Effects of Transmission Belt Looseness on Electrical and Mechanical Measurements of an Induction Motor
Etienne Fournier, Antoine Picot, Jérémi Régnier, Christian Andrieux, Jacques Saint-Michel, Pascal Maussion

To cite this version:
Etienne Fournier, Antoine Picot, Jérémi Régnier, Christian Andrieux, Jacques Saint-Michel, et al.. Effects of Transmission Belt Looseness on Electrical and Mechanical Measurements of an Induction Motor . 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Sep 2015, Guarda, Portugal. pp. 259-265. hal-01359838

HAL Id: hal-01359838
https://hal.archives-ouvertes.fr/hal-01359838
Submitted on 5 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 16035

To link to this article: DOI: 10.1109/DEMPED.2015.7303699
URL: http://dx.doi.org/10.1109/DEMPED.2015.7303699

To cite this version: Fournier, Etienne and Picot, Antoine and Régnier, Jérémi and Andrieux, Christian and Saint-Michel, Jacques and Maussion, Pascal Effects of Transmission Belt Looseness on Electrical and Mechanical Measurements of an Induction Motor (best conference paper award). (2015) In: 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 1 September 2015 - 4 September 2015 (Guarda, Portugal)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Effects of Transmission Belt Looseness on Electrical and Mechanical Measurements of an Induction Motor

Etienne Fournier, Antoine Picot, Jérémi Régnier, Christian Andrieux, Jacques Saint-Michel and Pascal Maussion

Abstract—This article explores the impact of belt looseness on electrical and mechanical quantities of a system driven by an induction motor and a belt-pulley transmission. The effects of this defect, for example the belt slipping or the apparition of spectral signatures in some measurements, are first investigated under steady state operation. Transient state tests are then performed to analyse, in the time domain, the system response to a step of the speed reference. The behaviour of different variables (slip, speed, currents, etc.) is studied for different health conditions and the increase of the belt looseness clearly impact the electric and mechanical variables’ waveforms. The experimental tests carried out in this study, under steady or transient state, show promising results for the diagnosis of belt degradations. Perspectives of this work are therefore detailed at the end of this paper.

Index Terms—Fault diagnosis, Condition monitoring, Maintenance, Induction motors, Inverters, Variable speed drives, Belts, Spectral analysis, Current measurement, Mechanical variables measurement.

NOMENCLATURE

\(d \) or \(d_i \) \quad Center distance between motor and load.

\(\Delta \Omega \) \quad Speed reference step level.

\(f_f \) \quad Supply frequency.

\(f_{r,belts} \) \quad Rotation frequency of the belts.

\(f_{r,load} \) \quad Rotation frequency of the load.

\(f_{r,motor} \) \quad Rotation frequency of the motor.

\(f_s \) \quad Sample frequency.

\(\gamma_a \) \quad Axial vibration signal.

\(\gamma_r \) \quad Radial vibration signal.

\(i_{1,2,3} \) \quad Motor phase currents.

\(I_A \) \quad Currents instantaneous amplitude.

\(I_M \) \quad Induction motor.

\(\Omega_{bels} \) \quad Belts speed.

\(\Omega_{load} \) \quad Load speed.

\(\Omega_{motor} \) \quad Motor speed.

\(R_t \) \quad Transmission ratio.

\(S_\Omega \) \quad Absolute belts slip.

\(s_\Omega \) \quad Relative belts slip.

\(X(f) \) \quad Fourier transform of variable \(x(t) \) at the frequency \(f \)

I. INTRODUCTION

Electromechanical systems are often critical elements in industrial plants. Their failure may provoke safety issues or unexpected production shutdowns. Developing efficient condition monitoring methods for electrical machines and transmission elements is therefore necessary to optimize their maintenance.

Recent studies [1] have mainly focused on the diagnosis of faults relative to electrical motors such as bearing faults [2]-[7], rotor faults [8]-[11] or winding faults [12]-[14]. Some research has also been done in the condition monitoring of coupling elements, such as gears [15]-[16], which are critical parts of the power transmission chain. However, few attention has been paid on the condition monitoring of belt-pulley drives [17].

Belt looseness is an important failure mode which increases the belt slip and thus accelerates the wear process of the transmission system. This is caused by a tension loss which may be caused by a variation of the center distance between motor and load or by wear belts or pulleys. In worst cases, belts deterioration may lead to pulleys’ grooves damages, critical slip between the motor and his load and finally to the belts breakage [19]-[20].

In this context, the effects of belt looseness on a system driven by an induction motor (IM) are studied in this paper. First, the experimental system composed of an induction motor, a belt-pulley transmission system and a load is presented and the degradation protocol is explained. Secondly, the spectral content of several mechanical and electrical quantities measured on the system is analysed for the different health states of the belts in steady state operation. Then, the behaviour of the same variables is studied in transient state condition when a step of speed reference is applied to the motor.
Finally, a comparison of belt looseness effects under steady and transient state condition is done and perspectives of this work are detailed.

II. MATERIAL

A. Test bench

The test bench used in this study is composed of:

- a squirrel cage IM with one pair of poles, a rated power of 30 kW and a rated speed of 3000 RPM,
- a transmission system composed of two 160-mm diameter pulleys and two trapezoidal belts with a length of \(L_{\text{belts}} = 1600\text{mm} \) (Texrope® VP2 1600 SPA),
- a direct-current machine used to vary the torque delivered by the IM.

and is illustrated in Fig. 1. The IM is fed by a PWM-inverter with a constant V/f open-loop control law. Moreover, the center distance \(d \) between the load machine and the induction motor is adjustable and can be changed to increase or decrease belts tension. In this way, tests can be carried out for healthy conditions, with a proper tension of the belts, and for faulty conditions by gradually decreasing the center distance \(d \) between the load machine and the induction motor. Finally, since diameters of the driven pulley \(D_{\text{driven}} \) and the driver pulley \(D_{\text{driver}} \) are equal, the transmission ratio \(R_t = D_{\text{driven}} / D_{\text{driver}} \) is equal to 1. An overall representation of the experimental system is illustrated in Fig. 2.

B. Measurements

With a sample frequency \(f_s = 100kHz \), a 8-synchronous channels data acquisition system has been used to measure mechanical and electrical quantities of the system such as:

- radial and axial vibration signals (respectively \(\gamma_r \) and \(\gamma_a \)) via two accelerometers (Dytran™ 3055A2) placed on the motor frame,
- motor and load mechanical speed signals (respectively \(\Omega_{\text{motor}} \) and \(\Omega_{\text{load}} \)) by using two encoders,
- motor phase currents \(i_1, i_2 \) and \(i_3 \).

All recordings have a constant length \(T_{\text{recording}} = 5s \). Belts slip, noted \(S_\Omega \), is calculated from both speed measurements \(\Omega_{\text{motor}} \) and \(\Omega_{\text{load}} \) according to

\[
S_\Omega = \Omega_{\text{motor}} - R_t \cdot \Omega_{\text{load}}
\]

or defined in relative terms by

\[
s_\Omega = \frac{S_\Omega}{\Omega_{\text{motor}}} \cdot 100
\]

for all measurements.

Tests have been carried out for different center distances

\[
d_1 > d_2 > d_3 > d_4
\]

which correspond to the different belts looseness conditions represented in Table I. The center distance \(d_1 \) corresponds to a correct belts tension which ensures an optimal functioning of the system. On the contrary, the center distance \(d_4 \) provokes a critical looseness of the belts which even prevents the system to work under the rated load and speed. Between these two extreme cases, tests have been carried out for two intermediate center distances \(d_2 \) and \(d_3 \) which produces respectively moderate and strong belts looseness.

Tests have been realized for different speed and load conditions of the IM. The operating conditions are however presented in section III and IV since functioning points are defined differently under steady and transient state tests.

III. EFFECT OF BELT LOOSENESS ON MECHANICAL AND ELECTRICAL QUANTITIES UNDER STEADY STATE OPERATION

A. Operating conditions

All results presented in this section have been obtained under steady state conditions of the motor speed and load. Tests have been realized for two motor speeds \(\Omega_{\text{motor}}/2 = 1500\text{RPM} \) and \(\Omega_{\text{motor}} = 3000\text{RPM} \) and under five load levels \(I_t \approx 15A, \ I_t = 31.5A, \ I_t = 26A, \ I_t = 38A, \ I_t = 45A \) and \(I_t = 52A \). For clarity reasons, spectra are only presented in this section for \(\Omega_{\text{motor}} = 1500\text{RPM} \) and \(I_{\text{motor}} = 52A \) but results are similar for the other speed and load levels.

B. Belts slip

A priori, looseness affects the slip of the belts in two ways:

- The average value of the belts slip is susceptible to increase with the decrease of the belt tension.

Fig. 1. Experimental test bench composed of an 30-kW IM (right), a belt-pulley transmission system (middle) and a direct-current machine (left).
The spectral content of the belts slip may vary with the looseness condition because of an eventual change of belts grip behaviour or a possible belts flapping.

First, the evolution of the relative belts slip has been plotted in Fig. 3 for different load conditions and for $\Omega_{\text{motor}} = 1500\text{ RPM}$. It is clearly visible in Fig. 3 that belts looseness tends to increase the average value of belts slip s_Ω especially for high load levels. Indeed, s_Ω value is below 2% for all load levels in healthy conditions whereas it reaches up to 8% for critical belts looseness.

Secondly, spectra of the belts slip $S_{\Omega}(f)$ have been computed for the different health conditions of the belts and are plotted in Fig. 4. We can notice that the three harmonic families $S_{\Omega}(k.f_{r,\text{belts}})$, $S_{\Omega}(k.f_{r,\text{load}})$ and $S_{\Omega}(k.f_{r,\text{motor}})$ dominate the belts slip spectrum and are impacted by the looseness level of belts. The rotation frequency of the two belts is noted $f_{r,\text{belts}}$ and is defined according to

$$f_{r,\text{belts}} = \frac{\pi D_{\text{driver}}}{L_{\text{belts}}} \cdot f_{r,\text{motor}}$$ \hspace{1cm} (4)

It is visible that harmonics $S_{\Omega}(f_{r,\text{belts}})$ and $S_{\Omega}(2f_{r,\text{belts}})$ respectively decrease and increase with the severity of the fault. We also remark a shift of the harmonic $S_{\Omega}(f_{r,\text{load}})$ with the fault level since the rotation frequency of the load $f_{r,\text{load}}$ decreases with the belts looseness level. Its level remains stable...
for the four belts condition. Finally, it is difficult to state on
the behaviour of harmonic \(S_{II}(f_{r,motor}) \) since its frequency is
close to the one of \(S_{II}(f_{r,load}) \) for the two healthiest belts
conditions. However, its level seems to increase with the
looseness severity for the two poorest health conditions of the
bels.

C. Motor vibrations

As illustrated in Fig. 2, two accelerometers have been placed
in radial and axial position on the IM frame. The spectra of the vibration signals \(\gamma_r(t) \) and \(\gamma_a(t) \) thus obtained
have been computed for the different health conditions of
the belts. For clarity reasons and since the spectral content
of both vibration signals is alike and evolves similarly with
the considered fault, only axial vibrations spectra \(\Gamma_\alpha(f) \) are
represented in Fig. 5. The three frequency families \(k.f, \text{fr,belts}, \)
\(f, \text{fr,load}\) and \(f, \text{fr,motor}\) also dominate the low frequency part
of the vibrations spectral content. However, the evolution of
the looseness severity hardly affects their level. Only the shift
of harmonic \(\Gamma_\alpha(f_{r,load}) \) betrays the tension loss of the belts.

D. Motor speed

The motor speed, as well as the load speed, has been
measured by an encoder and recorded for each health condition
of the belts. Its spectral content may also be affected by a
change of the transmission system properties. Therefore, the
spectrum \(\Omega_{motor}(f) \) of the motor speed has been plotted in
Fig. 6 for the four looseness levels. Several observations can
be made on the motor speed spectrum and on its evolution with
the looseness level. First, the shift of the harmonic \(\Omega_{motor}(f_{r,load}) \) is also visible in the speed spectrum but it is
accompanied here by a rise of its level with the fault severity.
Secondly, harmonics \(\Omega_{motor}(f,\text{fr,belts}) \) and \(\Omega_{motor}(2f,\text{fr,belts}) \) are also impacted by the considered default and evolve in
the same way that harmonics \(S_{II}(f,\text{fr,belts}) \) and \(S_{II}(2f,\text{fr,belts}) \) with its severity. Finally, it is visible that the harmonic
\(\Omega_{motor}(f,\text{fr,motor}) \) strongly increases with the belts looseness
level.

E. Motor phase currents

The study of mechanical variables have shown that several
frequency families, such as \(k.f, \text{fr,belts}, k.f, \text{fr,load} \) and \(k.f, \text{fr,motor}, \) are susceptible to react with the increase of the belts looseness. Vibration and motor speed signals are however not automatically measured by industrial variable speed drives, specially for low power systems. This remark is even more valid for the load speed signal. In view of industrial detection of belt looseness, it is therefore interesting to analyse the spectral content of the IM phase currents since they are often available for control purposes. The spectrum \(I_1(f) \) of motor phase current \(i_1 \) is plotted in Fig. 7 for the different belts looseness conditions. The frequency families considered in the

\[I_1(f) = \begin{cases}
\Omega_{motor}(f_{r,motor}) & f = f_{r,motor} \\
\Omega_{motor}(f + k.f, \text{fr,belts}) & f = f + k.f, \text{fr,belts} \\
\Omega_{motor}(f + f, \text{fr,load}) & f = f + f, \text{fr,load} \\
\Omega_{motor}(f + 2f, \text{fr,belts}) & f = f + 2f, \text{fr,belts}
\end{cases} \]

study of mechanical quantities are modulated by the supply
frequency \(f_f \) in the case of phase currents. It is observed in
Fig. 7 that the behaviour of harmonics \(I(f_f + k.f, \text{fr,belts}), \)
\(I(f_f + k.f, \text{fr,load}) \) and \(I(f_f + f, \text{fr,motor}) \) with the increase of
belts looseness is strongly similar to the one of the motor speed harmonics \(\Omega_{motor}(k.f, \text{fr,belts}), \Omega_{motor}(f, \text{fr,load}) \) and
\(\Omega_{motor}(k.f, \text{fr,motor}) \). Mechanical effects of belts looseness are therefore well reflected in the spectral content of electrical
quantities such as motor phase currents. Moreover, since load speed and belt slip are usually not measured on industrial drives, harmonics $I(f_f + k_f r_{belt})$ and $I(f_f + k_f r_{load})$ may be difficult to track if belts slip changes over time. Current harmonics $I(f_f + k_f r_{motor})$ are however easy to calculate since the rotation frequency of the motor r_{motor} is measured or estimated on most variable speed drives. A belt diagnosis strategy may therefore be defined for industrial systems by monitoring the current harmonic $I(f_f + r_{motor})$. The mean elevation of the harmonic $I(f_f + r_{motor})$ from its value with healthy belts has been calculated for each belts condition. These values have been computed with a number of recording $N_{rec} = 20$ for each operating point and results are presented in Table II. It is clearly visible that the increase of the belts looseness provokes an elevation of the considered harmonic. This rise tends to be greater with the fault severity but it is not always valid. Moreover, a minimal load torque seems necessary to observe this phenomenon. The level of $I(f_f + r_{motor})$ is indeed not affected by the tension loss of the belts for no load condition ($I_{motor} = I_0$). Results are however significant and show the possibility of monitoring belts looseness condition from the motor current measurements.

IV. EFFECT OF BELT LOOSENESS ON MECHANICAL AND ELECTRICAL QUANTITIES UNDER TRANSIENT STATE OPERATION

The belts looseness degradation has a clear influence on the spectral content of mechanical (speed, belts slip, vibrations) and electrical variables (phase currents) under steady state operation. However, the mean elevation of the belts slip illustrated in Fig. 3 is not efficiently used to diagnosis the belts condition. Therefore, the main idea of this section is to exacerbate the belts slip with sudden accelerations imposed to the system and to analyse the dynamic response of the different system’s variables under different belts looseness conditions.

A. Operating conditions

In this section, a speed reference step $\Delta \Omega$ is applied to the system at a time $T_{step} = 1s$. The motor speed reference therefore rises from $\Omega_1 = 2000\text{RPM}$ to $\Omega_2 = 2500\text{RPM}$ under the load condition $I_{motor} = 38A$. All dynamic tests have been carried out for two conditions of the belts : healthy belts and moderate belts looseness.

B. Belts slip

The step response of the relative belts slip $s_\Omega(t)$ has been illustrated in Fig. 8 for the two belts looseness condition considered in this section. We first observe in Fig. 8 that belts slip, during steady state conditions (before $t = 1s$ and after $t = 1, 9s$), is slightly higher with moderate belts looseness than in healthy case, as it was illustrated in Fig. 3. However, the torque impact due to the sudden motor acceleration provokes an important rise of the belts slip which reaches up to 10% with loosen belts compared to only 4% when using healthy belts.

C. Motor speed

The drop-out of the belt-pulley adherence observed in Fig. 8 surely affects other physical variables of the system, starting with the motor speed. The step-response of $\Omega_{motor}(t)$ has therefore been illustrated in Fig. 9 for both looseness conditions considered in this section. We can observe that the speed rise is clearly affected by the tension loss of the belts during the acceleration phase. With loosen belts, the motor speed first increases faster since the load is not fully driven (high value of s_Ω). In the second part, the motor speed Ω_{motor} rises slower and merges with its dynamic response obtained in healthy condition since the belts slip falls and the load has to be fully accelerated too.
D. Motor phase currents

The change in the motor speed behaviour between healthy and loosen belts may change the dynamic response of electrical quantities. The response of phase current i_3 has been plotted in Fig. 10 in order to observe this phenomenon. The current increase due to the system acceleration is clearly visible at $T_{step} = 1s$. However, the difference between healthy and loosen belts is difficult to observe because of the sinusoidal waveform of $i_3(t)$. In order to overcome this problem, the instantaneous amplitude $IA(t)$ of phase currents $i_1(t)$, $i_2(t)$ and $i_3(t)$ has been calculated by using the Concordia transform. Details about $IA(t)$ calculation are presented in [21]. The results obtained for both belts conditions are illustrated in Fig. 11 and the impact of the looseness level is better noticed from signal $IA(t)$ than from the current signal itself. Indeed, the dynamic response of the currents instantaneous amplitude $IA(t)$ is distorted when the belts looseness level increase. The currents’ amplitude peak is attenuated in the first part of the step-response when loosen belts are used instead of healthy belts. Moreover, the drop of $IA(t)$ is visibly slower in faulty condition.

Phenomena observed in this section, i.e. the distortion of the dynamic response of motor speed and currents, are also visible for different load conditions. The load level visibly enhances the changes between healthy and faulty belts condition as it was the case for steady state results. Moreover, higher ($\Delta \Omega_{high} = 1000\text{RPM}$) and lower ($\Delta \Omega_{low} = 100\text{RPM}$) speed reference step have been used and the same distortions in the variables’ responses are observed, with an amplitude depending on the speed reference step applied to the system.

V. DISCUSSION, CONCLUSION AND PERSPECTIVES

Belts looseness effects on mechanical and electrical variables of a system driven by an inverter-fed IM and a belt-pulley coupling have been studied in this paper. The spectral analysis performed under steady state on the different measurements have shown that several frequency families are sensitive to the belts looseness condition. Spectral signatures are particularly visible on phase currents which are often available in industrial drives for control purposes. A belt diagnosis strategy can therefore be envisaged by monitoring the phase current harmonic $I(f_{r,motor})$.

Transient state tests have also been carried out by applying a speed reference step $\Delta \Omega$ to the motor. The belts slip is clearly exacerbated and the dynamic response of the motor speed Ω_{motor} and of the currents IA are consequently distorted. As it stands, it seems difficult to use these transient state phenomena to produce a fault signature related to the belts condition. Time domain quantities such as currents’ overshoot or rise time indeed appears not to be optimal fault indicators because they do not reflect the entire distortion of the considered variable.

An interesting perspective however consists in applying a square-wave speed reference signal to the system and to study the variables’ responses in the frequency domain. Indeed, a square-wave signal with a small amplitude $\Delta \Omega_{square}$ and a frequency f_{square} may be added to the steady state speed reference Ω_{ref} and will hardly affect the system performances during the recording time. Any distortion of their response due to belt looseness will produce a change in their spectral content at well known frequencies multiple of f_{square}. A few tests have been realized with square-wave speed reference signal in order to detect belts looseness and the study of harmonics $IA(k\cdot f_{square})$ show promising results. A complete test campaign of this pseudo-steady state method will be achieved for different speed and load conditions and results will be presented in a future paper. Moreover a comparison between the steady state results presented in section III and those obtained with the pseudo-steady state tests will be provided too.

ACKNOWLEDGMENT

The authors would like to thank Hervé Egreteau from Leroy Somer for his precious help and advices during the experimental tests carried out in this study as well as for the time he dedicated to perform them.

REFERENCES

