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Hölder gradient estimates for a class of singular or
degenerate parabolic equations

Cyril Imbert, Tianling Jin∗ and Luis Silvestre†

September 4, 2016

Abstract

We prove interior Hölder estimate for the spatial gradients of the viscosity solutions to the
singular or degenerate parabolic equation

ut = |∇u|κ div(|∇u|p−2∇u),

where p ∈ (1,∞) and κ ∈ (1 − p,∞). This includes the from L∞ to C1,α regularity for
parabolic p-Laplacian equations in both divergence form with κ = 0, and non-divergence
form with κ = 2− p. This work is a continuation of a paper by the last two authors [12].

1 Introduction

Let 1 < p <∞ and κ ∈ (1− p,∞). We are interested in the regularity of solutions of

ut = |∇u|κ div(|∇u|p−2∇u). (1)

When κ = 0, this is the classical parabolic p-Laplacian equation in divergence form. This is
the natural case in the context of gradient flows of Sobolev norms. Hölder estimates for the spatial
gradient of their weak solutions (in the sense of distribution) were obtained by DiBenedetto and
Friedman in [7] (see also Wiegner [24]).

When κ = 2− p, the equation (1) is a parabolic homogeneous p-Laplacian equations. This is
the most relevant case for applications to tug-of-war-like stochastic games with white noise, see
Peres-Sheffield [20]. This equation has been studied by Garofalo [9], Banerjee-Garofalo [1, 2, 3],
Does [8], Manfredi-Parviainen-Rossi [17, 18], Rossi [21], Juutinen [13], Kawohl-Krömer-Kurtz
[14], Liu-Schikorra [16], Rudd [22], as well as the last two authors [12]. Hölder estimates for the
spatial gradient of their solutions was proved in [12]. The solution of this equation is understood
in the viscosity sense. The toolbox of methods that one can apply are completely different to the
variational techniques used classically for p-Laplacian problems.

The equation (1) can be rewritten as

ut = |∇u|γ
(
∆u+ (p− 2)|∇u|−2uiujuij

)
, (2)

∗Support in part by Hong Kong RGC grant ECS 26300716.
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where γ = p + κ − 2 > −1. In this paper, we prove Hölder estimates for the spatial gradients
of viscosity solutions to (2) for 1 < p < ∞ and γ ∈ (−1,∞). Therefore, it provides a unified
approach for all those γ and p, including the two special cases γ = 0 and γ = p − 2 mentioned
above.

The viscosity solutions to (2) with γ > −1 and p > 1 falls into the general framework
studied by Ohnuma-Sato in [19], which is an extension of the work of Barles-Georgelin [5] and
Ishii-Souganidis [11] on the viscosity solutions of singular/degenerate parabolic equations. We
postpone the definition of viscosity solutions of (2) to Section 5. For r > 0, Qr denotes Br ×
(−r2, 0], where Br ⊂ Rn is the ball of radius r centered at the origin.

Theorem 1.1. Let u be a viscosity solution of (2) in Q1, where 1 < p < ∞ and γ ∈ (−1,∞).
Then there exist two constants α ∈ (0, 1) and C > 0, both of which depends only on n, γ, p and
‖u‖L∞(Q1), such that

‖∇u‖Cα(Q1/2) ≤ C.

Also, the following Hölder regularity in time holds

sup
(x,t),(x,s)∈Q1/2

|u(x, t)− u(x, s)|

|t− s|
1+α
2−αγ

≤ C.

Note that (1 + α)/(2− αγ) > 1/2 for every α > 0 and γ > −1.

Our proof in this paper follows a similar structure as in [12], with some notable differences
that we explain below. We use non-divergence techniques in the context of viscosity solutions.
Theorem 1.1 tells us that these techniques are in some sense stronger than variational methods
when dealing with the regularity of scalar p-Laplacian type equations. The weakness of these
methods (at least as of now) is that they are ineffective for systems.

The greatest difficulty extending the result in [12] to Theorem 1.1 comes from the lack of
uniform ellipticity. When γ = 0, the equation (2) is a parabolic equation in non-divergence form
with uniformly elliptic coefficients (depending on the solution u). Because of this, in [12], we use
the theory developed by Krylov and Safonov, and other classical results, to get some basic uniform
a priori estimates. This fact is no longer true for other values of γ. The first step in our proof is
to obtain a Lipschitz modulus of continuity. That step uses the uniform ellipticity very strongly in
[12]. In this paper we take a different approach using the method of Ishii and Lions [10]. Another
step where the uniform ellipticity plays a strong role is in a lemma which transfers an oscillation
bound in space, for every fixed time, to a space-time oscillation. In this paper that is achieved
through Lemmas 4.4 and 4.5, which are considerably more difficult than their counterpart in [12].
Other, more minor, difficulties include the fact that the non-homogeneous right hand side forces
us to work with a different scaling (See the definition of Qρr by the beginning of Section 4).

In order to avoid some of the technical difficulties caused by the non-differentiability of viscos-
ity solutions, we first consider the regularized problem (3) in the below, and then obtain uniform
estimates so that we can pass to the limit in the end. For ε ∈ (0, 1), let u be smooth and satisfy
that

∂tu = (|∇u|2 + ε2)γ/2
(
δij + (p− 2)

uiuj
|∇u|2 + ε2

)
uij . (3)

We are going to establish Lipschitz estimate and Hölder gradient estimates for u, which will
be independent of ε ∈ (0, 1), in Sections 2, 3, 4. Then in Section 5, we recall the definition
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of viscosity solutions to (2), as well as their several useful properties, and prove Theorem 1.1
via approximation arguments. This idea of approximating the problem with a smoother one and
proving uniform estimates is very standard.

Acknowledgement: Part of this work was done when T. Jin was visiting California Institute
of Technology as an Orr foundation Caltech-HKUST Visiting Scholar. He would like to thank
Professor Thomas Y. Hou for the kind hosting and discussions.

2 Lipschitz estimates in the spatial variables

The proof of Lipschitz estimate in [12] for γ = 0 is based on a calculation that |∇u|p is a subsolu-
tion of a uniformly parabolic equation. We are not able to find a similar quantity for other nonzero
γ. The proof we give here is completely different. It makes use of the Ishii-Lions’ method [10].
However, we need to apply this method twice: first we obtain log-Lipschitz estimates, and then use
this log-Lipschitz estimate and Ishii-Lions’ method again to prove Lipschitz estimate. Moreover,
the Lipschitz estimate holds for γ > −2 instead of γ > −1.

Lemma 2.1 (Log-Lipschitz estimate). Let u be a smooth solution of (3) in Q4 with γ > −2
and ε ∈ (0, 1). Then there exist two positive constants L1 and L2 depending only on n, p, γ and
‖u‖L∞(Q4) such that for every (t0, x0) ∈ Q1, we have

u(t, x)− u(t, y) ≤ L1|x− y|| log |x− y||+ L2

2
|x− x0|2 +

L2

2
|y − x0|2 +

L2

2
(t− t0)2

for all t ∈ [t0 − 1, t0] and x, y ∈ B1(x0).

Proof. Without loss of generality, we assume x0 = 0 and t0 = 0. It is sufficient to prove that

M := max
−1≤t≤0, x, y∈B1

{
u(t, x)− u(t, y)− L1φ(|x− y|)− L2

2
|x|2 − L2

2
|y|2 − L2

2
t2
}

is non-positive, where

φ(r) =

{
−r log r for r ∈ [0, e−1]

e−1 for r ≥ e−1.

We assume this is not true and we will exhibit a contradiction. In the rest of the proof, t ∈
[−1, 0] and x, y ∈ B1 denote the points realizing the maximum defining M .

Since M ≥ 0, we have

L1φ(|x− y|) +
L2

2
(|x|2 + |y|2 + t2) ≤ 2‖u‖L∞(Q4).

In particular,

φ(δ) ≤
2‖u‖L∞(Q4)

L1
, where δ = |a| and a = x− y, (4)

and

|t|+ |x|+ |y| ≤ 6

√
‖u‖L∞(Q4)

L2
. (5)
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Hence, for L2 large enough, depending only on ‖u‖L∞(Q4), we can ensure that t ∈ (−1, 0] and
x, y ∈ B1. We choose L2 here and fix it for the rest of the proof. Thus, from now on L2 is a
constant depending only on ‖u‖L∞ .

Choosing L1 large, we can ensure that δ(< e−2) is small enough to satisfy

φ(δ) ≥ 2δ.

In this case, (4) implies

δ ≤
‖u‖L∞(Q4)

L1
. (6)

Since t ∈ [−1, 0] and x, y ∈ B1 realizing the supremum defining M , we have that

∇u(t, x) = L1φ
′(δ)â+ L2x

∇u(t, y) = L1φ
′(δ)â− L2y

ut(t, x)− ut(t, y) = L2t[
∇2u(t, x) 0

0 −∇2u(t, y)

]
≤ L1

[
Z −Z
−Z Z

]
+ L2I, (7)

where

Z = φ′′(δ)â⊗ â+
φ′(δ)

δ
(I − â⊗ â) and â =

a

|a|
=

x− y
|x− y|

.

For z ∈ Rn, we let
A(z) = I + (p− 2)

zizj
|z|2 + ε2

,

and q = L1φ
′(δ)â, X = ∇2u(t, x) and Y = ∇2u(t, y). By evaluating the equation at (t, x) and

(t, y), we have

L2t ≤ (|q + L2x|2 + ε2)
γ
2 Tr

(
A(q + L2x)X

)
− (|q − L2y|2 + ε2)

γ
2 Tr

(
A(q − L2y)Y

)
. (8)

Whenever we write C in this proof, we denote a positive constant, large enough depending only
on n, p, γ and ‖u‖L∞(Q4), which may vary from lines to lines. Recall that we have already chosen
L2 above depending on ‖u‖L∞ only.

Note that |q| = L1|φ′(δ)|. Choosing L1 large enough, δ will be small, |φ′(δ)| will thus be
large, and |q| � L2. In particular,

|q|/2 ≤ |q + L2x| ≤ 2|q| and |q|/2 ≤ |q − L2y| ≤ 2|q|. (9)

From (7) and the fact that φ′′(δ) < 0, we have

X = ∇2u(t, x) ≤ L1
φ′(δ)

δ
(I − â⊗ â) + L2I

−Y = −∇2u(t, y) ≤ L1
φ′(δ)

δ
(I − â⊗ â) + L2I

(10)
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Making use of (8), (9) and (10), we have

Tr
(
A(q + L2x)X

)
= (|q + L2x|2 + ε2)−

γ
2L2t+

(
|q − L2y|2 + ε2

|q + L2x|2 + ε2

) γ
2

Tr
(
A(q − L2y)Y

)
≥ −C

(
|q|−γ + L1

φ′(δ)

δ
+ 1

)
.

Therefore, it follows from (10) and the ellipticity of A that

|X| ≤ C
(
|q|−γ + L1

φ′(δ)

δ
+ 1

)
(11)

Similarly,

|Y | ≤ C
(
|q|−γ + L1

φ′(δ)

δ
+ 1

)
Let

B(z) =
(
|z|2 + ε

)γ
A(z).

We get from (8) and (5) the following inequality

− C ≤ Tr[B(q + L2x)X]− Tr[B(q − L2y)Y ] ≤ T1 + T2 (12)

where

T1 = Tr[B(q − L2y)(X − Y )] and T2 = |X||B(q + L2x)−B(q − L2y))|.

We first estimate T2. Using successively (5), (9), (11) and mean value theorem, we get

T2 ≤ C|X||q|γ−1|x+ y|
≤ C|X||q|γ−1

≤ C
(
|q|−γ +

L1φ
′(δ)

δ
+ 1

)
|q|γ−1,

≤ C
(
|q|−1 +

|q|γ

δ
+ |q|γ−1

)
. (13)

We now turn to T1. On one hand, evaluating (7) with respect to a vector of the form (ξ, ξ), we
get that for all ξ ∈ Rd we have

(X − Y )ξ · ξ ≤ 2L2|ξ|2. (14)

On the other hand, when we evaluate (7) with respect to (â, â), we get,

(X − Y )â · â ≤ 4L1φ
′′(δ) + 2L2 (15)

The inequality (14) tells us that all eigenvalues of (X − Y ) are bounded above by a constant
C. The inequality (15) tells us that there is at least one eigenvalue that is less than the negative
number 4L1φ

′′(δ) + 2L2. Because of the uniform ellipticity of A, we obtain

T1 ≤ C|q|γ
(
L1φ

′′(δ) + 1
)
.
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In view of the estimates for T1 and T2, we finally get from (12) that

−L1φ
′′(δ)|q|γ ≤ C

(
|q|γ + |q|−1 +

|q|γ

δ
+ |q|γ−1 + 1

)
,

or equivalently,

−L1φ
′′(δ) ≤ C

(
1 + |q|−1−γ +

1

δ
+ |q|−1 + |q|−γ

)
. (16)

Our purpose is to choose L1 large in order to get a contradiction in (16).
Recall that we have the estimate δ ≤ C/L1. From our choice of φ, φ′(δ) > 1 for δ small and

−φ′′(δ) = 1/δ ≥ cL1.
For L1 sufficiently large, since γ > −2

C(1 + |q|−1−γ + |q|−1 + |q|−γ) ≤ C
(

1 + L−1−γ1 + L−11 + L−γ1

)
≤ c

2
L2
1,

≤ −1

2
L1φ

′′(δ).

The remaining term is handled because of the special form of the function φ. We have

−L1φ
′′(δ) =

L1

δ
>

2C

δ
,

for L1 sufficiently large.
Therefore, we reached a contradiction. The proof of this lemma is thereby completed.

By letting t = t0 and y = x0 in Lemma 2.1, and since (x0, t0) is arbitrary, we have

Corollary 2.2. Let u be a smooth solution of (3) in Q4 with γ > −2 and ε ∈ (0, 1). Then
there exists a positive constant C depending only on n, γ, p and ‖u‖L∞(Q4) such that for every
(t, x), (t, y) ∈ Q3 and |x− y| < 1/2, we have

|u(t, x)− u(t, y)| ≤ C|x− y|| log |x− y||.

We shall make use of the above log-Lipschitz estimate and the Ishii-Lions’ method [10] again
to prove the following Lipschitz estimate.

Lemma 2.3 (Lipschitz estimate). Let u be a smooth solution of (3) in Q4 with γ > −2 and
ε ∈ (0, 1). Then there exist two positive constants L1 and L2 depending only on n, p, γ and
‖u‖L∞(Q4) such that for every (t0, x0) ∈ Q1, we have

u(t, x)− u(t, y) ≤ L1|x− y|+
L2

2
|x− x0|2 +

L2

2
|y − x0|2 +

L2

2
(t− t0)2

for all t ∈ [t0 − 1, t0] and x, y ∈ B1/4(x0).
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Proof. The proof of this lemma follows the same computations as that of Lemma 2.1, but we make
use of the conclusion of Corollary 2.2 in order to improve our estimate.

Without loss of generality, we assume x0 = 0 and t0 = 0. As before, we define

M := max
−1≤t≤0, x, y∈B1

{
u(t, x)− u(t, y)− L1φ(|x− y|)− L2

2
|x|2 − L2

2
|y|2 − L2

2
t2
}

is non-positive, where

φ(r) =

{
r − 1

2−γ0 r
2−γ0 for r ∈ [0, 1]

1− 1
2−γ0 for r ≥ 1

for some γ0 ∈ (1/2, 1).
We assume this is not true in order to obtain a contradiction. In the remaining of the proof of

the lemma, t ∈ [−1, 0] and x, y ∈ B1/4 denote the points realizing the maximum defining M .
For the same reasons as in the proof of Lemma 2.1, the inequalities (4) and (5) also apply

in this case. Thus, we can use the same choice of L2, depending on ‖u‖L∞ only, that ensures
t ∈ (−1, 0] and x, y ∈ B1.

From Corollary 2.2, we already know that u(t, x) − u(t, y) ≤ C|x − y|| log |x − y||. Since
M ≥ 0,

L1φ(|x− y|) +
L2

2
(|x|2 + |y|2 + t2) ≤ C|x− y|| log |x− y||. (17)

In particular, we obtain an improvement of (5),

|t|+ |x|+ |y| ≤ C

√
δ| log δ|
L2

. (18)

This gives us an upper bound for |x+ y| that we can use to improve (13).

T2 ≤ C|X||q|γ−1|x+ y|,

≤ C
(
|q|−1 +

|q|γ

δ
+ |q|γ−1

)√
δ| log δ|,

The estimate for T1 stays unchanged. Hence, (16) becomes

−L1φ
′′(δ) ≤ C

(
1 +

√
δ| log δ|

(
|q|−1 + |q|−1−γ +

1

δ
+ |q|−γ

))
.

Recall that |q| = L1φ
′(δ) ≥ L1/2 and φ′′(δ) = (γ0 − 1)δ−γ0 . Then,

L1δ
−γ0 ≤ C

(
1 +

√
δ| log δ|

(
1 + L−11 + L−1−γ1 + δ−1 + L−γ1

))
The term +1 inside the innermost parenthesis is there just to ensure that the inequality holds both
for γ < 0 and γ > 0. Recalling that δ < C/L1, we obtain an inequality in terms of L1 only.

L1+γ0
1 ≤ C

(
1 + L

−1/2
1

√
logL1

(
1 + L−11 + L−1−γ1 + L1 + L−γ1

))
Choosing L1 large, we arrive to a contradiction given that 1 + γ0 > max(1/2,−1/2 − γ)

since γ0 > 1/2 and γ > −2.
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Again, by letting t = t0 and y = x0 in Lemma 2.3, and since (x0, t0) is arbitrary, we have

Corollary 2.4. Let u be a smooth solution of (3) in Q4 with γ > −2 and ε ∈ (0, 1). Then
there exists a positive constant C depending only on n, γ, p and ‖u‖L∞(Q4) such that for every
(t, x), (t, y) ∈ Q3 and |x− y| < 1, we have

|u(t, x)− u(t, y)| ≤ C|x− y|.

3 Hölder estimates in the time variable

Using the Lipschitz continuity in x and a simple comparison argument, we show that the solution
of (3) is Hölder continuous in t.

Lemma 3.1. Let u be a smooth solution of (3) in Q4 with γ > −1 and ε ∈ (0, 1). Then there
holds

sup
t6=s,(t,x),(s,x)∈Q1

|u(t, x)− u(s, x)|
|t− s|1/2

≤ C,

where C is a positive constant depending only on n, p, γ and ‖u‖L∞(Q4).

Remark 3.2. Deriving estimates in the time variable for estimates in the space variable by max-
imum principle techniques is classical. As far as viscosity solutions are concerned, the reader is
referred to [4, Lemma 9.1, p. 317] for instance.

Proof. Let β = max(2, (2 + γ)/(1 + γ)). We claim that for all t0 ∈ [−1, 0), η > 0, there exists
L1 > 0 and L2 > 0 such that

u(t, x)− u(t0, 0) ≤ η + L1(t− t0) + L2|x|β =: ϕ(t, x) for all (t, x) ∈ [t0, 0]×B1. (19)

We first choose L2 ≥ 2‖u‖L∞(Q3) such that (19) holds true for x ∈ ∂B1. We will next choose
L2 such that (19) holds true for t = t0. In this step we shall use Corollary 2.4 that u is Lipschitz
continuous with respect to the spatial variables. From Corollary 2.4, ‖∇u‖L∞(Q3) is bounded
depending on ‖u‖L∞(Q4) only. It is enough to choose

‖∇u‖L∞(Q3)|x| ≤ η + L2|x|β

which holds true if

L2 ≥
‖∇u‖βL∞(Q3)

ηβ−1
.

We finally choose L1 such that the function ϕ(t, x) is a supersolution of an equation that u is
a solution. The inequality (19) thus follows from the comparison principle. We use a slightly
different equation depending on whether γ ≤ 0 or γ > 0.

Let us start with the case γ ≤ 0. In this case we will prove that ϕ is a supersolution of the
nonlinear equation (3). That is

ϕt − (ε2 + |∇ϕ|2)γ/2
(
δij + (p− 2)

ϕiϕj
ε2 + |∇ϕ|2

)
ϕij > 0. (20)
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In order to ensure this inequality, we choose L1 so that

L1 > (p− 1)|∇ϕ|γ |D2ϕ| ≥ (ε2 + |∇ϕ|2)γ/2
(
δij + (p− 2)

ϕiϕj
ε2 + |∇ϕ|2

)
ϕij .

We chose the exponent β so that when γ ≤ 0, |∇ϕ|γ |D2ϕ| = CL1+γ
1 for some constant C

depending on n and γ. Thus, we must choose L1 = CL1+γ
2 in order to ensure (20).

Therefore, still for the case γ ≤ 0, β = (2 + γ)/(1 + γ), and for any choice of η > 0, using
the comparison principle,

u(t, 0)− u(t0, 0) ≤ η + C
(
η(1−β)‖∇u‖βL∞(Q3)

+ 2‖u‖L∞(Q3) + ε
)γ+1

(t− t0)

≤ η + Cη−1‖∇u‖γ+2
L∞(Q3)

|t− t0|+ C(‖u‖L∞(Q3) + ε)γ+1|t− t0|

By choosing η = ‖∇u‖γ/2+1
L∞(Q3)

|t− t0|1/2, it follows that for t ∈ (t0, 0],

u(t, 0)− u(t0, 0) ≤ C
(
‖∇u‖L∞(Q3)

) γ+2
2 |t− t0|1/2 + C

(
‖u‖L∞(Q3) + ε

)γ+1 |t− t0|.

The lemma is then concluded in the case γ ≤ 0.
Let us now analyze the case γ > 0. In this case, we prove that ϕ is a supersolution to a linear

parabolic equation whose coefficients depend on u. That is

ϕt − (ε2 + |∇u|2)γ/2
(
δij + (p− 2)

uiuj
ε2 + |∇u|2

)
ϕij > 0. (21)

Since γ > 0 and ∇u is known to be bounded after Corollary 2.4, we can rewrite the equation
assumption

ϕt − aij(t, x)ϕij > 0, (22)

where the coefficients aij(t, x) are bounded by

|aij(t, x)| ≤ C
(
ε+ ‖∇u‖L∞(Q3)

)γ
.

Since γ > 0, we pick β = 2 and D2ϕ is a constant multiple of L2. In particular, we ensure that
(22) holds if

L1 > C
(
ε+ ‖∇u‖L∞(Q3)

)γ
L2.

Therefore, for the case γ > 0, β = 2, and for any choice of η > 0, using the comparison principle,

u(t, 0)− u(t0, 0) ≤ η + C
(
ε+ ‖∇u‖L∞(Q3)

)γ (
η−1‖∇u‖2L∞(Q3)

+ ‖u‖L∞(Q3)

)
(t− t0).

Choosing η =
(
ε+ ‖∇u‖L∞(Q3)

)γ/2+1
(t− t0)1/2, we obtain,

u(t, 0)− u(t0, 0) ≤ C
(
ε+ ‖∇u‖L∞(Q3)

)γ/2+1
(t− t0)1/2+

C
(
ε+ ‖∇u‖L∞(Q3)

)γ ‖u‖L∞(Q3)(t− t0).

This finishes the proof for γ > 0 as well.
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4 Hölder estimates for the spatial gradients

In this section, we assume that γ > −1 so that Corollary 2.4 and Lemma 3.1 holds, that is, the
solution of (3) in Q2 has uniform interior Lipschitz estimates in x and uniform interior Hölder
estimates in t, both of which are independent of ε ∈ (0, 1). For ρ, r > 0, we denote

Qr = Br × (−r2, 0], Qρr = Br × (−ρ−γr2, 0].

The cylinders Qρr are the natural ones that correspond to the two-parameter family of scaling of
the equation. Indeed, if u solves (3) in Qρr and we let v(x, t) = 1

rρu(rx, r2ρ−γt), then

vt(t, x) =
(
|∇v|2 + ε2ρ−2

)γ/2(
∆v + (p− 2)

vivj
|∇v|2 + ε2ρ−2

vij

)
in Q1.

If we choose ρ ≥ ‖∇u‖L∞(Q1) + 1, we may assume that the solution of (3) satisfies |∇u| ≤ 1
in Q1.

We are going to show that ∇u is Hölder continuous in space-time at the point (0, 0). The
idea of the proof in this step is similar to that in [12]. First we show that if the projection of ∇u
onto the direction e ∈ Sn−1 is away from 1 in a positive portion of Q1, then ∇u · e has improved
oscillation in a smaller cylinder.

Lemma 4.1. Let u be a smooth solution of (3) with ε ∈ (0, 1) such that |∇u| ≤ 1 in Q1. For
every 1

2 < ` < 1, µ > 0, there exists τ1 ∈ (0, 14) depending only on µ, n, and there exist τ, δ > 0
depending only on n, p, γ, µ and ` such that for arbitrary e ∈ Sn−1, if

|{(x, t) ∈ Q1 : ∇u · e ≤ `}| > µ|Q1|, (23)

then
∇u · e < 1− δ in Q1−δ

τ ,

and Q1−δ
τ ⊂ Qτ1 .

Proof. Let

aij(q) = (|q|2 + ε2)γ/2
(
δij + (p− 2)

qiqj
|q|2 + ε2

)
, q ∈ Rn (24)

and denote
aij,m =

∂aij
∂qm

.

Differentiating (3) in xk, we have

(uk)t = aij
(
uk)ij + aij,muij(uk)m.

Then
(∇u · e− `)t = aij

(
∇u · e− `)ij + aij,muij(∇u · e− `)m

and for
v = |∇u|2,
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we have
vt = aijvij + aij,muijvm − 2aijukiukj .

For ρ = `/4, let
w = (∇u · e− `+ ρ|∇u|2)+.

Then in the region Ω+ = {(x, t) ∈ Q1 : w > 0}, we have

wt = aijwij + aij,muijwm − 2ρaijukiukj .

Since |∇u| > `/2 in Ω+, we have in Ω+:

|aij,m| ≤

{
c(p, n, γ)`−1, if γ ≥ 0

c(p, n, γ)`γ−1, if γ < 0,

where c(p, n, γ) is a positive constant depending only on p, n and γ. By Cauchy-Schwarz inequal-
ity, it follows that

wt ≤ aijwij + c1(`)|∇w|2 in Ω+,

where

c1(`) =

{
c0`
−γ−3, ifγ ≥ 0

c0`
2γ−3, if γ < 0

for some constant c0 > 0 depending only on p, γ, n. Therefore, it satisfies in the viscosity sense
that

wt ≤ ãijwij + c1(`)|∇w|2 in Q1,

where

ãij(x) =

{
aij(∇u(x)), x ∈ Ω+

δij , elsewhere.

Notice that since ` ∈ (12 , 1), ãij is uniformly elliptic with ellipticity constants depending only on
p and γ. We can choose c2(`) > 0 depending only on p, γ, n and ` such that if we let

W = 1− `+ ρ

and
w =

1

c2
(1− ec2(w−W )),

then we have
wt ≥ ãijwij in Q1

in the viscosity sense. Since W ≥ supQ1
w, then w ≥ 0 in Q1.

If∇u · e ≤ `, then w ≥ (1− ec2(`−1))/c2. Therefore, it follows from the assumption that

|{(x, t) ∈ Q1 : w ≥ (1− ec2(`−1))/c2}| > µ|Q1|.

By Proposition 2.3 in [12], there exist τ1 > 0 depending only µ and n, and ν > 0 depending only
on µ, `, n, γ and p such that

w ≥ ν in Qτ1 .

11



Meanwhile, we have
w ≤W − w.

This implies that
W − w ≥ ν in Qτ1 .

Therefore, we have
∇u · e+ ρ|∇u|2 ≤ 1 + ρ− ν in Qτ1 .

Since |∇u · e| ≤ |∇u|, we have

∇u · e+ ρ(∇u · e)2 ≤ 1 + ρ− ν in Qτ1 .

Therefore, remarking that ν ≤ 1 + ρ, we have

∇u · e ≤
−1 +

√
1 + 4ρ(1 + ρ− ν)

2ρ
≤ 1− δ in Qτ1

for some δ > 0 depending only on p, γ, µ, `, n. Finally, we can choose τ = τ1 if γ < 0 and
τ = τ1(1− δ)γ/2 if γ ≥ 0 such that Q1−δ

τ ⊂ Qτ1 .

Note that our choice of τ and δ in the above implies that

τ < (1− δ)
γ
2 when γ ≥ 0.

In the rest of the paper, we will choose τ even smaller such that

τ < (1− δ)1+γ for all γ > −1. (25)

This fact will be used in the proof of Theorem 4.8.
In case we can apply the previous lemma holds in all directions e ∈ ∂B1, then it effectively

implies a reduction in the oscillation of ∇u in a smaller parabolic cylinder. If such improvement
of oscillation takes place at all scales, it leads to the Hölder continuity of∇u at (0, 0) by iteration
and scaling. The following corollary describes this favorable case in which the assumption of the
previous Lemma holds in all directions.

Corollary 4.2. Let u be a smooth solution of (3) with ε ∈ (0, 1) such that |∇u| ≤ 1 in Q1. For
every 0 < ` < 1, µ > 0, there exist τ ∈ (0, 1/4) depending only on µ and n, and δ > 0 depending
only on n, p, γ, µ, `, such that for every nonnegative integer k ≤ log ε/ log(1− δ), if

|{(x, t) ∈ Q(1−δ)i
τ i

: ∇u·e ≤ `(1−δ)i}| > µ|Q(1−δ)i
τ i

| for all e ∈ Sn−1 and i = 0, · · · , k, (26)

then
|∇u| < (1− δ)i+1 in Q(1−δ)i+1

τ i+1 for all i = 0, · · · , k.

Remark 4.3. Remark that we can further impose on δ that δ < 1/2 and δ < 1− τ .
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Proof. When i = 0, it follows from Lemma 4.1 that ∇u · e < 1− δ in Qτ for all e ∈ Sn−1. This
implies that |∇u| < 1− δ in Q1−δ

τ .
Suppose this corollary holds for i = 0, · · · , k − 1. We are going prove it for i = k. Let

v(x, t) =
1

τk(1− δ)k
u
(
τkx, τ2k(1− δ)−kγt

)
.

Then v satisfies

vt =

(
|∇v|2 +

ε2

(1− δ)2k

)γ/2(
∆v + (p− 2)

vivj
|∇v|2 + ε2(1− δ)−2k

vij

)
in Q1.

By the induction hypothesis, we also know that |∇v| ≤ 1 in Q1, and

|{(x, t) ∈ Q1 : ∇v · e ≤ `}| > µ|Q1| for all e ∈ Sn−1.

Notice that ε ≤ (1− δ)k. Therefore, by Lemma 4.1 we have

∇v · e ≤ 1− δ in Q1−δ
τ for all e ∈ Sn−1.

Hence, |∇v| ≤ 1− δ in Q1−δ
τ . Consequently,

|∇u| < (1− δ)k+1 in Q(1−δ)k+1

τk+1 .

Unless ∇u(0, 0) = 0, the above iteration will inevitably stop at some step. There will be a
first value of k where the assumptions of Corollary 4.2 do not hold in some direction e ∈ Sn−1.
This means that∇u is close to some fixed vector in a large portion of Q(1−δ)k

τk
. We then prove that

u is close to some linear function, from which the Hölder continuity of∇u will follow applying a
result from [23].

Having ∇u close to a vector e for most points tells us that for every fixed time t, the function
u(x, t) will be approximately linear. However, it does not say anything about how u varies respect
to time. We must use the equation in order to prove that the function u(x, t) will be close to some
linear function uniformly in t. That is the main purpose of the following set of lemmas.

Lemma 4.4. Let u ∈ C(Q1) be a smooth solution of (3) with γ > −1, ε ∈ (0, 1) such that
|∇u| ≤M in Q1. Let A be a positive constant. Assume that for all t ∈ [−1, 0], we have

oscB1 u(·, t) ≤ A,

then

oscQ1 u ≤

{
CA, if γ ≥ 0

C(A+A1+γ) if − 1 < γ < 0,

where C is a positive constant depending only on M,γ, p and the dimension n.

Proof. When γ ≥ 0, for the aij in (24), we have |aij | ≤ Λ := (M2 + 1)γ/2 max(p − 1, 1), and
therefore, the conclusion follows from the same proof of Lemma 4.3 in [12].
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When γ ∈ (−1, 0), we choose different comparison functions from [12]. Let

w(x, t) = a+ ΛA1+γt+ 2A|x|β,
w(x, t) = a− ΛA1+γt− 2A|x|β

where β = 2+γ
1+γ and Λ to be fixed later. As far as a and a are concerned, a is chosen so that

w(·,−1) ≥ u(·,−1) in B1 and w(x̄,−1) = u(x̄,−1) for some x̄ ∈ B1, and a is chosen so that
w(·,−1) ≤ u(·,−1) in B1 and w(x,−1) = u(x,−1) for some x ∈ B1. This implies that

a− a = u(x̄,−1)− u(x,−1) + 2ΛA1+γ − 2A|x̄|2 − 2A|x|2 ≤ A+ 2ΛA1+γ .

Notice that β > 2 since γ ∈ (−1, 0). We now remark that if Λ is chosen as follows: Λ =
(2β)γ+1(β − 1)pn2 + 1 then the following first inequality

ΛA1+γ ≤
(

(2Aβ|x|β−1)2 + ε2
)γ/2

· pn2 · 2Aβ(β − 1)|x|β−2 ≤ (2β)γ+1(β − 1)pn2A1+γ ,

(we used that γ < 0) cannot hold true for x ∈ B1. This implies that w is a strict super-solution of
the equation satisfied by u. Similarly, w is a strict sub-solution.

We claim that
w ≥ u in Q1 and w ≤ u in Q1.

We only justify the first inequality since we can proceed similarly to get the second one. If not,
let m = − infQ1(w − u) > 0 and (x0, t0) ∈ Q1 be such that m = u(x0, t0) − w(x0, t0). Then
w +m ≥ u in Q1 and w(x0, t0) +m = u(x0, t0). By the choice of ā, we know that t0 > −1. If
x0 ∈ ∂B1, then

2A = (w(x0, t0) +m)− (w(0, t0) +m) ≤ u(x0, t0)− u(0, t0) ≤ oscB1 u(·, t0) ≤ A,

which is impossible. Therefore, x0 ∈ B1. But this is not possible since w is a strict super-solution
of the equation satisfied by u. This proves the claim.

Therefore, we have

oscQ1 u ≤ sup
Q1

w − inf
Q1

w ≤ ā− a+ 4A = 2ΛAγ+1 + 5A.

Lemma 4.5. Let u ∈ C(Q1) be a smooth solution of (3) with γ ∈ R, ε ∈ (0, 1). Let e ∈ Sn−1
and 0 < δ < 1/8. Assume that for all t ∈ [−1, 0], we have

oscx∈B1(u(x, t)− x · e) ≤ δ,

then
osc(x,t)∈Q1

(u(x, t)− x · e) ≤ Cδ,

where C is a positive constant depending only on γ, p and the dimension n.

Proof. Let

w(x, t) = a+ x · e+ Λδt+ 2δ|x|2,
w(x, t) = a+ x · e− Λδt− 2δ|x|2,
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where Λ > 0 will be fixed later, a is chosen so that w(·,−1) ≥ u(·,−1) in B1 and w(x̄,−1) =
u(x̄,−1) for some x̄ ∈ B1, and a is chosen so that w(·,−1) ≤ u(·,−1) in B1 and w(x,−1) =
u(x,−1) for some x ∈ B1. This implies that

a− a = u(x̄,−1)− x̄ · e− (u(x,−1)− x · e) + 2Λδ − 2δ|x̄|2 − 2δ|x|2 ≤ (2Λ + 1)δ.

For every x ∈ B1, and t ∈ [−1, 0], since δ < 1/8, we have

|∇w(x, t)| ≥ |e| − 4δ|x| ≥ 1/2, |∇w(x, t)| ≥ |e| − 4δ|x| ≥ 1/2.

Similarly, |∇w(x, t)| ≤ 3/2 and |∇w(x, t)| ≤ 3/2. Therefore, using the notation (24), there is a
constant A0 (depending on p and γ) so that

aij(∇w(x, t)) ≤ A0I and aij(∇w(x, t)) ≤ A0I.

We choose Λ = 5nA0. We claim that

w ≥ u in Q1 and w ≤ u in Q1.

We only justify the first inequality since we can proceed similarly to get the second one. If not,
let m = − infQ1(w − u) > 0 and (x0, t0) ∈ Q1 be such that m = u(x0, t0) − w(x0, t0). Then
w +m ≥ u in Q1 and w(x0, t0) +m = u(x0, t0). By the choice of ā, we know that t0 > −1. If
x0 ∈ ∂B1, then

2δ = (w(x0, t0) +m)− x0 · e− (w(0, t0) +m)

≤ u(x0, t0)− x0 · e− u(0, t0) ≤ oscx∈B1(u(x, t0)− x · e) ≤ δ,

which is impossible. Hence, x0 ∈ B1. Therefore, we have the classical relations:

u(x0, t0) = w(x0, t0) +m,

∇u(x0, t0) = ∇w(x0, t0) ∈ B3/2 \B1/2,

D2u(x0, t0) ≤ D2w(x0, t0) = 4δI,

∂tu(x0, t0) ≥ ∂tw(x0, t0) = Λδ.

It follows that

ut(x0, t0)− aij(∇u(x0, t0))∂iju(x0, t0) ≥ wt(x0, t0)− aij(∇w(x0, t0))∂ijw(x0, t0) > 0,

which is a contradiction. This proves the claim.
Therefore, we have

osc(x,t)∈Q1
(u(x, t)− x · e) ≤ sup

Q1

(w − x · e)− inf
Q1

(w − x · e) ≤ ā− a+ 4δ = (2Λ + 5)A.

Lemma 4.6. Let η be a positive constant and u be a smooth solution of (3) with γ > −1, ε ∈ (0, 1)
such that |∇u| ≤ 1 in Q1. Assume

|{(x, t) ∈ Q1 : |∇u− e| > ε0}| ≤ ε1
for some e ∈ Sn−1 and two positive constants ε0, ε1. Then, if ε0 and ε1 are sufficiently small, there
exists a constant a ∈ R, such that

|u(x, t)− a− e · x| ≤ η for all (x, t) ∈ Q1/2.

Here, both ε0 and ε2 depend only on n, p, γ and η.
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Proof. Let f(t) := |{x ∈ B1 : |∇u(x, t)− e| > ε0}|. By the assumptions and Fubini’s theorem,
we have that

∫ 0
−1 f(t)dt ≤ ε1. It follows that for E := {t ∈ (−1, 0) : f(t) ≥ √ε1}, we obtain

|E| ≤ 1
√
ε1

∫
E
f(t)dt ≤ 1

√
ε1

∫ 0

−1
f(t)dt ≤

√
ε1.

Therefore, for all t ∈ (−1, 0] \ E, with |E| ≤ √ε1, we have

|{x ∈ B1 : |∇u(x, t)− e| > ε0}| ≤
√
ε1. (27)

It follows from (27) and Morrey’s inequality that for all t ∈ (−1, 0] \ E, we have

oscB1/2
(u(·, t)− e · x) ≤ C(n)‖∇u− e‖L2n(B1) ≤ C(n)(ε0 + ε

1
4n
1 ), (28)

where C(n) > 0 depends only on n.
Meanwhile, since |∇u| ≤ 1 in Q1, we have that oscB1 u(·, t) ≤ 2 for all t ∈ (−1, 0]. Thus,

applying Lemma 4.4, we have that oscQ1 u ≤ C for some constant C. Note that u(t, x)− u(0, 0)
also satisfies (3) and ‖u(t, x) − u(0, 0)‖L∞(Q1) ≤ oscQ1 u ≤ C. By applying Lemma 3.1 to
u(t, x)− u(0, 0), we have

sup
t6=s,(t,x),(s,x)∈Q1

|u(t, x)− u(s, x)|
|t− s|1/2

≤ C.

Therefore, by (28) and the fact that |E| ≤ √ε1, we obtain

oscB1/2
(u(·, t)− e · x) ≤ C(ε0 + ε

1
4n
1 + ε

1
4
1 )

for all t ∈ (−1/4, 0] (that is, including t ∈ E). If ε0 and ε1 are sufficiently small, we obtain from
Lemma 4.5 that

oscQ1/2
(u− e · x) ≤ C(ε0 + ε

1
4n
1 + ε

1
4
1 ).

Hence, if ε0 and ε1 are sufficiently small, there exists a constant a ∈ R, such that

|u(t, x)− a− e · x| ≤ η for all (x, t) ∈ Q1/2.

Theorem 4.7 (Regularity of small perturbation solutions). Let u be a smooth solution of (3) in
Q1. For each β ∈ (0, 1), there exist two positive constants η (small) and C (large), both of which
depends only on β, n, γ and p, such that if |u(x, t)− L(x)| ≤ η in Q1 for some linear function L
of x satisfying 1/2 ≤ |∇L| ≤ 2, then

‖u− L‖C2,β(Q1/2)
≤ C.

Proof. Since L is a solution of (3), the conclusion follows from Corollary 1.2 in [23].

Now we are ready to prove the following Hölder gradient estimate.
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Theorem 4.8. Let u be a smooth solution of (3) with ε ∈ (0, 1), γ > −1 such that |∇u| ≤ 1 in
Q1. Then there exist two positive constants α and C depending only on n, γ and p such that

|∇u(x, t)−∇u(y, s)| ≤ C(|x− y|α + |t− s|
α

2−αγ )

for all (x, t), (y, s) ∈ Q1/2. Also, there holds

|u(x, t)− u(x, s)| ≤ C|t− s|
1+α
2−αγ

for all (x, t), (x, s) ∈ Q1/2.

Proof. We first show the Hölder estimate of∇u at (0, 0) and the Hölder estimate in t at (0,0).
Let η be the one in Theorem 4.7 with β = 1/2, and for this η, let ε0, ε1 be two sufficiently

small positive constants so that the conclusion of Lemma 4.6 holds. For ` = 1 − ε20/2 and
µ = ε1/|Q1|, if

|{(x, t) ∈ Q1 : ∇u · e ≤ `}| ≤ µ|Q1| for any e ∈ Sn−1,

then
|{(x, t) ∈ Q1 : |∇u− e| > ε0}| ≤ ε1.

This is because if |∇u(x, t)− e| > ε0 for some (x, t) ∈ Q1, then

|∇u|2 − 2∇u · e+ 1 ≥ ε20.

Since |∇u| ≤ 1, we have
∇u · e ≤ 1− ε20/2.

Therefore, if ` = 1− ε20/2 and µ = ε1/|Q1|, then

{(x, t) ∈ Q1 : |∇u− e| > ε0} ⊂ {(x, t) ∈ Q1 : ∇u · e ≤ `}, (29)

from which it follows that

|{(x, t) ∈ Q1 : |∇u− e| > ε0}| ≤ |{(x, t) ∈ Q1 : ∇u · e ≤ `}| ≤ µ|Q1| ≤ ε1.

Let τ, δ be the constants in Corollary 4.2. Denote [log ε/ log(1 − δ)] as the integer part of
log ε/ log(1−δ). Let k be either [log ε/ log(1−δ)] or the minimum nonnegative integer such that
the condition (26) does not hold, whichever is smaller. Then it follows from Corollary 4.2 that for
all ` = 0, 1, · · · , k, we have

|∇u(x, t)| ≤ (1− δ)` in Q(1−δ)`
τ`

.

Then for (x, t) ∈ Q(1−δ)`
τ`

\Q(1−δ)`+1

τ`+1 ,

|∇u(x, t)| ≤ (1− δ)` ≤ C(|x|α + |t|
α

2−αγ ), (30)

where C = 1
1−δ and α = log(1−δ)

log τ . Thus,

|∇u(x, t)− q| ≤ C(|x|α + |t|
α

2−αγ ) in Q1 \Q(1−δ)k+1

τk+1 (31)
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for every q ∈ Rn such that |q| ≤ (1− δ)k. Note that when γ ≥ 0, it follows from (25) that

2− αγ > 0 and
α

2− αγ
<

1

2
. (32)

For ` = 0, 1, · · · , k, let

u`(x, t) =
1

τ `(1− δ)`
u(τ `x, τ2`(1− δ)−`γt). (33)

Then |∇u`(x, t)| ≤ 1 in Q1, and

∂tu` = (|∇u`|2 +ε2(1− δ)−2`)γ/2
(
δij + (p− 2)

∂iu`∂ju`
|∇u`|2 + ε2(1− δ)−2`

)
∂iju` in Q1. (34)

Notice that ε2(1− δ)−2` ≤ ε2(1− δ)−2k ≤ 1. By Lemma 4.4, we have

oscQ1 u` ≤ C,

and thus,
osc

Q
(1−δ)`

τ`

u ≤ Cτ `(1− δ)`. (35)

Let v = uk.
Case 1: k = [log ε/ log(1 − δ)]. Then we have (1 − δ)k+1 < ε ≤ (1 − δ)k, and thus,

1
2 < 1− δ < ε(1− δ)−k ≤ 1. Therefore, when ` = k, the equation (34) is a uniformly parabolic
quasilinear equation with smooth and bounded coefficients. By the standard quasilinear parabolic
equation theory (see, e.g., Theorem 4.4 of [15] in page 560) and Schauder estimates, there exists
b ∈ Rn, |b| ≤ 1 such that

|∇v(x, t)− b| ≤ C(|x|+ |t|1/2) ≤ C(|x|α + |t|
α

2−αγ ) in Q1−δ
τ ⊂ Q1/4

and
|∂tv| ≤ C in Q1−δ

τ ⊂ Q1/4,

where C > 0 depends only on γ, p and n, and we used that α
2−αγ ≤

1
2 . Rescaling back, we have

|∇u(x, t)− (1− δ)kb| ≤ C(|x|α + |t|
α

2−αγ ) in Q(1−δ)k+1

τk+1 (36)

and
|u(x, t)− u(x, 0)| ≤ Cτ−k(1− δ)k(γ+1)|t| in Q(1−δ)k+1

τk+1 . (37)

Then we can conclude from (31) and (36) that

|∇u(x, t)− q| ≤ C(|x|α + |t|
α

2−αγ ) in Q1/2,

where C > 0 depends only on γ, p and n. From (37), we obtain that for |t| ≤ τ2m(1 − δ)−mγ
with m ≥ k + 1,

|u(0, t)− u(0, 0)| ≤ Cτ−k(1− δ)k(γ+1)τ2m(1− δ)−mγ ≤ Cτm(1− δ)m, (38)
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where in the last inequality we have used (25). From (35) and (38), we have

|u(0, t)− u(0, 0)| ≤ C|t|β,

for all t ∈ (−1/4, 0], where β is chosen such that

τ(1− δ) = (τ2(1− δ)−γ)β.

That is,

β =
1 + α

2− αγ
. (39)

Note that β > 1
2 if γ > −2.

Case 2: k < [log ε/ log(1− δ)]. Then

|{(x, t) ∈ Q(1−δ)k
τk

: ∇u · e ≤ `(1− δ)k}| ≤ µ|Q(1−δ)k
τk

| for some e ∈ Sn−1.

Also,
|∇u| < (1− δ)` in Q(1−δ)`

τ`
for all ` = 0, 1, · · · , k.

Recall v = uk as defined in (33), which satisfies (34) with ` = k. Then |∇v| ≤ 1 in Q1, and

|{(x, t) ∈ Q1 : ∇v · e ≤ `}| ≤ µ|Q1| for some e ∈ Sn−1.

Consequently, using (29), we get

|{(x, t) ∈ Q1 : |∇v − e| > ε0}| ≤ ε1.

It follows from Lemma 4.6 that there exists a ∈ R such that

|v(x, t)− a− e · x| ≤ η for all (x, t) ∈ Q1/2.

By Theorem 4.7, there exists b ∈ Rn such that

|∇v − b| ≤ C(|x|+
√
|t|) for all (x, t) ∈ Q1−δ

τ ⊂ Q1/4.

and
|∂tv| ≤ C in Q1−δ

τ ⊂ Q1/4.

Rescaling back, we have

|∇u(x, t)− (1− δ)kb| ≤ C(|x|α + |t|
α

2−αγ ) in Q(1−δ)k+1

τk+1

and
|u(x, t)− u(x, 0)| ≤ Cτ−k(1− δ)k(γ+1)|t| in Q(1−δ)k+1

τk+1 .

Together with (31) and (35), we can conclude as in Case 1 that

|∇u(x, t)− q| ≤ C(|x|α + |t|
α

2−αγ ) in Q1/2,
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and
|u(0, t)− u(0, 0)| ≤ C|t|β,

for all t ∈ (−1/4, 0], where C > 0 depends only on γ, p and n.
In conclusion, we have proved that there exist q ∈ Rn with |q| ≤ 1, and two positive constants

α,C depending only on γ, p and n such that

|∇u(x, t)− q| ≤ C(|x|α + |t|
α

2−αγ ) for all (x, t) ∈ Q1/2

and
|u(0, t)− u(0, 0)| ≤ C|t|β, for t ∈ (−1/4, 0],

where β is given in (39). Then the conclusion follows from standard translation arguments.

5 Approximation

As mentioned in the introduction, the viscosity solutions to

ut = |∇u|γ
(
∆u+ (p− 2)|∇u|−2uiujuij

)
in Q1 (40)

with γ > −1 and p > 1 fall into the general framework studied by Ohnuma-Sato in [19], which is
an extension of the work of Barles-Georgelin [5] and Ishii-Souganidis [11] on the viscosity solu-
tions of singular/degenerate parabolic equations. Let us recall the definition of viscosity solutions
to (40) in [19].

We denote
F (∇u,∇2u) = |∇u|γ

(
∆u+ (p− 2)|∇u|−2uiujuij

)
.

Let F be the set of functions f ∈ C2([0,∞)) satisfying

f(0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0,

and

lim
|x|→0,x 6=0

F (∇g(x),∇2g(x)) = lim
|x|→0,x 6=0

F (−∇g(x),−∇2g(x)) = 0, where g(x) = f(|x|).

This set F is not empty when γ > −1 and p > 1, since f(r) = rβ ∈ F for any β > max(γ+2
γ+1 , 2).

Moreover, if f ∈ F , then λf ∈ F for all λ > 0.
Because the equation (40) may be singular or degenerate, one needs to choose the test func-

tions properly when defining viscosity solutions. A function ϕ ∈ C2(Q1) is admissible, which is
denoted as ϕ ∈ A, if for every ẑ = (ẑ, t̂) ∈ Q1 that ∇ϕ(ẑ) = 0, there exist δ > 0, f ∈ F and
ω ∈ C([0,∞)) satisfying ω ≥ 0 and limr→0

ω(r)
r = 0 such that for all z = (x, t) ∈ Q1, |z−ẑ| < δ

we have
|ϕ(z)− ϕ(ẑ)− ϕt(ẑ)(t− t̂)| ≤ f(|x− x̂|) + ω(|t− t̂|).
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Definition 5.1. An upper (lower, resp.) semi-continuous function u in Q1 is called a viscosity
subsolution (supersolution, resp.) of (40) if for every ϕ ∈ C2(Q1), u − ϕ has a local maximum
(minimum, resp.) at (x0, t0) ∈ Q1, then

ϕt ≤ (≥, resp.)|∇ϕ|γ
(
∆ϕ+ (p− 2)|∇ϕ|−2ϕiϕjϕij

)
at (x0, t0) when∇ϕ(x0, t0) 6= 0

and
ϕt ≤ (≥, resp.) 0 at (x0, t0) when ∇ϕ(x0, t0) = 0.

A function u ∈ C(Q1) is called a viscosity solution of (1), if it is both a viscosity subsolution
and a viscosity supersolution.

We shall use two properties about the viscosity solutions defined in the above. The first one is
the comparison principle for (40), which is Theorem 3.1 in [19].

Theorem 5.2 (Comparison principle). Let u and v be a viscosity subsolution and a viscosity
supersolution of (40) in Q1, respectively. If u ≤ v on ∂pQ1, then u ≤ v in Q1.

The second one is the stability of viscosity solutions of (40), which is an application of Theo-
rem 6.1 in [19]. Its application to the equation (40) with γ = 0, 1 < p ≤ 2 is given in Proposition
6.2 in [19] with detailed proof. It is elementary to check it applies to (40) for all γ > −1 and all
p > 1 (which was also pointed out in [19]).

Theorem 5.3 (Stability). Let {uk} be a sequence of bounded viscosity subsolutions of (3) in Q1

with εk ≥ 0 that εk → 0, and uk converges locally uniformly to u in Q1. Then u is a viscosity
subsolution of (40) in Q1.

Now we shall use the solution of (3) to approximate the solution of (40). Since p > 1, it
follows from classical quasilinear equations theory (see e.g. [15, Theorem 4.4, p. 560]) and the
Schauder estimates that

Lemma 5.4. Let g ∈ C(∂pQ1). For ε > 0, there exists a unique solution uε ∈ C∞(Q1)∩C(Q1)
of (3) with p > 1 and γ ∈ R such that uε = g on ∂pQ1.

The last ingredient we need in the proof of Theorem 1.1 is the following continuity estimate
up to the boundary for the solutions of (3), where the proof is given in the appendix. For two real
numbers a and b, we denote a ∨ b = max(a, b), a ∧ b = min(a, b).

Theorem 5.5 (Boundary estimates). Let u ∈ C(Q1)∩C∞(Q1) be a solution of (3) with γ > −1
and ε ∈ (0, 1). Let ϕ := u|∂pQ1 and let ρ be a modulus of continuity of ϕ. Then there exists
another modulus of continuity ρ∗ depending only on n, γ, p, ρ, ‖ϕ‖L∞(∂pQ1) such that

|u(x, t)− u(y, s)| ≤ ρ∗(|x− y| ∨
√
|t− s|)

for all (x, t), (y, s) ∈ Q1.

Proof of Theorem 1.1. Given Theorem 4.8, Theorem 5.2, Theorem 5.3, Lemma 5.4 and Theorem
5.5, the proof of Theorem 1.1 is identical to that of Theorem 1 in [12].
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A Appendix

We will adapt some arguments in [6] to prove Theorem 5.5. In the following, c denotes some
positive constant depending only on n, γ and p, which may vary from line to line. Denote

Fε(∇u,∇2u) = (|∇u|2 + ε2)γ/2
(
δij + (p− 2)

uiuj
|∇u|2 + ε2

)
uij .

Lemma A.1. For every z ∈ ∂B1, there exists a function Wz ∈ C(B1) such that Wz(z) =
0,Wz > 0 in B1 \ {z}, and

Fε(∇Wz,∇2Wz) ≤ −1 in B1.

Proof. Let z ∈ ∂B1. Let f(r) =
√

(r − 1)+ and wz(x) = f(|x − 2z|). Then for x ∈ B1, we
have

Fε(∇wz,∇2wz) = (f ′2 + ε2)
γ
2

((
1 + (p− 2)

f ′2

f ′2 + ε2

)
f ′′ +

n− 1

|x− 2z|
f ′
)
.

Then there exists δ > 0 depending only on n, γ and p such that for x ∈ B1 ∩B1+δ(2z), we have

Fε(∇wz,∇2wz) ≤ −1.

For σ = 2n
min(p−1,1) + 2 and a > 0, let Gz(x) = a(2σ − 1

|x−2z|σ ). Then Gz(x) ≥ a(2σ − 1) in B1.
Also, for r = |x− 2z| and x ∈ B1, we have

Fε(∇Gz,∇2Gz)

= a(σ2r−2σ−2 + ε2)
γ
2

((
1 +

(p− 2)σ2

σ2 + ε2r2σ+2

)
σ(−σ − 1)r−σ−2 + (n− 1)σr−σ−2

)
≤ −a

2
σr−σ−2(σ2r−2σ−2 + ε2)

γ
2

≤

{
−a

23−σ−2−γ(σ+1)σ1+γ when γ ≥ 0

−a
23−σ−2(σ2 + 1)γ/2σ when γ < 0,

where in the first inequality we used the choice of σ. Then we choose a that

a(2σ − 1

|1 + δ|σ
) =

√
δ/2.

Since wz(z) = 0 and Gz(z) > 0, the function

Wz(x) =

{
Gz(x) for x ∈ B1, |x− 2z| ≥ 1 + δ

min(Gz(x), wz(x)) for x ∈ B1, |x− 2z| ≤ 1 + δ

agrees with wz in a neighborhood of z (relative to B1). Also, because of the choice of a, Wz

agrees with Gz when x ∈ B1 and |x− 2z| ≥ 1 + δ̃ for some δ̃ ∈ (0, δ). Moreover,

Fε(∇Wz,∇2Wz) ≤ −κ

for some constant κ > 0 depending only on n, γ and p. By multiplying a large positive constant
to Wz , we finish the proof of this lemma.
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Lemma A.2. For every (z, τ) ∈ ∂pQ1, there exists Wz,τ ∈ C(Q1) such that Wz,τ (z, τ) = 0,
Wz,τ > 0 in Q1 \ {(z, τ)}, and

∂tWz,τ − Fε(∇Wz,τ ,∇2Wz,τ ) ≥ 1 in Q1.

Proof. For τ > −1 and x ∈ ∂B1, then

Wz,τ (x, t) =
(t− τ)2

2
+ 2Wz

is a desired function, where Wz is the one in Lemma A.1. For τ = −1 and x ∈ B1, we let

Wz,τ (x, t) = A(t+ 1) + |x− z|β,

where β = max(γ+2
γ+1 , 2). Then if we choose A > 0 large, which depends only on n, γ and p, then

Wz,τ will be a desired function.

For two real numbers a and b, we denote a ∨ b = max(a, b), a ∧ b = min(a, b).

Theorem A.3. Let u ∈ C(Q1) ∩ C∞(Q1) be a solution of (3) with γ > −1 and ε ∈ (0, 1).
Let ϕ := u|∂pQ1 and let ρ be a modulus of continuity of ϕ. Then there exists another modulus of
continuity ρ∗ depending only on n, γ, p, ρ such that

|u(x, t)− u(y, s)| ≤ ρ̃(|x− y| ∨ |t− s|)

for all (x, t) ∈ Q1, (y, s) ∈ ∂pQ1.

Proof. For every κ > 0 and (z, τ) ∈ ∂pQ1, let

Wκ,z,τ (x, t) = ϕ(z, τ) + κ+MκWz,τ (x, t),

where Mκ > 0 is chose so that

ϕ(z, τ) + κ+MκWz,τ (y, s) ≥ ϕ(y, s) for all (y, s) ∈ ∂pQ1.

Indeed,

Mk = inf
(y,s)∈∂pQ1,(y,s)6=(z,τ)

(ρ(|z − y| ∨ |τ − s|)− κ)+

Wz,τ (y, s)

would suffice, and is independent of the choice of (z, τ). Finally, let

W (x, t) = inf
κ>0,(z,τ)∈∂pQ1

Wκ,z,τ (x, t).

Note that for every κ > 0 and (z, τ) ∈ ∂pQ1,

W (x, t)− ϕ(z, τ) ≤Wκ,z,τ (x, t)− ϕ(z, τ)

≤ κ+MκWz,τ (x, t)

≤ κ+Mκ(Wz,τ (x, t)−Wz,τ (z, τ))

≤ κ+Mκω(|z − x| ∨ |τ − t|),
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where ω is the modulus of continuity for Wz,τ , which is evidently independent of (z, τ). Let
ρ̃(r) = infκ>0(κ+Mκω(r)) for all r ≥ 0. Then ρ̃ is a modulus of continuity, and

W (x, t)− ϕ(z, τ) ≤ ρ̃(|z − x| ∨ |τ − t|) for all (x, t) ∈ Q1, (z, τ) ∈ ∂pQ1.

By Lemma A.2, Wκ,z,τ is a supersolution of (3) for every κ > 0 and (z, τ) ∈ ∂pQ1, and therefore,
W is also a supersolution of (3). By the comparison principle,

u(x, t)− ϕ(z, τ) ≤W (x, t)− ϕ(z, τ) ≤ ρ̃(|z − x| ∨ |τ − t|)

for all (x, t) ∈ Q1, (z, τ) ∈ ∂pQ1.
Similarly, one can show that u(x, t) − ϕ(z, τ) ≥ −ρ̃(|z − x| ∨ |τ − t|) for all (x, t) ∈

Q1, (z, τ) ∈ ∂pQ1. This finishes the proof of this theorem.

Proof of Theorem 5.5. By the maximum principle, we have that

M := ‖u‖L∞(Q1) = ‖ϕ‖L∞(∂pQ1).

Let (x, t), (y, s) ∈ Q1, and we assume that t ≥ s. Let x0 be such that |x− x0| = 1− |x| = r. Let
ρ̃ be the one in the conclusion of Theorem A.3. Without loss of generality, we may assume that
2M + 2 ≥ ρ̃(r) ≥ r for all r ∈ [0, 2] (e.g., replacing ρ̃(r) by ρ̃(r) + r), and ρ̃(r) ≤ 2M + 2 for
all r ≥ 2.

In the following, if γ ∈ (−1, 0), then we will assume first that

r1+γ(2M + 2)−γ ≤ 1,

and will deal with the other situation in the end of this proof. Under the above assumption, we have
that r2+γ(ρ̃(2r))−γ ≤ r2+γ(2M + 2)−γ ≤ r when γ <0, and r2+γ(ρ̃(2r))−γ ≤ r2+γ(ρ̃(r))−γ ≤
r2 ≤ r when γ ≥ 0. Thus, for all γ > −1, we have

r2+γ(ρ̃(2r))−γ ≤ r.

We will deal with the situation that γ ∈ (−1, 0) and r1+γ(2M + 2)−γ ≥ 1 in the very end of the
proof.

Case 1: r2+γ(ρ̃(2r))−γ ≤ 1 + t.

If |y − x| ≤ r/2 and |s− t| ≤ r2+γ(ρ̃(2r))−γ/4, then we do a scaling:

v(z, τ) =
u(rz + x, r2+γ(ρ̃(2r))−γτ + t)− u(x0, t)

ρ̃(2r)
.

Then

vτ = (|∇v|2 + ε2r2ρ̃(2r)−2)γ/2
(
δij + (p− 2)

vivj
|∇u|2 + ε2r2ρ̃(2r)−2

)
uij in Q1.

Notice that εr/ρ̃(2r) ≤ εr/ρ̃(r) ≤ ε < 1 and r2+γ(ρ̃(2r))−γ ≤ r. Thus, |v(z, τ)| ≤ 1 for
(z, τ) ∈ Q1. Applying Corollary 2.4 and Lemma 3.1 to v and rescaling to u, there exists α > 0
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depending only on γ such that v is Cα in (x, t), and there exists C > 0 depending only on n, γ
and p, such that

|u(y, s)− u(x, s)| ≤ Cρ̃(2r)
|x− y|α

rα

and

|u(x, t)− u(x, s)| ≤ Cρ̃(2r)1+αγ
|t− s|α

rα(2+γ)
,

Therefore,

|u(y, s)− u(x, t)| ≤ Cρ̃(2r)
|x− y|α

rα
+ Cρ̃(2r)1+αγ

|t− s|α

rα(2+γ)
.

Since |y−x| ≤ r/2 and |s−t| ≤ r2+γ(ρ̃(2r))−γ/4 ≤ r/4, we have 2−m−1r < |x−y|∨|t−s| ≤
2−mr for some integer m ≥ 1. Then

|u(y, s)− u(x, t)| ≤ C ρ̃(2m+2(|x− y| ∨ |t− s|))
2mα

+ C
ρ̃(2m+2(|x− y| ∨ |t− s|))1+αγ

2mαrα(1+γ)

≤ C ρ̃(2m+2(|x− y| ∨ |t− s|)) + ρ̃(2m+2(|x− y| ∨ |t− s|))1+αγ

2mα
.

Notice that

sup
m≥1

ρ̃(2m+2r) + ρ̃(2m+2r)1+αγ

2mα
→ 0 as r → 0.

Therefore, we can choose a modulus of continuity ρ1 such that

ρ1(r) ≥ C sup
m≥1

ρ̃(2m+2r) + ρ̃(2m+2r)1+αγ

2mα
for all r ≥ 0,

and we have
|u(y, s)− u(x, t)| ≤ ρ1(|x− y| ∨ |t− s|).

If |y − x| ≥ r/2, then

|u(x, t)− u(y, s)| ≤ |u(x, t)− u(x0, t)|+ |u(x0, t)− u(y, s)|
≤ ρ̃(r) + ρ̃(|x0 − y| ∨ |t− s|)
≤ ρ̃(2(|x− y| ∨ |t− s|)) + ρ̃((|x− y|+ r) ∨ |t− s|)
≤ ρ̃(2(|x− y| ∨ |t− s|)) + ρ̃(3(|x− y| ∨ |t− s|))
≤ 2ρ̃(3(|x− y| ∨ |t− s|)).

If |x− y| ≤ r/2 and |s− t| ≥ r2+γ(ρ̃(2r))−γ/4, then r ≤ 4
1

2+γ (2M + 2)
γ

2+γ |s− t|
1

2+γ when
γ ≥ 0, and r ≤ 2|s− t|

1
2 when γ ≤ 0. Then one can show similar to the above that

|u(x, t)− u(y, s)| ≤ 2ρ̃(c(|x− y| ∨ |t− s|
1
2 ∨ |s− t|

1
2+γ )),

≤ ρ2(|x− y| ∨ |t− s|)

where ρ2(r) = 2ρ̃(cr
1
2 ) or ρ2(r) = 2ρ̃(cr

1
2+γ ) depending on whether γ ≥ 0 or γ ≤ 0 is a modulus

of continuity, c is a positive constant depending only on M and γ.
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This finishes the proof in this first case.

Case 2: r2+γ(ρ̃(2r))−γ ≥ 1 + t.

Then let λ =
√
|t+ 1| when γ ≥ 0, and λ = (2M + 2)

γ
2+γ |t + 1|

1
2+γ when γ ∈ (−1, 0).

Then one can check that λ ≤ r.
If |y − x| ≤ λ/2 and |s− t| ≤ λ2+γ(ρ̃(2λ))−γ/4, let

v(z, τ) =
u(λz + x, λ2+γ(ρ̃(2λ))−γτ + t)− u(x0, t)

ρ̃(2λ)
for (z, τ) ∈ Q1.

Then

vτ = (|∇v|2 + ε2r2ρ̃(2λ)−2)γ/2
(
δij + (p− 2)

vivj
|∇u|2 + ε2λ2ρ̃(2λ)−2

)
uij inQ1.

Notice that λ2+γ(ρ̃(2λ))−γ ≤ λ2 ≤ λ when γ ≥ 0, and λ2+γ(ρ̃(2λ))−γ ≤ λr1+γ(ρ̃(2r))−γ ≤ λ
when γ ∈ (−1, 0). Thus, |v(z, τ)| ≤ 1 for (z, τ) ∈ Q1. Also, ελ/ρ̃(2λ) ≤ ελ/ρ̃(λ) ≤ ε < 1.
Then, by the similar arguments in case 1, we have

|u(y, s)− u(x, t)| ≤ ρ1(|x− y| ∨ |t− s|).

If |y−x| ≥ λ/2, then |t+ 1| ≤ c(|x−y|2∨ |x−y|2+γ) ≤ c|x−y| for some c > 0 depending
only on M and γ. Therefore,

|u(x, t)− u(y, s)| ≤ |u(x, t)− u(x,−1)|+ |u(x,−1)− u(y, s)|
≤ ρ̃(|t+ 1|) + ρ̃(|x− y| ∨ |1 + s|)
≤ ρ̃(c|x− y|) + ρ̃((|x− y|) ∨ |1 + t|)
≤ ρ̃(c(|x− y| ∨ |t− s|)) + ρ̃(c|x− y| ∨ |t− s|)
= 2ρ̃(c(|x− y| ∨ |t− s|))
≤ ρ2(|x− y| ∨ |t− s|).

If |x − y| ≤ λ/2 and |s − t| ≥ λ2+γ(ρ̃(2λ))−γ/4, then λ ≤ 4
1

2+γ (2M + 2)
γ

2+γ |s − t|
1

2+γ

when γ ≥ 0, and λ ≤ 2|s− t|
1
2 when γ ≤ 0. Then one can show similar to the above that

|u(x, t)− u(y, s)| ≤ |u(x, t)− u(x,−1)|+ |u(x,−1)− u(y, s)|
≤ ρ̃(|t+ 1|) + ρ̃(|x− y| ∨ |1 + s|)

≤ ρ̃(c(|s− t|
2

2+γ ∨ |s− t|
2+γ
2 )) + ρ̃((|x− y|) ∨ |1 + t|)

≤ ρ̃(c(|s− t|
1

2+γ ∨ |s− t|
1
2 )) + ρ̃(c(|s− t|

1
2+γ ∨ |s− t|

1
2 ))

≤ ρ2(|x− y| ∨ |t− s|).

This finishes the proof in this second case.
In the end, we deal with the situation that γ ∈ (−1, 0) and r1+γ(2M + 2)−γ ≥ 1. Then r ≥ c

for c = (2M + 2)
γ

1+γ . Let λ = (2M + 2)
γ

2+γ |t + 1|
1

2+γ . There exists µ > 0 depending only M
and γ that if |t+ 1| ≤ µ, then λ ≤ c, c2+γ(ρ̃(2c))−γ ≥ 1 + t, and λ1+γ(2M + 2)−γ ≤ 1. Then,
for t ≤ −1 + µ, the same arguments in case 2 works without any change.
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Now the final left case is that (x, t) ∈ B1−c× [−1 +µ, 0]. Then we only need to consider that
(y, s) ∈ B1−c/2 × [−1 + µ/2, 0]. It follows from Corollary 2.4 and Lemma 3.1 that there exists a
modulus of continuity ρ̄ depending only on n, γ, p,M that

u(x, t)− u(y, s)| ≤ ρ(|x− y| ∨ |t− s|).

This finishes the final situation.
Then ρ∗(r) := ρ1(r) + ρ2(r) + ρ̄(r) is a desired modulus of continuity. The proof of this

theorem is thereby completed.
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