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PACS 47.20.Dr – Surface-tension-driven instability
PACS 68.03.Fg – Evaporation and condensation of liquids
PACS 47.54.-r – Pattern selection; pattern formation

Abstract – We here show how evaporation/condensation processes lead to efficient heat spreading
along a liquid/gas interface, thereby damping thermal fluctuations and hindering thermocapillary
flows. This mechanism acts as an effective thermal conductivity of the gas phase, which is shown
to diverge when the latter is made of pure vapor. Our simple (fitting-parameter–free) theory nicely
agrees with measurements of critical conditions for Bénard-Marangoni instability in drying liquid
films. Heat spreading is also shown to strongly affect wavelength selection in the nonlinear regime.
In addition to providing a quantitative framework for analyzing transitions between complex
evaporation-driven patterns, this also opens new perspectives for better controlling deposition
techniques based on drying.

Evaporation and condensation are widespread processes
in nature and technology, both at large scales (e.g., water
cycle, salt lake drying, . . .) and at small scales (e.g., heat
exchangers, deposition and coating techniques, . . .). In the
latter case, such phase change phenomena are generally
coupled with so-called Marangoni flows, resulting from
surface tension gradients along the interface. For pure
liquids evaporating into air, the latter are due to temper-
ature gradients generated by the consumption of latent
heat, often resulting in Bénard-type patterns [1,2]. In
contrast, when the gas phase contains only vapor (e.g.,
in boiling applications), such flows are typically absent
since the interface is bound to remain close to the satura-
tion temperature (see, e.g., [3], showing the predominance
of buoyancy in that case). However, despite the numer-
ous applications, the nature of such interfacial temper-
ature homogenization process remains unclear, and has
never been accurately quantified as a function of the vapor
content of the gas phase. Intuitively, it can be expected
that temperature gets uniformized by the transport of
energy (in the form of latent heat) from hot/evaporating to
cold/condensing regions along the surface. Our goal here
is therefore to assess the efficiency of this “heat spreading”
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mechanism as a function of fluid properties and ambient
conditions.
After having described a simple modeling of this effect
in quite general conditions, we analyze its impact on
Bénard-Marangoni (BM) patterns in liquid films drying
into ambient air, for liquids of different volatilities (the
most volatile ones eventually approaching the limiting case
of pure vapor). It is well known in that respect that the
critical conditions for BM instability somehow depend on
thermoconvective processes in the gas phase, generally
lumped into an empirically determined heat transfer
coefficient [4]. Even though various theories have been
proposed to generalize these one-sided approaches and
to calculate the (effective) heat transfer coefficients (see,
e.g., [5,6]), none of them was ever validated by direct
comparison with accurate experiments. Actually, the crit-
ical Marangoni number Mac for the onset of patterns
was experimentally checked only for non-volatile liquids,
in which case the value is about 80 [4,7]. In view of the
heat spreading mechanism discussed above, one therefore
expects a strong damping of the instability, hence much
larger values of Mac, when volatility increases. In the
present work, this is investigated in detail by detecting
the transition from the convective to the conductive state
occurring when the drying-film thickness decreases below
some threshold value. In addition to allowing an accurate



validation of our new theory, it is worth noting that results
presented in this letter could open interesting perspectives
to better control techniques using drying films such as
polymer coating [8] or nanoparticle deposition [9].
In order to understand and quantify the heat spreading
mechanism as a function of the volatility, let us consider
a flat interface (at z = 0, with z pointing to the gas) at
temperature TΣ, where evaporation occurs at a mass flux
density J (in kg/m2s). Hereafter, a subscript Σ will denote
a quantity evaluated at the interface, the gas mixture is
taken to be perfect, its total pressure pg is supposed to be
constant and uniform (small dynamic viscosity), and the
inert gas (say, air) is not absorbed into the liquid. This
implies (see, e.g., [5])

J =−
DMv
RTΣ

∂zpv
1−ω

∣∣∣∣
z=0

, (1)

where D is the vapor-air diffusion coefficient, Mv is the
molar mass of the vapor, pv is the partial pressure of vapor
in the gas phase, ω= pv/pg its mole fraction, and R is the
perfect gas constant. In addition, the energy balance at
the interface reads

∂Tl
∂z
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z=0

=−
JL

λl
+
λg
λl

∂Tg
∂z
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z=0

, (2)

where Tl and Tg are, respectively, the liquid and gas
temperatures, L is the latent heat of vaporization, while
λl and λg are, respectively, the liquid and gas thermal
conductivities (with λg≪ λl in general).
We now consider fluctuations (denoted by tilded

quantities) around a particular steady (or quasi-steady)
state distinguished by a superscript 0. The determination
of this particular state needs not be detailed for the
moment, and in principle, the following reasoning applies
to both evaporation (J0 > 0) and condensation (J0 < 0).

The interface temperature is written TΣ = T
0
Σ+ T̃Σ, and

assuming local chemical equilibrium at the interface
(generally valid except at very small scales [1,5]), the
corresponding fluctuation of vapor partial pressure there
reads p̃vΣ = p

′
sat(T

0
Σ) T̃Σ, where psat(T ) is the coexistence

(i.e., Clausius-Clapeyron) curve and a prime denotes its
derivative. As fluctuations satisfy ∇2p̃v = 0 in the limit of
a small Péclet number (defined on a typical length scale
of the fluctuations, assumed to be much smaller than the
typical size H of the gas phase) and in the quasi-static

hypothesis, we have p̃vq = p
′
sat(T

0
Σ) T̃Σq e

−|q|z, where a
subscript q indicates the Fourier component with wave
vector q (in the horizontal plane). Similarly, one also has

∇2T̃g = 0, because the Lewis number Le=D/κg is O(1) in
the gas (κg is the gas thermal diffusivity). Hence, assuming

Tg = Tl (= TΣ) at z = 0, we have T̃gq = T̃Σq e
−|q|z.

Finally, linearizing eq. (1), we can calculate (the Fourier
transform of) the phase change rate fluctuation

J̃q = |q|
DMv
RT 0Σ

psat′(T
0
Σ)

1−ω0Σ
T̃Σq, (3)

where fluctuations of the denominator have been neglected
(this is rigorously valid for |q|−1≪H, as will be shown
elsewhere). Then, Fourier-transforming the interfacial
energy balance (2) and grouping terms, we get

∂T̃lq
∂z

∣∣∣∣∣
z=0

+α|q| T̃Σq = 0, (4)

where

α=
λg
λl
+
LDMv
λlRT 0Σ

p′sat(T
0
Σ)

1−ω0Σ
. (5)

Equation (4) has the form of a Newton’s cooling law
for liquid temperature fluctuations, with a heat transfer
coefficient depending upon their wave number |q| (hence,
the physical space expression of eq. (4) involves a non-local
convolution term). The positive dimensionless number α
turns out to be an effective gas-to-liquid ratio of thermal
conductivities, accounting for phase-change–induced heat
spreading through its second term. In particular, the latter
contribution diverges for ω0Σ→ 1, i.e., in the limit of a

pure vapor phase, for which eq. (4) implies T̃Σq = 0, i.e.,
the interface temperature does not fluctuate and remains
equal to the saturation (boiling) temperature.
Now, applying eqs. (4) and (5) to the modeling of
evaporation-driven BM convection in a liquid layer of
height e much thinner than the gas phase thickness H,
it turns out that Pearson’s theory [4] can be straightfor-
wardly applied (provided we also neglect buoyancy), using
an effective Biot number Bi= αk, where k= |q| e is the
dimensionless wave number. The neutral stability thresh-
old is then given [4] by

Mak =
16k(k cosh[k] +αk sinh[k])(2k− sinh[2k])

4k3 cosh[k] + 3 sinh[k]− sinh[3k]
. (6)

The critical Marangoni number Mac(α) and the critical
wave number kc(α) are then found by minimizing Mak
with respect to k, and will now be compared to experi-
ments. Note finally that the theory just described appears
as a particular case of a more general formulation (not
limited to e≪H) described in [5], and also based on a
one-sided reduction of the evaporation-driven BM prob-
lem by adiabatic slaving of gas phase fluctuations.
In order to test these predictions, accurate experiments

were performed by evaporating thin liquid layers into
ambient air (T ≈ 24 ◦C) at rest, until the liquid completely
disappears. As explained hereafter, we mostly focus on
the moment at which convective patterns disappear in
favor of a uniform evaporative state. Volatile liquids
used are Hydrofluoroethers, HFE-7000, -7100, -7200 and
-7300 from the company 3M, which have similar physical
properties except for their saturation pressure psat (factor
of about 2 between two successive HFEs). HFE-7000 is
the most volatile with psat(24

◦C)= 0.61 bar and HFE-
7300 is the less volatile with psat(24

◦C)= 0.06 bar. Other
thermodynamic and transport properties used hereafter
are found in 3M data sheets (available on 3M web site).



Each experimental run is started by pouring a certain
amount of HFE in a cylindrical container to form an
approximately 1mm thick liquid layer. The container is
made of a PVC cylinder glued by silicone to a 10mm thick
aluminum plate. The height of the cylinder is 1 cm, its
diameter is 63.5mm and its thickness is 6mm. In addition
to the effect of volatility (dependent on the HFE used), we
also vary the evaporation rate independently by changing
the “transfer distance” H in the gas. This is accomplished
by topping another PVC cylinder (of the same diameter)
on the one glued to the plate, wrapping them with a scotch
tape in order to avoid any vapor leak. Using additional
cylinders of various heights allows to set H to 1 cm, 2 cm,
3 cm, 4 cm and 5 cm.
In these conditions, the evaporation process is limited by
diffusion of vapor into air and the evaporation rate E =
J0S (where S is the container cross-section) remains quasi-
constant until the layer is too thin and dewetting begins.
The liquid film thickness, e, is measured by weighting and
is deduced from the measured total mass, mtot, taking
into account the mass of the liquid meniscus against the
internal cylinder wall, mmen, and the mass of the vapor
contained in the gas phase above the liquid, mv, such
that e= (mtot−mmen−mv)/ρlS, where ρl is the liquid
density. Both these contributions cannot be neglected
because the critical layer thicknesses are generally small.
More precisely, mmen is theoretically estimated assuming
that the meniscus is in its hydrostatic equilibrium state
and that the liquid is perfectly wetting. In turn, mv has
been measured experimentally for each H and each HFE
(molecular weight between 200 and 350 g/mol) using a
suspended thin circular dish filled with liquid and placed
very close to the container bottom but without touching
the container wall, hence “simulating” the presence of
a liquid layer. In the worst case (most volatile liquid
HFE-7000 and highest container H = 5 cm), we find mv ≃
0.2mtot and in the best one (HFE-7300 and H = 1 cm), we
getmv ≃ 0.005mtot. The relative uncertainty on the liquid
layer thickness measurement is estimated to be lower than
2.5%. The evaporation rate, E, is simply computed from
the time derivative of the total mass (E =−dmtot/dt)
using a linear fit.
As convection in the pure liquid is necessarily associated
with temperature variations, we use a Focal Plane Array
Infra-Red (IR) camera-type (Thermosensorik, InSb 640
SM) facing the liquid/gas interface, to follow the time
evolution of the whole cellular pattern. IR images and
mtot(t) are recorded at a frequency of 1Hz during the
drying of the liquid layer. Typically, the observed sequence
is similar to the one obtained in [2], i.e., convection
appears right after filling and the pattern is strongly
time dependent, evolving into more stable hexagonal-like
arrangements when e decreases, until the convective state
turns into a “conductive” one. The convection cells do
not disappear altogether, though. At a certain moment, a
straight front separating convective and conductive states
starts to propagate along a horizontal direction (at a
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Fig. 1: Measured critical liquid thickness ec (top) and critical
wave number qc (bottom) as a function of the evaporation rate
E, for different liquids (triangles: HFE-7000; squares: HFE-
7100; circles: HFE-7200; crosses: HFE-7300). Straight lines
indicate the theoretical scaling laws (see text).

constant velocity) until convection completely disappears.
Performing specific experiments in which the container
tilt angle was intentionally slightly varied showed that
this front is merely due to a non-absolute horizontality
of the layer (the front velocity decreases when increasing
the tilt angle and vice versa). We have chosen to define
the critical liquid layer thickness, ec, by ec = (e1+ e2)/2,
where e1 is the measured thickness when the front starts to
propagate and e2 the measured thickness when convection
has totally disappeared. For the small tilt angles tested, ec
is found to be independent of these small deviations w.r.t.
absolute horizontality, hence confirming the suitability of
our definition of ec. The values obtained are reported in
fig. 1, together with the critical wave number qc. Note that



ec is found to be less that 1mm for all cases investigated
here, hence justifying our assumption to neglect buoyancy-
driven (Rayleigh-Bénard) convection.
From the measurement of ec and E, we then estimate
the critical-temperature difference across the liquid layer,
∆Tc, using the thermal balance (2) with a linear temper-
ature profile in the liquid and neglecting heat coming
from the gas phase, such that ∆Tc =ELec/λlS. Then, the
critical Marangoni number Mac is calculated as Mac =
−γT∆Tcec/ηlκl, where γT is the surface tension varia-
tion with temperature, ηl is the liquid dynamic viscos-
ity and κl is its thermal diffusivity. The value of γT has
been measured for each HFE by the pendant drop method
using the tensiometer Krüss DSA100 with its thermostat-
ted chamber, and a thermocouple placed at the syringe tip
end to measure the drop temperature accurately. Surface
tension has been measured in the range 15–30 ◦C, taking
special care in order to maintain the drop in a satu-
rated environment (procedure validated by measuring γT
of ethanol).
According to our model, the value found forMac should
only depend on the fluids used (liquid and gas), through
the value of α given by eq. (5), and characterizing the
damping of thermal fluctuations at the interface. Note that
in eq. (5), the mole fraction at the interface in the reference
state is given by ω0Σ = psat(T

0
Σ)/pg, where pg is the ambient

pressure. Then, even though α in principle depends on
the temperature T 0Σ in the reference state, hence on the
evaporation rate E, T 0Σ can in general be safely taken equal
to the ambient temperature, at least for the diffusion-
limited regimes considered here (small temperature drop
across the liquid film). Therefore, as ∆Tc ∼E ec for a
given liquid and lateral size of the container (see above),
Mac ∼E e

2
c should be independent of the evaporation rate

E, leading to the scaling ec ∼E
−1/2. Apart for some small

variations studied hereafter, the size of convection cells
at threshold should be roughly proportional to the depth
ec. Hence, the critical wave number qc ∼ e

−1
c ∼E

1/2. Both
these scalings indeed match experimental measurements,
as shown in fig. 1.
Now, in order to fully validate our Pearson-like theory, α

is directly computed from eq. (5) using our own measured
values of D for each HFE, obtained by Stefan’s tube
method [10]. The obtained values of Mac for all the
HFEs and for all the container heights H are plotted as
a function of α in fig. 2, and compared to the theoretical
law Mac(α) obtained from eq. (6), and independent of E
as already mentioned.
The inset of fig. 2 also shows the dimensionless critical
wave number of the pattern, kc = qcec, clearly independent
of E as well, and slightly decreasing with α in agreement
with the theoretical curve kc(α). Note that the critical
wave number qc (as also plotted in fig. 1) and the wave
number q (during the convection regime) are measured as
the mean position of the fundamental peak in azimuthally
averaged FFT spectra of IR images (see fig. 3). Error
bars on kc in fig. 2 correspond to the width at middle
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Fig. 2: Measured critical Marangoni numbers (symbols) as a
function of α, for the four different liquids and the five container
heights. Inset: corresponding measured critical wave numbers.
Theoretical laws are shown as plain curves.

height of the fundamental peak, hence they are indicative
of the level of disorder in the pattern (higher at high
volatility).
Figure 2 demonstrates the strong stabilizing effect
of the liquid volatility, as well as a quite satisfactory
agreement with our simple one-sided theory (given typical
uncertainties remaining on some fluid properties and the
absence of fitting parameters). This also confirms the
effectiveness of the heat spreading mechanism described
by eqs. (4) and (5). Note, in addition, that this nice
agreement actually validates a number of assumptions
made in such type of one-sided models (see also [5]),
such as small gas viscous stresses, low Péclet numbers
in both phases, quasi-steadiness of the approach despite
the continuously decreasing liquid depth, undeformable
interface, absence of temperature discontinuity, . . . . In
addition, we emphasize that the simplest form of the
theory presented here relies on the additional assumption
of a large gas thickness H compared to the liquid depth
e. As the length scale of convective fluctuations typically
scales with e, their penetration depth in the gas is of
the same order, which in fact allows neglecting the effects
of gas density variations and diffusion-induced convection
(even though both these effects do affect the homogeneous
evaporation state, hence J0, when ω0Σ is not small). This
will be detailed elsewhere.
To summarize, the results obtained so far evidence

an original and somehow unexpected effect of the liquid
volatility, which appears to act in two opposite ways.
On the one hand, evaporation leads to consumption of
latent heat, hence globally cooling the interface and giving
rise to thermocapillary convection. On the other hand,
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Fig. 3: Typical evaporation-driven BM patterns (H = 3 cm):
(a) HFE-7000, ǫ= 0.2; (b) HFE-7000, ǫ= 2; (c) HFE-7300,
ǫ= 0.2; (d) HFE-7300, ǫ= 2. White bars are 4mm long. Top-
right insets: contour lines of power (Fourier) spectrum.

volatility also allows heat to spread from locally hot to
cold regions of the interface by diffusion of vapor in the
gas. Interestingly, this mechanism appears to act as if the
gas phase had a large thermal conductivity. For the case
investigated here, where the gas phase is much thicker than
the liquid (note that this actually corresponds to most
practical applications using drying films),Mac is found to
depend mostly on the liquid volatility (a material property,
only dependent upon ambient temperature and pressure),
and is in particular independent on the particular value of
the evaporation rate (controlled by varying the gas phase
thickness). The dimensions of convective cells at threshold
(i.e., q−1c laterally and ec vertically) in turn significantly
depend on the evaporation rate (see fig. 1). This result
is potentially of great interest for the rapidly developing
coating/deposition techniques based on film drying, which
allow self-organized large-scale assembly of small-scale
(sub-millimetric) deposits [9]. Even if additional transport
phenomena might be involved in these situations (solute
diffusion, solutal Marangoni effect, . . .), one can expect
that controlling the solvent evaporation rate externally
should allow modifying the lateral size of deposits. Further
analysis would be needed, however, as assessing this
possibility would require determining at which moment
particles settle down or accumulate during drying of the
film.
As a conclusion, let us briefly explore nonlinear regimes
of evaporative BM convection. Note, however, in this
respect that even though buoyancy-driven convection

0 2 4 6 8 10
0.5

1

1.5

2

k

HFE-7100, α = 1.9, Pr = 9.9

HFE-7200, α = 1.1, Pr = 11.1

HFE-7000, α = 9.0, Pr = 8.0

HFE-7300, α = 0.7, Pr = 20.6

Fig. 4: Measured dimensionless wave number k vs. supercriti-
cality ǫ= (Ma−Mac)/Mac. For each liquid, evolutions corre-
sponding to all five container heights are represented. Pr is the
Prandtl number of the liquids.

turned out to be negligible near the threshold (see above),
this might not be the case at larger liquid depths (nor at
very large values of α, not considered here, for which heat
spreading efficiently homogenizes the interfacial tempera-
ture, hence strongly mitigating BM convection in favor of
the Rayleigh-Bénard instability [3]). Figure 3 shows that
cellular patterns become more regular when the supercrit-
icality ǫ= (Ma−Mac)/Mac decreases (i.e., when time
goes on), and that at the same value of ǫ, patterns are more
disordered for more volatile liquids. This is also confirmed
by the corresponding Fourier spectra, which clearly have
larger width and less orientational order for the most
volatile HFE-7000 (figs. 3(a) and (b)) than for the less
volatile HFE-7300 (figs. 3(c) and (d)).
From these Fourier spectra, the averaged wave numbers
k= q e can also be extracted, and are depicted in fig. 4. We
first note that the shape of k(ǫ) curves (including the non-
monotonic behavior at low α) is in nice qualitative agree-
ment with direct simulations of [11], which, however, rely
on a constant Biot number instead of eq. (4). Interestingly,
fig. 4 also shows that the measured wave number evolu-
tions are rather independent of the container height (hence
of the evaporation rate E), while they do depend on the
liquid used. This clearly has to do with the fact that the
time scale for liquid depth variation, τe ∼ e/|ė|, is always
much larger than the thermal time scale τth ∼ e

2/κl, allow-
ing to expect a quasi-steady regime to be reached at each
instant. However, the fact that τe turns out to be much
smaller than the lateral diffusion time τL ∼L

2/κl (where
L is the container size) points to a rather fast mechanism
of wavelength selection, which might be due, at least far
from threshold where the pattern is large scale (k≪ kc),



to the anomalous dissipation mechanism described by
eq. (4).
This remains to be studied, however, along with the
quite unexplored scenarios of transition to (or from)
“interfacial turbulence” (see also [11]), for which the
one-sided model we propose in this letter should be
appropriate in a quantitative sense. Note finally that
although validated here using a Bénard set-up, the phase-
change–induced homogenization mechanism described by
eq. (4) is expected to be generic for other geometries as
well (e.g., drops, bubbles, . . .), at least for sufficiently
short-scale interfacial temperature fluctuations.
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