, εre,vre, ξF , ξR.
Following the typical Coleman-Noll procedure, the entropy s and the total strain ε are
found as:

s = −∂G
∂T

= so + σ : α+ Cv ln

(
T

To

)
(32)

and

ε = −∂G
∂σ

= S : σ +α∆T + εT (33)

In the latter, a typical decomposition of the total strain is recognized:

ε = εel + εth + εT (34)

where εel = S : σ is the elastic and250

εth = α∆T is the thermal strain.

11



The rest of the derived GTFs of the internal variables are found as:

AεF =− ∂G

∂εF
= −∂ε

T

∂εF
:
∂G

∂εT
= σ

AεR =Aεre = σ

Avre =− ∂G

∂vre
= −(1 + λre)X

AξF =− ∂G

∂ξF
= −∂G

∂ξ

∂ξ

∂ξF
= −∂G

∂ξ
= −Ũo + s̃T − C̃v

[
∆T − T ln

(
T

To

)]
+

1

2
σ : S̃ : σ + σ : α̃∆T − ∂λre

∂ξ
X : vre − ∂H

∂ξ

(35)

Here, the variables appearing with a tilde denote the di�erence of respective constants
between the martensitic and austenitic phase. For example:
S̃ = SM − SA
Moreover,

AξR =− ∂G

∂ξ

∂ξ

∂ξR
=
∂G

∂ξ
= Ũo − s̃T + C̃v

[
∆T − T ln

(
T

To

)]
− 1

2
σ : S̃ : σ−

σ : α̃∆T +
∂λre

∂ξ
X : vre +

∂H

∂ξ

(36)

Following Lemaitre and Chaboche (2002), the second thermodynamic law is reduced
to:

AεF : ε̇F +AξF ξ̇
F +AεR : ε̇R+AξR ξ̇

R +Aεre : ε̇re+Avre : v̇re− 1

T
~q
−−→
gradT ≥ 0 (37)

where ~q is the heat �ux and
−−→
gradT the spatial gradient of temperature.

From one hand, the Clausius-Duhem inequality expresses the positive character of
these two parts of disspation:

AεF : ε̇F +AξF ξ̇
F −AεR : ε̇R +AξR ξ̇

R +Aεre : ε̇re +Avre : v̇re ≥ 0 (38)

and

− 1

T
~q
−−→
gradT ≥ 0 (39)

On the other hand, it is postulated here that the contribution of the internal variables
linked to each mechanism to the total dissipation is also non negative: γF = AεF : ε̇F +AξF ξ̇

F ≥ 0

γR = AεR : ε̇R +AξR ξ̇
R ≥ 0

γre = Aεre : ε̇re +Avre : v̇re ≥ 0

(40)

with γm being the part of the dissipation induced by the mechanism denoted m.255

A thermoelastic domain Γ is considered to exist within the coordinates of the free
energy potential, in which the dissipation is zero. A hypersurface ∂Γ is the boundary
of the thermoelastic domain. This hypersurface is de�ned as the set of solutions of the
equation:

Φ(A) = 0
12



where A is the set of all GTFs. For all given coordinates, the following inequality is
satis�ed:

Φ(A) ≤ 0

This thermoelastic domain is described by three surfaces corresponding to the three
strain mechanisms: 

ΦF (AFξ ,AεF ) = 0

ΦR(ARξ ,AεR) = 0

Φre(Areξ ,Aεre) = 0
(41)

The Φ function for forward transformation is given as:

ΦF = AξF + Φ̂F (AεF )− Y F (42)

where
Φ̂F (AεF ) = Φ̂F (σ)

is the function describing the forward transformation function in the space of the stress
components. The choice of this function determines which e�ects relative to anisotropy
and asymmetry during forward transformation are taken in mind (Qidwai and Lagoudas,
2000; Sedlák et al, 2012; Taillard et al, 2008). In the scope of this paper, a modi�ed Prager
function is chosen. It accounts for tension-compression asymmetry but not anisotropy.
In a superelastic loading at constant temperature, it predicts that the SMA behavior for
forward transformation depends on the stress tensor invariants and asymmetry-related
parameters. Thus, it is assumed that:

Φ̂F (σ) =
√
J2(σ)

[
1 + b

J3(σ)

J
3/2
2 (σ)

] 1

n
− kσ (43)

For a second-order tensor u, the notations J2(u) and J3(u) give the second and third
invariants of its deviatoric part u′. It is reminded that they are given as:

J2(u) =
1

2
u′iju

′
ij and

J3(u) =
1

3
u

′

iju
′

jku
′

ki

using the Einstein summation for double indices. b and n are parameters associated with
the ratio between transformation stresses in tension and compression loading. Convexity
is ensured under speci�c conditions (Chatziathanasiou et al, 2015).

The threshold for forward transformation is given as:

Y F = Y Fo +Dσ : ΛFε −
∂λre

∂ξ
X : vre (44)

The variables D and Y Fo are considered material constants. They are not considered
independent, but are calculated with the help of other material constants, see (Hartl260

et al, 2010).

13



Likewise, the Φ function for reverse transformation:

ΦR = AξR + Φ̂R(AεR)− Y R (45)

where
Φ̂R(AεR) = Φ̂R(σ) = −σ : ε̄T (46)

and

Y R = Y Ro −Dσ : ε̄T − ∂λre

∂ξ
X : vre (47)

with Y Ro another material constant. In this work, it is taken equal to Y Fo . The functions
for forward and reverse transformation account for isotropic hardnening, holding as hard-
ening parameter the martensitic fraction. On the contrary, the function for reorientation
is designed to predict kinematic hardening:

Φre = Φ̂re(Aεre +Avre)− Y re (48)

The choice for the yield function of reorientation is also the modi�ed Prager criterion, in
order to account for tension-compression asymmetry during detwinning. Only this time
taking in mind the sum of the thermodynamic forces for εre and vre:

Φ̂re(Aεre +Avre) = |Aεre +Avre | =
√
J2(Σ)

[
1 + b

J3(Σ)

J
3/2
2 (Σ)

] 1

n
(49)

Here, the inclusive variable Σ is introduced as:

Σ = σ − (1 + λre)X (50)

Finally, the reorientation threshold is considered as a material constant:

Y re = Y reo (51)

3.2. Evolution laws

The activation of the evolution of the model variables depends on the satisfaction of
the mechanism criteria. This is given by the Kuhn-Tucker loading conditions (Qidwai
and Lagoudas, 2000):265

It is aimed to link the evolution of the model variables within linear relation with the
rate variables given in subsection 2.2. The forward transformation tensor is expressed
as:

ΛFε = Hcurησ (52)

where ηu for a second-order tensor u is given as:

ηu =

(
1 + b

J3(u)

J
3/2
2 (u)

) 1
n−1 [

u′

2
√
J2(u)

+
b

6nJ2
2 (u)

(
6J2(u)u′.u′ − 4J2

2 (u)I + (3n− 9)J3(u)u′
)]

This form is chosen to accommodate experimental data demonstrating lower transfor-
mation strains under compression than under tension (Bouvet et al, 2004; Grolleau et al,
2011; Chemisky et al, 2015). Hcur is considered the same as in (Hartl et al, 2010).
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The reorientation tensor introduced in (16) is:

Λreε = ηΣ (53)

With those de�nitions, the rates for the partition of transformation strains is now com-
plete:  ε̇F = ξ̇FΛFε = ξ̇FHcurησ

ε̇F = ξ̇RΛRε = −ξ̇Rε̄T
ε̇re = ṗreΛreε = ṗreηΣ

(54)

It is noted that the direction of ε̇re is normal to the respective yield surface:

ηΣ =
∂Φre

∂Aεre

=
∂Φre

∂σ

The evolution of the internal variable vre is also given normal to the reorientation
yield surface:

v̇re = ṗreΛrev (55)

with

Λrev =
∂Φre

∂Avre

=
∂Φre

∂(−(1 + λre)X)
= ηΣ (56)

As for the evolution of backstress, it is decomposed as well in the contributions of the
three strain mechanisms:

Ẋ = Ẋ
F

+ Ẋ
R

+ Ẋ
re

(57)

The parts of backstress linked to forward and reverse transformation evolve since it is
assumed that all processes that eventually lead to a change of transformation strain
a�ects the reorientation behavior. The part linked to reorientation itself is in linear
relation with the respective strain part so as to allow for kinematic hardening:

Ẋ
F

=
3

2
ξ̇F εremaxH

re :
σ′

|σ|
Ẋ
R

= −X
ξ

Ẋ
re

= ṗreHre : Λreε

(58)

The cofactor Hre is a fourth order tensor considered a material constant. In the
scope of this work, it is given simply by:

Hre = HreI(4) (59)

with I(4) the fourth order symmetric identity tensor. It has the property:

I(4) : x = x

for any arbitrary symmetric second-order tensor x.
εremax is the maximum inelastic strain allowed to develop during martensite detwinning,
usually considered less than the strain caused by phase transformation. Hre is a parame-
ter controlling the hardening during reorientation. The stress allowed between start and
saturation of detwinning in a uniaxial case is:

∆σreo = Hreεremax (60)
15



It is apparent that the variable characteristic of backstress a�ects only the activation
of reorientation. The concurrent evolution of backstress with forward and reverse trans-270

formation, as implied by (58), is introduced to comply with the need to impose a limit
for reorientation. Relevant experiments (Lagoudas, 2008) show that, just like transfor-
mation, the process of reorientation is limited: after the saturation of detwinning, the
elastic part of detwinned martensite is reached. To this aim, when a threshold in the
magnitude of backstress is reached, the lagrange multiplier λre is activated, which leads275

to an in�nitessimal value of ṗre and subsequently to the depending rates of reorientation
variables.

The lagrange multiplier is designed as a function of a one-dimensional argument.
When it attains values close to 1, the function is activated. For values of the argument
between 0 and 1, the function returns 0. The exact form of the function can be found in
Appendix A. The argument taken in mind in the case of reorientation is:

fre =
|X|
ξXmax

(61)

and thus the respective lagrange multiplier is:

λre = λ(fre) (62)

Here, Xmax represents a maximum magnitude of backstress when the whole RVE is com-
posed by martensite. According to these assumptions, the maximum magnitude of back-
stress at any given state is proportional to the MVF. When the value ξXmax is reached,
the lagrange multiplier is activated and forces the variables linked to reorientation to
stop evolving, by imposing:

ṗre = 0

Accordingly, forward and reverse transformation are limited through their respective
lagrange multipliers. The following functions:

λF = λ(ξ) (63)

and
λR = λ(1− ξ) (64)

are added into the forward and reverse transformation criteria respectively. When acti-
vated, they mark the saturation of transformation by imposing ξ̇F = 0 or ξ̇R = 0. The
criteria (42) and (45) are updated:

ΦF = AξF + Φ̂F (AεF ) + λF − Y F (65)

ΦR = AξR + Φ̂R(AεR) + λR − Y R (66)

At this point, to clear the overall view of the reader, a summarizing table providing the
general architecture of the model is presented. In Table 1, the most important equations
are classi�ed by the mechanism that they concern.280
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Forward transformation Reverse transformation Reorientation

Φ̂F (σ) +AξF − Y F + λF ≤ 0 Φ̂R(σ, εT ) +AξR − Y R + λR ≤ 0 Φ̂re(Σ)− Y re ≤ 0

ε̇F = ξ̇FΛFε ε̇R = ξ̇RΛRε ε̇re = ṗreΛreε

Ẋ
F

= ξ̇FΛFX ε̇R = ξ̇RΛRε Ẋ
re

= ṗreΛreX
Σ = σ − (1 + λre)X

Composition

ξ = ξF − ξR
εT = εF + εR + εre

ε = εel + εth + εT

εth = α(ξ)∆T
εel = S(ξ) : σ

X = XF +XR +Xre

Table 1: Most important relations of the proposed model.

4. Numerical implementation

In the scope of this section, it is aimed to provide a framework for addressing the
numerical implementation of a generic model that considers multiple strain mechanisms.
Initially, a general solution taking in mind a random number of strain mechanisms will
be examined. Next, the framework will be reduced to the speci�c needs of the proposed285

SMA model. It is important to note that the added value of such general description,
contrary to an ad-hoc algorithm, will allow to include additional mechanisms, for instance
viscoplasticity in the case of High Temperature SMA (HTSMAs) (Chatzigeorgiou and
Lagoudas, 2009; Chemisky et al, 2014), or plasticity (Hartl and Lagoudas, 2008).

4.1. Implicit formulation for fully coupled problem290

The evolution of inelastic strains is due to several mechanisms which are considered
strongly thermodynamically independent. This means that the dissipation caused by
each one of them must be non-negative. The total inelastic strain is:

εT =
∑
m

εm (67)

where the index m stands for every di�erent mechanism. Each mechanism m is respon-
sible for the evolution of εm.

Considering each εm as an internal variable, the GTF for each one deriving from the
Gibbs free energy potential is:

− ∂G

∂εm
= σ − ∂Gv

∂εm
(68)

where Gv is found in the general form of G :

G = −σ : εT +Gv (69)
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Each mechanism m involves a set of variables {V mi }. Each di�erent V mi might be
considered an internal variable or not. The �rst element of every set is de�ned to be a
scalar pm:

pm = V m1

. The property of every pj is that the rate of all other variables V ji are found by:

V̇
j

i = ṗjΛji (70)

with j being an index denoting any mechanism m consistently throughout this section.
Λji is a tensor of order which varies according to the nature of V ji . In the scope of this
section, they are given the name evolution tensors. For instance,295

Λj1 = Λjp = 1 is a zero order tensor equal to the unit so as to comply with (70).
Likewise,

Λj2 = Λjε is a second-order tensor corresponding to εj . The second element of every

set {V ji} will consistently be considered εj .

In thermodynamics, any element V ji which is an internal variable, has a conjugant
GTF:

AmV i = − ∂G

∂V mi
(71)

The thermodynamic criteria which govern the activation of each mechanism have the
general form:

Φm({AmV }) ≤ 0 (72)

where {AmV } is the whole set of GTFs for the mechanism m.300

For a given loading case, the convex cutting plane (CCP) (Hartl and Lagoudas, 2009)
algorithm is implemented. For every iteration k within a loading step n → n + 1, it is
considered that:

δV
m (k)
i n+1 = δp

m (k)
n+1 Λ

m (k)
i n+1 (73)

The symbol δ denotes the di�erence in a value of a variable between two consecutive
iterations in the CCP scheme.

During iterative correction, the total current strain and temperature are held constant
such that:

δε
(k)
n+1 = 0

and
δT

(k)
n+1 = 0

According to the decomposition of strains:

ε = εel + εth + εT = εel + εth +
∑
j

εj (74)

the constitutive relation for elasticity:

εel = S : σ (75)

and the null increments of εn+1 and Tn+1, it is deduced that:

−δεth (k)
n+1 −

∑
j

(
δε
j (k)
n+1

)
= δS

(k)
n+1 : σ

(k)
n+1 + S

(k)
n+1 : δσ

(k)
n+1 (76)
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According to (73),

δε
j (k)
n+1 = δp

j (k)
n+1 Λ

j (k)
ε n+1 (77)

If the elastic compliance tensor and the thermal expansion coe�cient are considered a
direct function of the variables pj , it also evident that:

δS
(k)
n+1 =

∑
j

(
δp
j (k)
n+1

∂S
(k)
n+1

∂pj

)
(78)

and

δα
(k)
n+1 =

∑
j

(
δp
j (k)
n+1

∂α
(k)
n+1

∂pj

)
(79)

With the help of (77), (78) and (79), the equation (76) is now written:

−∆Tn+1

∑
j

(
δp
j (k)
n+1

∂α
(k)
n+1

∂pj

)
−
∑
j

(
δp
j (k)
n+1 Λ

j (k)
ε n+1

)
=
∑
j

(
δp
j (k)
n+1

∂S
(k)
n+1

∂pj

)
: σ

(k)
n+1+S

(k)
n+1 : δσ

(k)
n+1

⇔ δσ
(k)
n+1 = −C(k)

n+1 :
∑
j

[
δp
j (k)
n+1

(
∂S

(k)
n+1

∂pj
: σ

(k)
n+1 + ∆Tn+1

∂α
(k)
n+1

∂pj
+ Λ

j (k)
ε n+1

)]
The following notation is accepted:

K
j (k)
n+1 =

∂S
(k)
n+1

∂pj
: σ

(k)
n+1 + ∆Tn+1

∂α
(k)
n+1

∂pj
+ Λ

j (k)
ε n+1

to reach:
δσ

(k)
n+1 = −C(k)

n+1 :
∑
j

(δp
j (k)
n+1K

j (k)
n+1 ) (80)

On the other hand, the consistency condition of the Φm criteria dictates that:

Φ
m (k)
n+1 + δΦ

m (k)
n+1 = Φ

m (k+1)
n+1 ≈ 0 (81)

From (72), in decomposing AmV , the following general form is reached:

Φm(σ, T, {V ji}) ≤ 0 (82)

In the latter, applying the chain rule it is derived:

δΦ
m (k)
n+1 =

∂Φ
m (k)
n+1

∂σ
: δσ

(k)
n+1 +

∑
j

[∑
i

(
∂Φ

m (k)
n+1

∂V ji
: δV

j (k)
i n+1

)]
(83)

In light of (80), this is written:

δΦ
m (k)
n+1 = −

∂Φ
m (k)
n+1

∂σ
: C

(k)
n+1 :

∑
j

(δp
j (k)
n+1K

j (k)
n+1 )+

∑
j

[
δp
j (k)
n+1

∑
i

(
∂Φ

m (k)
n+1

∂V ji
: Λ

j (k)
i n+1

)]
⇔
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δΦ
m (k)
n+1 =

∑
j

{
δp
j (k)
n+1

[
−
∂Φ

m (k)
n+1

∂σ
: C

(k)
n+1 : K

j (k)
n+1 +

∑
i

(
∂Φ

m (k)
n+1

∂V ji
: Λ

j (k)
i n+1

)]}
(84)

The equation (81) will be:

δΦ
m (k)
n+1 =

∑
j

{
δp
j (k)
n+1

[
−
∂Φ

m (k)
n+1

∂σ
: C

(k)
n+1 : K

j (k)
n+1 +

∑
i

(
∂Φ

m (k)
n+1

∂V ji
: Λ

j (k)
i n+1

)]}
= −Φ

m (k)
n+1

(85)
Each of the equations out of the set of (85) corresponds to each of the mechanisms m.
There are as many equations in (85) as the total number of m (Nm) and therefore the

total number of pm. A set of linear equations of {δpj (k)
n+1} is recognized in the form of:

B
(k)
n+1{δp

j (k)
n+1} = −{Φm (k)

n+1 } (86)

B
(k)
n+1 is a Nm ×Nm matrix, the components of which are found by:

B
m (k)
j n+1 = B

(k)
mj n+1 = −

∂Φ
m (k)
n+1

∂σ
: C

(k)
n+1 : K

j (k)
n+1 +

∑
i

(
∂Φ

m (k)
n+1

∂V ji
: Λ

j (k)
i n+1

)
(87)

From (86), the set of δp
j (k)
n+1 is found by:

{δpj (k)
n+1} = −(B

(k)
n+1)−1{Φm (k)

n+1 } (88)

At the end of every iteration the values of the set of {V mi } and the rest of the internal
variables.

4.2. Thermomechanical tangent moduli estimation305

During an arbitrary thermomechanical path, the mechanical and thermal tangent
moduli need to be calculated at the end of every loading step. Again, the additive
decomposition of strains and their respective rates is taken in mind:

dε = dεel + dεth +
∑
j

dεj (89)

where the sum denoted by
∑
j

refers only to the mechanisms m that are activated in the

current step. j may take the values F, R or re. Given that these moduli examine the
tangent behavior between two consecutive steps, the symbol d denotes the di�erence in
the value of the variables between those steps.

The previous equation gives:

dε = d(S : σ) + d(α∆T ) +
∑
j

(dpjΛjε)⇔
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dσ = C :

dε−∑
j

(
dpjKj

)
−αdT

 (90)

where

Kj =
∂S

∂pj
: σ +

∂α

∂pj
∆T + Λjε

For all di�erent mechanisms m, it is also assumed: dΦm = 0. But:

dΦm =
∂Φm

∂σ
: dσ +

∂Φm

∂T
dT +

∑
j

[∑
i

(
∂Φm

∂V ji
: dV ji

)]
(91)

In light of (70), this is written:

dΦm =
∂Φm

∂σ
: dσ +

∂Φm

∂T
dT +

∑
j

[
dpj

∑
i

(
∂Φm

∂V ji
: Λji

)]
(92)

Substituting with the expression of dσ from (90), it is found:

dΦm =
∂Φm

∂σ
: C :

dε−∑
j

(
dpjKj

)
−αdT

+
∂Φm

∂T
dT +

∑
j

[
dpj

∑
i

(
∂Φm

∂V ji
: Λji

)]
(93)

and, given the null increment of the Φm functions:

∂Φm

∂σ
: C : dε+

(
∂Φm

∂T
− ∂Φm

∂σ
: C : α

)
dT+

∑
j

{
dpj

[∑
i

(
∂Φm

∂V ji
: Λji

)
− ∂Φm

∂σ
: C : Kj

]}
= 0

(94)
There are as many equations in (94) as the total number of m (Nm) that are activated
for the current step and therefore the total number of pm.A set of linear equations of the
vector{dpj} is recognized in the form of:

B̂{dpj} =

{
−∂Φm

∂σ
: C : dε−

(
∂Φm

∂T
− ∂Φm

∂σ
: C : α

)
dT

}
(95)

where: B̂ is a Nm ×Nm matrix, the components B̂mj of which are found by:

B̂mj =
∑
i

(
∂Φm

∂V ji
: Λji

)
− ∂Φm

∂σ
: C : Kj (96)

Following (95),

{dpj} = B̂
−1
{
−∂Φm

∂σ
: C : dε−

(
∂Φm

∂T
− ∂Φm

∂σ
: C : α

)
dT

}
or

dpj = −
∑
m

(
B̂−1mj

∂Φm

∂σ
: C

)
: dε−

∑
m

[
B̂−1mj

(
∂Φm

∂T
− ∂Φm

∂σ
: C : α

)]
dT (97)
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Here, the following notations are de�ned:

P jT =
∑
m

[
B̂−1mj

(
∂Φm

∂T
− ∂Φm

∂σ
: C : α

)]
(98)

and

P jε =
∑
m

(
B̂−1mj

∂Φm

∂σ
: C

)
(99)

Given the major symmetry Cuvst = Cstuv of the elastic sti�ness tensor, the latter is now:

P jε = C :
∑
m

(
B̂−1mj

∂Φm

∂σ

)
(100)

Thus, the equation (97) is now updated:

dpj = −P jε : dε− P jT dT (101)

Substituting this expression for dpj in (90), it is deduced:

dσ =

C :

I(4) +
∑
j

(Kj ⊗ P jε)

 : dε+

C :

∑
j

(P jTK
j)−α

 dT (102)

Here, the desired tangent moduli become evident. The mechanical tangent modulus is:

L = C :

I(4) +
∑
j

(Kj ⊗ P jε)

 (103)

and the thermal tangent modulus:

Θ = C :

∑
j

(P jTK
j)−α

 (104)

4.3. Thermomechanical coupling310

The local form of the �rst law of thermodynamics is written:

u̇ = r −∇ · q + σ : ε̇ = Q̇+ σ : ε̇ (105)

Here, u is the internal energy, r is the power of the internally generated heat, q is the
thermal �ux and Q is the total heat exchange due to both internal heat sources and
conduction. On the other hand, the Gibbs free energy is given as:

G = u− σ : ε− sT (106)

Its rate form:
u̇ = Ġ+ ˙(σ : ε) + ˙(sT ) (107)
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is replaced into (105) to give:

Ġ+ σ̇ : ε+ ṡT + sṪ = Q̇ (108)

Applying the chain rule to derive the rate of the Gibbs free energy potential, it is found:

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

∑
j

[∑
i

(
∂G

∂V ji
: V̇

j

i

)]
(109)

Recalling equations (32), (33,) (70) and (71), this rate is now:

Ġ = −ε : σ̇ − sṪ −
∑
j

[
ṗj
∑
i

(
Aji : Λji

)]
(110)

Giving the de�nition:

πj =
∑
i

(Aji : Λji ) (111)

the equation (108) is now:

ṡT =
∑
j

(πj ṗj) + Q̇ (112)

in which ṡ is found from (32):

ṡ =
∂s

∂σ
: σ̇+

∂s

∂T
Ṫ+
∑
j

(
∂s

∂pj
ṗj
)

= σ̇ : α+Cv
Ṫ

T
+
∑
j

{
ṗj
[
∂so
∂pj

+ σ :
∂α

∂pj
+
∂Cv
∂pj

ln

(
T

To

)]}
(113)

Thus, from (112):

CvṪ =
∑
j

{
ṗj
[
πj −

[
∂so
∂pj

+ σ :
∂α

∂pj
+
∂Cv
∂pj

ln

(
T

To

)]
T

]}
− σ̇ : α · T + Q̇ (114)

The following notation is adopted:

πjT = πj −
[
∂so
∂pj

+ σ :
∂α

∂pj
+
∂Cv
∂pj

ln

(
T

To

)]
T (115)

The known forms of ṗj and σ̇ from (101) and (102) are also substituted into (114) to
acquire:

CvṪ − Q̇ = −

∑
j

(
πjTP

j
ε

)
+L : α · T

 : ε̇−

∑
j

(
πjTP

j
T

)
+ Θ : α · T

 Ṫ (116)

The last equation states that the volumetric heat generation per unit time is not equal
to the total heat exchange. The di�erence between these two quantities arises by e�ect
of mechanical work, as it appears in the right-hand part of the equation. The part of
dissipation linked to mechanical reaction of the material, such as the one found in (38),
is also found in this part.315
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The quantities

D,ε = −

∑
j

(
πjTP

j
ε

)
+L : α · T

 (117)

and

D,T = −

∑
j

(
πjTP

j
T

)
+ Θ : α · T

 (118)

track the linear relation of the power of the heat generated through thermomechanical
coupling with the di�erentials of strain and temperature.

4.4. Reduction for current model

The scalar quantities pm whose rates drive the three strain mechanisms are: ξF for
forward, ξR for reverse transformation and pre for reorientation. In Table 2, the relation320

of the rates of the model with the driving scalar rates through their respective evolution
tensors ΛmV i.

Evolving variables � Strain mechanisms FT RT Re

V m1 ξF ξR pre

V m2 εF εR εre

V m3 XF XR Xre

Table 2: Classi�cation of evolving model variables according to the respective mechanisms

Next, the linear relations of the elastic compliance tensor and the thermal expansion
coe�cient with the driving scalars are reduced to:

∂S

∂ξF
= − ∂S

∂ξR
= S̃ and

∂S

∂pre
= 0

∂α

∂ξF
= − ∂α

∂ξR
= α̃ and

∂α

∂pre
= 0

(119)

The strain quantities Km are reduced to:

KF = S̃ : σ + α̃∆T + ΛFε
KR = −S̃ : σ − α̃∆T + ΛRε
Kre = Λreε

(120)

Furthermore, multiple derivatives appearing in the components of the B and B̃ ma-
trices in equations (87) and (96) take zero values, since the Φm yield equations are not
dependent on all the evolving variables. Table 3 presents which variables a�ect the three325

yield functions.
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ΦF ΦR Φre

σ, T, ξ σ, T, ξ, εF , εR, εre σ, ξXF , XR, Xre

Table 3: Variables a�ecting the yield functions

5. Numerical results and discussion

The thermomechanical response of the proposed model is compared to several exper-
imentally observed complex, non-proportional thermomechanical response of SMAs, to
the extent of their availability.330

The selected experimental database includes proportional and non-proportional load-
ing conditions in various thermal and mechanical levels.

A �rst set of experiments concern the isothermal tension loading of NiTi wires under
various temperatures, either above or in-between martensitic transformation tempera-
tures Sittner et al (2009). A second set of experiments corresponds to non-proportional335

tension-torsion loading of SMA tube structures(Sittner et al, 1995). A last set of ex-
periment is complex tension/torsion and tension compression on NiTi tube Grabe and
Bruhns (2009). Parameter identi�cation was carried out using a proven method reliable
in identifying complex modeling parameters for SMAs using inverse identi�cation meth-
ods developed by Meraghni et al (2014) and extended for heterogeneous con�guration in340

Chemisky et al (2015).

EA (MPa) EM (MPa) vA vM α (K−1) Hmin Hsat

40000 23000 (0.33) (0.33) (10−5) 0.052 0.052

k CA (MPa/K) CM (MPa/K) Mf (K) Ms (K) As (K) Af (K)
� 7.2 4.8 198.5 200 266 270

Y reoo (MPa) εremax Hre b n
100 0.052 2000 � �

Table 4: Material constants for equiatomic NiTi utilized in loading simulations of experiments
presented in (Sittner et al, 2009). Values that are not result of identi�cation appear in parentheses.
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(a) Tension at 333 K (b) Tension at 283 K

(c) Tension at 253 K

Figure 3: Experimental results (points) and model reponse (continuous line) on stress-strain dia-
grams for isothermal tension-compression loading of NiTi wires under temperatures of 333 (a), 283
(b) and 253 K (c) taken from (Sittner et al, 2009)

5.1. Iso-thermal proportional tension-compression loading

Three tensile loading tests on NiTi wires of 0.1 mm in diameter and 50 mm in length
are simulated in iso-thermal conditions for di�erent temperatures The numerical model
corresponds to the experiments in (Sittner et al, 2009): The displacement control of wires345

of 0.1 mm in diameter and 50 mm in length is taken as a strain-controlled simulation
of a material point in its loading direction, and in stress-free condition in shear in other
directions. In these experiments, compression cannot be carried out, since the small di-
ameter of a wire would cause buckling immediately. In the simulations, though, inelastic
geometry e�ects can be ignored.350

For the temperature of 333 K , the wire demonstrates a superelastic behavior, since
the stress levels cross all the transition thresholds for the start and �nish of forward and
reverse transformation before returning to zero stress. The behavior is similar for the
temperature of 283 K, only with lower stress levels for forward and reverse transforma-
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EA (MPa) EM (MPa) vA vM α (K−1) Hmin Hsat

38000 13000 0.20 0.20 (10−5) (0.007) 0.007

k CA (MPa/K) CM (MPa/K) Mf (K) Ms (K) As (K) Af (K)
� 8.7 7.27 215 260 222 275

Y reoo (MPa) εremax Hre b n
398 0.007 21400 � �

Table 5: Material constants for CuAlZnMn tube subjected to non-proportional tension-torsion from
(Sittner et al, 1995). Values that are not result of identi�cation appear in parentheses.

tion, following a typical SMA phase diagram. At 253 K though, the transformation strain355

during loading is induced by forward transformation activated alongside reoreintation.
This strain cannot be recovered upon unloading: since the temperature is lower than the
austenitic transition level, no reverse transformation can take place. Still, the proposed
model can predict some lef`vel of inelastic strain recovery just before reaching zero stress,
associated with reorientation. Continuing further into compression, the material passes360

in a behavior a�ected only by reorientation. In the second cycle of loading, no trans-
formation is considered, explaining the di�erence of shape from the �rst cycle. Good
agrement is observed between the simulation and the experimental �ndings in tension.
It is noted that the value of the elastic modulus is considered di�erent for the test at
333 K, taken at 56000 MPa, since the stress-strain relation clearly indicates so. The365

current model does not take into account any dependence of the elastic modulus from
temperature. However, all other material parameters are considered constant for the
three experiments. Figs. 3 (a) to (c) present the comparison of the stress-strain dia-
grams for the isothermal tension-compression loading paths. In Fig. 3 (c), a prediction
of the material behavior in compression is also presented. Reverse transformation can-370

not take place at such temperature. The e�ect of combined transformation/reorientation
leads to a transient response for the �rst cycle, then to a stable reorientation loop since
no reverse transformation occurs. The identi�ed parameters appear in Table 4.

5.2. Iso-thermal non-proportional loading

Next, the proposed model is aimed at being further validated by comparing experi-375

mental results corresponding to non-proportional loading of thin-walled tube structures
(Sittner et al, 1995). A cylindrical tube made of CuAlZnMn alloy was subjected to a
loading path resembling a rectangle in the space of normal (axial) and shear (along the
tube walls) stress, with return to zero loading. The path is represented in Fig. (4a), while
the material properties identi�ed are reported in Table 5. The model response is super-380

imposed to experimental data points in diagrams relating shear and normal strain in Fig.
(4b), normal stress and strain in (4c) and shear stress and strain in (4d). A comparison
with the models proposed by Lagoudas et al (2012), Arghavani et al (2010) and Pan-
ico and Brinson (2007), who have executed the same simulation is also conducted. The
proposed model shows activation of the reorientation mechanism only between points385

C and D of the loading path, where it is combined with reverse transformation. The
normal stress level reached at point A is low enough to allow for even more forward
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(a) Rectangle loading path in stresses on SMA
tube

(b) Material response in normal and shear
strains

(c) Normal stress-strain diagram (d) Shear stress-strain diagram

Figure 4: Experimental results (points) and model reponse (continuous line) on SMA thin-walled
tube from (Sittner et al, 1995). Comparison with model results from (Lagoudas et al, 2012) (L2012),
(Arghavani et al, 2010) (A2010) and (Panico and Brinson, 2007) (P2007).

transformation along the shear direction in the branch A to B, and therefore reorienta-
tion is not activated. Su�cient accuracy of the predictive capabilities of the model in
this case of non-proportional loading is demonstrated, especially in comparison with the390

attempts made by previous models. As a �nal remark, it is added that even the Young's
modulus for austenite was captured with higher precision relatively to the other models,
as becomes evident at the elastic phase in Fig. (4c). This improved approach to such an
important material parameter demonstrates the combined adaptive capabilty of the new
model and the implemented identi�cation algorithm.395

Comparing the results from simulations between the current model and the model
by Lagoudas et al (2012), it becomes clear that certain aspects of material response are
handled better. Speci�cally, after point B, reorientation is activated alongside reverse
transformation when the stress levels are low enough. This has an impact on the two-
branch linear response between points B and C in the shear-normal strain curve in Fig.400
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EA (MPa) EM (MPa) vA vM α (K−1) Hmin Hsat

50120 27000 0.30 0.30 (10−5) 0.0 0.056

k CA (MPa/K) CM (MPa/K) Mf (K) Ms (K) As (K) Af (K)
0.021 9 9 255 258 264 277

Y reoo (MPa) εremax Hre b n
132.9 1546 0.046 0.608 2

Table 6: Material constants for NiTi tube subjected to tension-torsion-thermal loading presented
in (Grabe and Bruhns, 2009). Values that are not result of identi�cation appear in parentheses.

4(b). The transition point between the two branches is shifted to lower normal strain
values, which is a direct e�ect of the simultaneous activation of reorientation and reverse
activation. This leads to a strong reduction of normal but not shear transformation
strains, following the evolution of stress. This could not have been predicted with the
previous model. Moreover, in Fig. 4(d), the crossing of the response curve in the shear405

stress-shear strain space is reproduced, whereas, with the previous model, the return
path C-D never crosses the initial A-B curve. The di�erence in the predicted capacity
for developing transformation strains is also evident. Whereas the previous model is
presents a value of 3.5% for recoverable strain, the identi�cation of model parameters
with the current model reveals that 0.7% would be a better estimate. This implies that410

the non-linear e�ects are mostly a result of the change in elastic modulus. As the phase
transformation carries through, the fading elastic modulus of martensite takes e�ect in

Figure 5: Tension-compression loading combined with torsion in varying temperature, taken from
(Grabe and Bruhns, 2009)

29



Figure 6: Simulated behavior (line) of the complex thermomechanical loading of NiTi tube and
comparison with experimental data (points).

allowing for more elastic strain to appear at higher values of MVF. The austenitic mod-
ulus is recovered during reverse transformation. Note that such parameter identi�cation
comes directly ou of an optimization process aimed at minimising the square di�erence415

between experimental and numerical strains. Also, the proposed model can be viewed
here as an extension of Lagoudas et al (2012) model in the sense that it is a special case of
the proposed model in absence of reorientation mechanism or combined forward/reverse
transformation.

5.3. Tension-compression-torsion loading with ranging temperature420

A more complicated loading path is chosen to put the new model under test. In
(Grabe and Bruhns, 2009), an experiment alternating the stress level of the SMA material
between tension and compression, combined with torsion, subjected to a wide range of
temperature levels is presented. The full path is presented in Fig. 5. A tube specimen
made of 50.7 at. % NiTi with a wall thickness of 1.68 mm is heated from 193 to 243 K at a425

stress-free state. It is then loaded in the axial direction to 120 MPa in tension up to point
B, and then to a combined tension-torsion state at 120 MPa in torsion to point C. From
this point, axial stress is reversed to 132 MPa in compression (D). Then, maintaining the
stresses, the tube is heated to 363 K (E), where it is gradially released from torsion �rst
(F) and then compression (G). Finally, the specimen is cooled down to 243 K, returning430

to the initial point A. The identi�ed material parameters appear in Table 6. This time,
the model parameters for asymmetry are important, since compression is present in the
loading path.

The curves resulting from the loading simulation are presented in Figs. 6 and 7 and
compared with the reported experiment results. The material behavior in the space of435
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(a) Shear - axial strain relation (b) Normal stress - strain relation

(c) Shear stress - strain relation (d) Temperature - axial strain relation

Figure 7: Experimental results (points) and model reponse (line) on SMA thin-walled tube from
(Grabe and Bruhns, 2009)

temperature, axial and shear strain is presented in the 3D graph in Fig. 6. In Figs. 7
(a) to (d), the relation between the material variables is outlined during the history of
the experiment. In the loading history up to point D, all non-linear behavior is due to
the orientation mechanism. The temperature is below the martensite transition points
and therefore no transformation is allowed. The two-branch response in the C-D path in440

the normal stress-strain curve con�rms the kinematic character of the hardening during
reorientation. However, the discrepancies between experiment and simulation imply that
a non-linear hardening law would be better suited.

In the part D-E of the loading path, where the tube is heated and submitted to reverse
transformation, the current model handles the change in the direction of transformation445

strains, as revealed in the shear-axial strain curve. The idea of a simple recovery of
transformation strains would lead to straight line from point D to E in Fig. 7(a) and
(d). The form of the selected evolution law of (25) however, in combination with the
simultaneous activation of reorientation, imposes a more complex strain path resembling
the experimental data.450
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(a) Geometry of the pierced plate (b) Loading path for the top surface

Figure 8: Geometry (a) and loading history (b) of the holed plate. Dimensions in mm.

5.4. Analysis of strain rate dependency on SMA structure

The e�ect of themomechanical coupling becomes evident in cases when the strain
rate imposed by external working is so high that regular convection is not su�cient
to ensure isothermal conditions. In a simple test-case scenario, a holed plate made of455

NiTi is simulated using the Finite Element Package (FEA) Abaqus, and subjected to
non-proportional mechanical loading. Convection-type thermal boundary conditions are
applied to the surface of the structure.

The plate is considered to be placed in a temperature pool, in which the air has a con-
stant temperature T∞ = 280K. A �surface �lm interaction" with convection parameter460

h̄ = 0.4 kW/m2K (Enemark et al, 2015; Pathak et al, 2010) is kept constant throughout
the whole analysis to control heat exchanges. Such boundary conditions ressemble to
that of a real experiment at room temperature. The material properties are reported in
Table 7. The bottom surface of the plate is considered in encastre conditions. In the �rst
step of the loading, tension is applied by controlling the position of the upper surface,465

gradually increasing to 1.8 mm. Then, in the second step, a "shear-type" loading is
applied, consisting of a uniform displacement applied on the same surface in the lateral
direction, gradually reaching 2.3 mm, while longitudinal displacement is maintained at
the previous level. In the third step, the two displacements are simultaneously removed
until full unloading is reached. The geometry and the history of loading is illustrated470

in Fig. 8. The full geometry has been simulated, since the thermomechanical load does
not present any symmetry. C3D8T elements were used for the mesh. Two simulations
were executed, where the boundary conditions of the top surface were imposed under

two di�erent speeds
∆l/l

∆t
: at 10−5sec−1, considered to correspond to a "static� load,

and at 10−4sec−1, which induces a temperature change actively a�ecting the mechanical475

behavior.
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(a) Static speed, ξ at Step 2 (b) Speed 10x, ξ at Step 1 (c) Speed 10x, ξ at Step 2

(d) Static, temp. at Step 2 (e) Speed 10x, temp. at Step 1 (f) Speed 10x, temp. at Step 2

Figure 9: Martensitic volume fraction (ξ) on the �rst row (a-c) and temperature contour maps (d-f)
corresponding to the same time step for the two loading speeds at the end of Step 1 and end of Step
2. 1

On Fig. 9, it is clear that the thermomechanical coupling induces a signi�cant change
in the temperature �eld in the case of the high loading rate. The mechanical response
of the material should therefore be impacted. Also, reorientation appears in the stress
concentration zone around the hole during loading step 2. It is particularly enlightening480

to look closer at this location and in the centroid of element 119 precisely. Undergoing
reorientation, this material point has a particularly complex evolution of stress state,
presented in Fig. 10. The equivalent Mises stress - Mises strain diagram provides us
a clear view that the heat generation is actually dominated by phase transformation.
The crystallographic transition between austenite and martensite induces latent heat and485

dissipation. Such phenomena constitute a more important internal heat source compared
to reorientation, the latter releasing heat through dissipation only.

The temperature maps on Figs. (9e) and (9f) corresponding to the end of Steps 1
and 2 respectively exhibit a cooling e�ect deriving from the interaction with the ambient
air. The reorientation present in Step 2 does not produce as much energy as forward490

transformation and therefore the air has the time to absorb a fraction of the excessive
heat. In the corresponding volume fraction maps (9b) and (9c), the di�erence between
the transformed zones is small enough to justify the lack of supplementary heat during
Step 2. Still, the di�erence in temperature at the end of Step 2 between the static
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EA (MPa) EM (MPa) vA vM α (K−1) Hmin Hsat

50120 27000 0.30 0.30 10−5 0.0 0.056

k CA (MPa/K) CM (MPa/K) Mf (K) Ms (K) As (K) Af (K)
0.021 6 6 253 258 272 277

Y reoo (MPa) εremax Hre b n ρ(kg/m3) kth(W/mK)
120 0.05 1000 0 (2) 6450 12

Table 7: Material constants for NiTi plate subjected in non-proportional loading modeled in �nite
element analysis.ρ is the mass density and kth is the thermal conductivity constant.

(a) History of σ22 and σ12 stresses (b) Equivalent stress-strain diagram

Figure 10: Evolution of characteristic stress components (a) and of the equivalent (Von Mises)
stress-strain relation (b) for the two loading rates for the element 119 of the mesh.

loading case (9d) and the loading at higher speed is evident, although the MVF contours495

are practically the same.

6. Conclusion

A new phenomenological model to describe the complex behavior of SMAs while ex-
periencing coupled transformation/reorientation during complex, non-proportional ther-
momechanical loading is proposed. It has been shown that this model is thermodynam-500

ically consistent, and the proposed evolution equations correctly describe the evolution
of martensitic volumes in a SMA. The original contribution of this work concerns the
independent way in which the physical mechanisms are conceived to take place. The �rst
contribution brought about is the decoupling of forward and reverse transformation. In
such a way, it is observed that, in terms of modeling, these two can occur simultaneously505

inside the material. One more novelty is the simple form for describing the process of
reorientation. It is also considered an independent mechanism. Finally, a general frame-
work to resolve the numerical problem of complex non-proportional loading is presented

1Values of ξ over 1 and below 0 are due to extrapolation from integration points to the element
surface.
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for the case of multiple mechanisms. The thermomechanical e�ects are fully taken in
mind. Simulations of simple and complex experiments on SMA structures appearing in510

the literature have been carried out. The e�ect of strain rate in a pertinent �nite element
simulation has also been examined. In particular, the coupling between transformation
and orientation allows to describe with a good accuracy the thermomechanical response
of SMAs observed by several authors. The comparison of simulation with experimental
results is a �nding that demonstrates the advanced predictive capability of the model to515

capture the complex overall thermomechanical behavior of SMAs.
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Appendix A. Mathematical formulation of the evolution equation for trans-

formation strain

Revisiting equation 11, a rigorous mathematical formalism is intended to be given.730

The moving boundaries of the martensite volume, the mathematical representation of
which is found in the term V̇M is shown to be an important aspect to di�erentiate the
two mechanisms. Therefore, it is essential to de�ne the rate of change of the martensitic
volume.

Figure A.11: Moving boundary of martensitic volume

In Fig. A.11, SM is the boundary surface between the martensite and the austenite
volumes. The points on this surface have coordinates ~X(r).

~v(r) = ~̇X is the velocity with which the boundary moves. Here, a �ux of martensitic
volume is envisioned, basically martensitic volume leaking out of the martensitic volume
that is already there. The total di�erence of it in a step of time should be:

dVM =

∫
VM

div
(
d ~X(r)

)
dV

and in rate form:

V̇M =

∫
VM

div ~̇X(r)dV =

∫
VM

div~v(r)dV (A.1)

On the other hand, the rate of the mean transformation strain is given strictly by:735

˙̄ε
T

=

• 1

VM

∫
VM

ε̃Tr dV

 = − V̇M
V 2
M

∫
VM

ε̃Tr dV +
1

VM

•∫
VM

ε̃Tr dV

 =

= − V̇M
VM

ε̄T +
1

VM

•∫
VM

ε̃Tr dV


(A.2)

According to Leibniz-Reynolds' transport theorem, the rate of the last integral is
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written:

•∫
VM

ε̃Tr dV

 =

∫
VM

( ˙̃ε
T

r + ε̃Tr div~v(r))dV =

∫
VM

˙̃ε
T

r dV +

∫
VM

(ε̃Tr div~v(r))dV (A.3)

~v(r) being the vector de�ned earlier.
In the light of equation (12):

•∫
VM

ε̃Tr dV

 = VM ˙̄ε
re

+

∫
VM

(ε̃Tr div~v(r))dV (A.4)

Here, according to the second mean value theorem for integrals, there is a point ψ on
the surface SM for which:∫

VM

(ε̃Tr div~v(r))dV = ε̃Tψ

∫
VM

div~v(r)dV (A.5)

and, by e�ect of (A.1): ∫
VM

(ε̃Tr div~v(r))dV = εT (ψ)V̇M (A.6)

The value of εT (ψ) is the weighted average of ε̃Tr based on div~v(r) in the volume VM .

Here, the de�nition of Λ̄
T
is updated in order to �t εT (ψ). It is the weighted average of

ε̃Tr on the surface SM based on the divergence of the velocity in VM :740

Λ̄
T

=

∫
VM

(ε̃Tr div~v)dV∫
VM

div~vdV
=

∫
VM

(ε̃Tr div~v)dV

V̇M
(A.7)

Still, in this sense, the product

Λ̄
T
V̇M =

∫
VM

(ε̃Tr div~v)dV

will represent, according to (A.4) the contribution of the transformation strain inside the
newly formed martensitic volume to the rate of change of ε̄T .

Back to the equation (A.3), it will be written, according to (A.4) and (A.6):

˙̄ε
T

= − V̇M
VM

ε̄T +
1

VM

(
VM ˙̄ε

re
+ Λ̄

T
V̇M

)
= (Λ̄

T − ε̄T )
V̇M
VM

+ ˙̄ε
re

and by e�ect of 10:

˙̄ε
T

= (Λ̄
T − ε̄T )

ξ̇

ξ
+ ˙̄ε

re
(A.8)
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which is the rate form of (11).
Substituting this in 3, it is found that:

ε̇T = ξ̇Λ̄
T

+ ξ ˙̄ε
re

(A.9)

In the incremental scheme described in Fig. 1, when an elemental part of martensite745

dVM is considered to be removed after the �rst step, it seems necessary to remove all
the transformation strain existing within its volume. This is considered to have a mean

value equal to the mean value existing in VM . Therefore: Λ̄
T

= ε̄T . In the absence of
reorientation: ε̇T = ξ̇ε̄T

Still, there is the need for a major constraint of SMA behavior to be satis�ed: inelastic750

strains return to zero when there is no martensitic volume. To this end, the following
case of loading of a RVE is considered, which induces reverse transformation:

ξ̇ ≤ 0 in a time frame ∆t = t−0. The reverse transformation is concluded at t, mean-
ing that ξ(t) = 0. ˙̄ε

re 6= 0 for at least one point of ∆t, meaning that reorientation is not

excluded. Finally, it is assumed that Λ̄
T

= ε̄T , since there is no forward transformation.755

It is deduced that:
˙̄Λ
T

= ˙̄ε
T
and, by e�ect of (A.8):

˙̄ε
T

= ˙̄ε
re

= ˙̄Λ
T

The equation (3) is now:

ε̇T = ξ̇Λ̄
T

+ ξ ˙̄Λ
T

=

•(
ξΛ̄

T
)

Looking for εT (t), it is found that:

εT (t) = εT (0) +

t∫
0

ε̇T (τ)dτ = εT (0) +

t∫
0

•(
ξΛ̄

T
)
dτ = εT (0) + ξ(t)Λ̄

T
(t)− ξ(0)Λ̄

T
(0)

and
εT (t) = εT (0) + ξ(t)ε̄T (t)− ξ(0)ε̄T (0) = εT (0) + 0 · ε̄T (t)− εT (0) = 0

Conclusively, the �nding that εT (t) = 0 is easily reached. This is an indication that the
assumptions made so far satisfy the physical limitations of reverse transformation.

Appendix B: Implementation of thermomechanical e�ects with Abaqus

Any computation associated with the heat caused by mechanical working is carried760

out during the loop of force balance. After any kind of computation, a value correspond-
ing to a variable belongs to a set of three repetitive processes. The most general process
is the one that loops all the steps required to complete a time step. It is called here �the
n loop�.
The second process is the one that loops the RVE to �nd the balance in forces. It is765

called �the ω loop�.
The third process is the one that loops the algebraic manipulations to �nd the next ad-
missible set of variable coordinates for a RVE. It is called �the k loop�.
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When the n loop is carried out, a di�erential

∆xn+1 = xn+1 − xn

is approximated to �nd xn+1. Here, xn(w+1) is considered a constant. When the ω loop
is carried out, a di�erential

δxω+1 = xω+1 − xω

is approximated to �nd xω+1. Here, xn+1(ω) is considered a constant. When the k loop
is carried out, a di�erential

δ̃xk+1 = xk+1 − xk

is approximated to �nd xk+1. Here, xn+1(ω+1)(k) is considered a constant.770

Abaqus requires the quantities:

drε =
∂(δrpl)

∂(δε)

and

drT =
∂(δrpl)

∂(δT )

which, at the end of a ω loop, must satisfy the equation:

δrpl = drε : δε+ drT · δT (A.10)

Here, rpl is the quantity of energy rate found in equation (116):

rpl = CvṪ − Q̇ (A.11)

To this end, we start with the expression from (114):

rpl = CvṪ − Q̇ = Σ
j

{[
πj −

[
∂so
∂pj

+ σ :
∂α

∂pj
+
∂Cv
∂pj

ln

(
T

To

)]
T

]
ṗj
}
− σ̇ : α ·T (A.12)

The following de�nition is given:

π̄j =

[
∂so
∂pj

+ σ :
∂α

∂pj
+
∂Cv
∂pj

ln

(
T

To

)]
T (A.13)

The di�erential δrpl is approximated:

δrpl = δ

{
Σ
j

[(
πj − π̄j

)
ṗj
]
− σ̇ : α · T

}
(A.14)

where the rate variables are substituted with the �nite di�erences of the n loop:

δrpl = δ

{
Σ
j

((
πj − π̄j

) ∆pj

∆t

)
− ∆σ

∆t
: α · T

}
(A.15)
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This di�erential operation yields:

δrpl = δ

{
Σ
j

[(
πj − π̄j

) ∆pj

∆t

]
− ∆σ

∆t
: α · T

}
=

=
1

∆t

{
Σ
j

[(
δπj − δπ̄j

)
∆pj +

(
πj − π̄j

)
δpj
]
− (δσ : α · T + ∆σ : δα · T + ∆σ : α · δT )

}
(A.16)

where ∆t is the time increment corresponding to step n.
According to convex cutting plane considerations, the various di�erentials appearing

in the last equation are:

δπj = δ
∑
i

(
Aji : Λji

)
=
∑
i

(
δAji : Λji

)
(A.17)

Here,

δAji =
∂Aji
∂σ

: δσ +
∂Aji
∂T

δT +
∑
g

∑
f

(
∂Aji
∂V gf

: δV gf

) =

=
∂Aji
∂σ

: δσ +
∂Aji
∂T

δT +
∑
g

δpg
∑

f

∂Aji
∂V gf

: Λgf

 (A.18)

The indices j and g give reference to strain mechanisms, while the indices i and f refer
to model variables associated to the strain mechanism denoted by j and g respectively.

Replacing the �nding of (A.18) in (A.17) yields:

δπj =
∑
i

Λji :

∂Aji
∂σ

: δσ +
∂Aji
∂T

δT +
∑
g

δpg∑
f

(
∂Aji
∂V gf

: Λgf

) (A.19)

or

δπj =
∑
i

[
Λji :

(
∂Aji
∂σ

: δσ +
∂Aji
∂T

δT

)]
+
∑
g

(
Γjgδp

g
)

(A.20)

Here, for the sake of simplicity, new variables Γjg are de�ned to satisfy the equality:

∑
g

Γjgδp
g =

∑
i

Λji :
∑
g

δpg∑
f

(
∂Aji
∂V gf

: Λgf

) (A.21)

It is shown that:

Γjg =
∑
i

Λji :
∑
f

(
∂Aji
∂V gf

: Λgf

) (A.22)

Back in equation (A.16), the di�erentials δπ̄j and δα are written:

δπ̄j =
∂π̄j

∂σ
: δσ +

∂π̄j

∂T
δT = T

∂α

∂pj
: δσ +

∂Cv
∂pj

δT +
π̄j

T
δT (A.23)
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and

δα =
∑
j

(
∂α

∂pj
δpj
)

(A.24)

The second derivatives with respect to the scalars sj are ignored. In the current
model, they are null.775

Thus, (A.16) is rewritten:

δrpl =
1

∆t

(
d̄
r
σ : δσ + d̄rT δT +Ds

)
(A.25)

where, according to equations (A.20), (A.22), (A.23) and (A.24),

d̄
r
σ =

∑
j

{
∆pj

[∑
i

(
∂Aji
∂σ

: Λji

)
− T ∂α

∂pj

]}
−α · T (A.26)

d̄rT =
∑
j

{
∆pj

[∑
i

(
∂Aji
∂T

: Λji

)
− ∂Cv
∂pj
− π̄j

T

]}
−∆σ : α (A.27)

and

Ds =
∑
j

{
∆pj

∑
g

(
Γjgδp

g
)

+ (πj − π̄j)δpj
}
−∆σ :

∑
j

(
∂α

∂pj
δpj
)
.T (A.28)

The quantity Ds can be written as an expression of a single common cofactor δpj :

Ds =
∑
j

[∑
g

(
∆pjΓjgδp

g
)]

+
∑
j

[
(πj − π̄j)δpj

]
−
∑
j

(
T∆σ :

∂α

∂pj
δpj
)

=
∑
j

{
δpj

[∑
g

(
∆pgΓgj

)
+ πj − π̄j −∆σ :

∂α

∂pj
T

]} (A.29)

The variables d̄rj are introduced as such:

d̄rj =
∑
g

(
∆pgΓgj

)
+ πj − π̄j −∆σ :

∂α

∂pj
T (A.30)

In light of (A.29) and (A.30), equation (A.25) is now:

δrpl =
1

∆t

d̄rσ : δσ + d̄rT δT +
∑
j

(
d̄rjδp

j
) (A.31)

Here, replacing the expressions of dpj and dσ with the help of equations (101) and
(102) respectively, it is found that:

δrpl =
1

∆t

d̄rσ : (L : δε+ Θ : δT ) + d̄rT δT +
∑
j

[
d̄rj(−P

j
ε : δε− P jT δT )

] (A.32)
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Recalling the general form of (A.10), it is evident that:

drε =
1

∆t

d̄rσ : L−
∑
j

(
d̄rjP

j
ε

) (A.33)

and

drT =
1

∆t

d̄rσ : Θ + d̄rT −
∑
j

(
d̄rjP

j
T

) (A.34)
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