A Simple Proof of Optimal Epsilon Nets

Abstract : Showing the existence of small-sized epsilon-nets has been the subject of investigation for almost 30 years, starting from the breakthrough of Haussler and Welzl (1987). Following a long line of successive improvements, recent results have settled the question of the size of the smallest epsilon-nets for set systems as a function of their so-called shallow cell complexity. In this paper we give a short proof of this theorem in the space of a few elementary paragraphs. This immediately implies all known cases of results on unweighted epsilon-nets studied for the past 28 years, starting from the result of Matou\v{s}ek, Seidel and Welzl (SoCG 1990) to that of Clarkson and Varadarajan (DCG 2007) to that of Varadarajan (STOC 2010) and Chan et al. (SODA 2012) for the unweighted case, as well as the technical and intricate paper of Aronov et al. (SIAM Journal on Computing, 2010). We find it quite surprising that such a simple elementary approach was missed in all earlier work, as all ingredients were already known in 1991.
Type de document :
Article dans une revue
Combinatorica, Springer Verlag, 2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01360452
Contributeur : Kunal Dutta <>
Soumis le : lundi 5 septembre 2016 - 18:01:24
Dernière modification le : jeudi 15 juin 2017 - 09:09:33
Document(s) archivé(s) le : mardi 6 décembre 2016 - 14:23:52

Fichier

simpleproofepsnets.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01360452, version 1

Citation

Nabil Mustafa, Kunal Dutta, Arijit Ghosh. A Simple Proof of Optimal Epsilon Nets. Combinatorica, Springer Verlag, 2017. <hal-01360452>

Partager

Métriques

Consultations de
la notice

636

Téléchargements du document

204