GLOBAL SOLUTIONS FOR A HYPERBOLIC-PARABOLIC SYSTEM OF CHEMOTAXIS
Rafael Granero-Belinchón

To cite this version:

HAL Id: hal-01359674
https://hal.archives-ouvertes.fr/hal-01359674v2
Submitted on 9 Dec 2016
GLOBAL SOLUTIONS FOR A HYPERBOLIC-PARABOLIC SYSTEM OF CHEMOTAXIS

RAFAEL GRANERO-BELINCHÓN

Abstract. We study a hyperbolic-parabolic model of chemotaxis in dimensions one and two. In particular, we prove the global existence of classical solutions in certain dissipation regimes.

Contents

1. Introduction 1
2. Statement of the results 2
2.1. On the scaling invariance 3
2.2. Results in the one-dimensional case \(d = 1 \) 3
2.3. Results in the two-dimensional case \(d = 2 \) 4
2.4. Discussion 5
3. Proof of Theorem 1 5
4. Proof of Theorem 2 7
5. Proof of Corollary 1 8
6. Proof of Theorem 3 8
7. Proof of Corollary 2 10
Acknowledgment 10
References 10

1. Introduction

In this note we study the following system of partial differential equations

\[
\begin{align*}
\partial_t u &= -\Lambda^\alpha u + \nabla \cdot (u q), \quad \text{for } x \in \mathbb{T}^d, \ t \geq 0, \\
\partial_t q &= \nabla f(u), \quad \text{for } x \in \mathbb{T}^d, \ t \geq 0,
\end{align*}
\]

where \(u \) is a non-negative scalar function, \(q \) is a vector in \(\mathbb{R}^d \), \(\mathbb{T}^d \) denotes the domain \([−π, π]^d\) with periodic boundary conditions, \(d = 1, 2 \) is the dimension, \(f(u) = u^2/2, \) \(0 < \alpha \leq 2 \) and \((-\Delta)^{\alpha/2} = \Lambda^\alpha \) is the fractional Laplacian.

This system was proposed by Othmers & Stevens [21] based on biological considerations as a model of tumor angiogenesis. In particular, in the previous system, \(u \) is the density of vascular endothelial cells and \(q = \nabla \log(v) \) where \(v \) is the concentration of the signal protein known as vascular endothelial growth factor (VEGF) (see Bellomo, Li, & Maini [1] for more details on tumor modelling). Similar hyperbolic-dissipative systems arise also in the study of compressible viscous fluids or magnetohydrodynamics (see S. Kawashima [8] and the references therein).
Equation (1) appears as a singular limit of the following Keller-Segel model of aggregation of the slime mold \textit{Dictyostelium discoideum} [9] (see also Patlak [20])

\[
\begin{aligned}
\partial_t u &= -\Lambda u - \chi \nabla \cdot (u \nabla G(v)), \\
\partial_t v &= \nu \Delta v + (f(u) + \lambda) v,
\end{aligned}
\]

when \(G(v) = \log(v)\) and the diffusion of the chemical is negligible, i.e. \(\nu \to 0\).

Similar equations arising in different context are the Majda-Biello model of Rossby waves [18] or the magnetohydrodynamic-Burgers system proposed by Fleischer & Diamond [3].

Most of the results for (1) correspond to the case where \(d = 1\). Then, when the diffusion is local i.e. \(\alpha = 2\), (1) has been studied by many different research groups. In particular, Fan & Zhao [2], Li & Zhao [13], Mei, Peng & Wang [19], Li, Pan & Zhao [12], Jun, Jixiong, Huijiang & Changjiang [7] Li & Wang [16] and Zhang & Zhu [25] studied the system (1) when \(\alpha = 2\) and \(f(u) = u\) under different boundary conditions (see also the works by Jin, Li & Wang [6], Li, Li & Wang [14], Wang & Hillen [22] and Wang, Xiang & Yu [23]). The case with general \(f(u)\) was studied by Zhang, Tan & Sun [26] and Li & Wang [17].

Equation (1) in several dimensions has been studied by Li, Li & Zhao [11], Hau [5] and Li, Pan & Zhao [15]. There, among other results, the global existence for small initial data in \(H^s, s > 2\) is proved.

To the best of our knowledge, the only result when the diffusion is non-local, i.e. \(0 < \alpha < 2\), is [4]. In that paper we obtained appropriate lower bounds for the fractional Fisher information and, among other results, we proved the global existence of weak solution for \(f(u) = u^r / r\) and \(1 \leq r \leq 2\).

In this note, we address the existence of classical solutions in the case \(0 < \alpha \leq 2\). This is a challenging issue due to the hyperbolic character of the equation for \(q\). In particular, \(u\) verifies a transport equation where the velocity \(q\) is one derivative more singular than \(u\) (so \(\nabla \cdot (uq)\) is two derivatives less regular than \(u\)).

2. Statement of the results

For the sake of clarity, let us state some notation: we define the mean as

\[
\langle g \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} g(x) dx.
\]

Also, from this point onwards, we write \(H^s\) for the \(L^2\)-based Sobolev space of order \(s\) endowed with the norm

\[
\|u\|_{H^s}^2 = \|u\|_{L^2}^2 + \|\Lambda^s u\|_{L^2}^2, \quad \|u\|_{H^s} = \|\Lambda^s u\|_{L^2}.
\]

For \(\beta \geq 0\), we consider the following energies \(E_\beta\) and dissipations \(D_\beta\),

\[
E_\beta(t) = \|u\|_{H^\beta}^2 + \|q\|_{H^\beta}^2, \quad D_\beta(t) = \|u\|_{H^{\beta + \alpha/2}}^2.
\]

Recall that the lower order norms verify the following energy balance [4]

\[
\frac{1}{2} (\|u(0)\|_{L^2}^2 + \|q(0)\|_{L^2}^2) + \int_0^t \|u(s)\|_{H^{\alpha/2}}^2 ds = \frac{1}{2} (\|u_0\|_{L^2}^2 + \|q_0\|_{L^2}^2).
\]
2.1. On the scaling invariance. Notice that the equations (1)-(2) verify the following scaling symmetry: for every $\lambda > 0$

$$u_\lambda(x, t) = \lambda^{\alpha - 2} u(\lambda x, \lambda^\alpha t), \quad q_\lambda(x, t) = \lambda^{\alpha - 1} q(\lambda x, \lambda^\alpha t).$$

This scaling serves as a zoom in towards the small scales. We also know that

$$\|u(t)\|_{L^2}^2 + \|q(t)\|_{L^2}^2$$

is the strongest (known) quantity verifying a global-in-time bound. Then, in the one dimensional case, the L^2 norms of u and q are invariant under the scaling of the equations when $\alpha = 1.5$. That makes $\alpha = 1.5$ the critical exponent for the global estimates known. Equivalently, if we define the rescaled (according to the scaling of the strongest conserved quantity $\|u(t)\|_{L^2}^2 + \|q(t)\|_{L^2}^2$) functions

$$u_\gamma(x, t) = \gamma^{0.5} u(\gamma x, \gamma^\alpha t), \quad q_\gamma(x, t) = \gamma^{0.5} q(\gamma x, \gamma^\alpha t).$$

we have that u_γ and q_γ solve

$$\partial_t u_\gamma = -\Lambda^\alpha u_\gamma + \gamma^{\alpha-1.5} \partial_x (u_\gamma q_\gamma),$$

$$\partial_t q_\gamma = \gamma^{\alpha-1.5} u_\gamma \partial_x u_\gamma.$$

Larger values of α form the subcritical regime where the diffusion dominates the drift in small scales. Smaller values of α form the supercritical regime where the drift might be dominant at small scales.

Similarly, the two dimensional case has critical exponent $\alpha = 2$.

Remark 1. Notice that the equations (1)-(2) where $f(u) = u$ have a different scaling symmetry but the same critical exponent $\alpha = 1.5$. In this case, the scaling symmetry is given by

$$u_\lambda(x, t) = \lambda^{2\alpha - 2} u(\lambda x, \lambda^\alpha t), \quad q_\lambda(x, t) = \lambda^{\alpha - 1} q(\lambda x, \lambda^\alpha t),$$

while the conserved quantity is $\|u(t)\|_{L^1} + \|q(t)\|_{L^2}^2/2$. Thus, if we define the rescaled (according to the scaling of the conserved quantity) functions

$$u_\gamma(x, t) = \gamma u(\gamma x, \gamma^\alpha t), \quad q_\gamma(x, t) = \gamma^{0.5} q(\gamma x, \gamma^\alpha t).$$

we have that u_γ and q_γ solve

$$\partial_t u_\gamma = -\Lambda^\alpha u_\gamma + \gamma^{\alpha-1.5} \partial_x (u_\gamma q_\gamma),$$

$$\partial_t q_\gamma = \gamma^{\alpha-1.5} u_\gamma \partial_x u_\gamma.$$

A global existence result when α is the range $1.5 \leq \alpha < 2$ for the problem where $f(u) = u$ is left for future research.

2.2. Results in the one-dimensional case $d = 1$. One of our main results is

Theorem 1. Fix T an arbitrary parameter and let $(u_0, q_0) \in H^2(\mathbb{T}) \times H^2(\mathbb{T})$ be the initial data such that $0 \leq u_0$ and $\langle q_0 \rangle = 0$. Assume that $\alpha \geq 1.5$. Then there exist a unique global solution $(u(t), q(t))$ to problem (1) verifying

$$u \in L^\infty(0, T; H^2(\mathbb{T})) \cap L^2(0, T; H^{2+\alpha/2}(\mathbb{T})), q \in L^\infty(0, T; H^2(\mathbb{T})).$$

Furthermore, the solution is uniformly bounded in

$$(u, q) \in C([0, \infty), H^1(\mathbb{T}) \times C([0, \infty), H^1(\mathbb{T})).$$
In the case where the strength of the diffusion, α, is even weaker, we have the following global existence result for small data:

Theorem 2. Fix T an arbitrary parameter and let $(u_0, q_0) \in H^2(\mathbb{T}) \times H^2(\mathbb{T})$ be the initial data such that $0 \leq u_0$ and $\langle q_0 \rangle = 0$. There exists C_α such that if $1.5 > \alpha > 1$ and

$$\|u_0\|_{H^{\alpha/2}}^2 + \|q_0\|_{H^{\alpha/2}}^2 \leq C_\alpha$$

then there exist a unique global solution $(u(t), q(t))$ to problem (1) verifying

$$u \in L^\infty(0, T; H^2(\mathbb{T})) \cap L^2(0, T; H^{2+\alpha/2}(\mathbb{T})), q \in L^\infty(0, T; H^2(\mathbb{T})).$$

Furthermore, the solution verifies

$$\|u(t)\|_{H^{\alpha/2}}^2 + \|q(t)\|_{H^{\alpha/2}}^2 \leq \|u_0\|_{H^{\alpha/2}}^2 + \|q_0\|_{H^{\alpha/2}}^2.$$

Corollary 1. Fix T an arbitrary parameter and let $(u_0, q_0) \in H^2(\mathbb{T}) \times H^2(\mathbb{T})$ be the initial data such that $0 \leq u_0$ and $\langle q_0 \rangle = 0$. Assume that $1 \geq \alpha \geq 0.5$ and

$$\|u_0\|_{H^1}^2 + \|q_0\|_{H^1}^2 < \frac{4}{9C_S^2}$$

where C_S is defined in (7). Then there exist a unique global solution $(u(t), q(t))$ to problem (1) verifying

$$u \in L^\infty(0, T; H^2(\mathbb{T})) \cap L^2(0, T; H^{2+\alpha/2}(\mathbb{T})), q \in L^\infty(0, T; H^2(\mathbb{T})).$$

Furthermore, the solution verifies

$$\|u(t)\|_{H^1}^2 + \|q(t)\|_{H^1}^2 \leq \|u_0\|_{H^1}^2 + \|q_0\|_{H^1}^2.$$

2.3. **Results in the two-dimensional case** $d = 2$. In two dimensions the global existence read

Theorem 3. Fix T an arbitrary parameter and let $(u_0, q_0) \in H^2(\mathbb{T}^2) \times H^2(\mathbb{T}^2)$ be the initial data such that $0 \leq u_0$, $\langle q_0 \rangle = 0$ and curl$q_0 = 0$. Assume that $\alpha = 2$. Then there exist a unique global solution $(u(t), q(t))$ to problem (1) verifying

$$u \in L^\infty(0, T; H^2(\mathbb{T}^2)) \cap L^2(0, T; H^3(\mathbb{T}^2)), q \in L^\infty(0, T; H^2(\mathbb{T}^2)).$$

Furthermore, the solution is uniformly bounded in

$$(u, q) \in C([0, \infty), H^1(\mathbb{T}^2)) \times C([0, \infty), H^1(\mathbb{T}^2)).$$

Corollary 2. Fix T an arbitrary parameter and let $(u_0, q_0) \in H^2(\mathbb{T}^2) \times H^2(\mathbb{T}^2)$ be the initial data such that $0 \leq u_0$, $\langle q_0 \rangle = 0$ and curl$q_0 = 0$. Assume that $2 > \alpha \geq 1$ and

$$\|u_0\|_{H^1}^2 + \|q_0\|_{H^1}^2 < C$$

where C is a universal constant. Then there exist a unique global solution $(u(t), q(t))$ to problem (1) verifying

$$u \in L^\infty(0, T; H^2(\mathbb{T}^2)) \cap L^2(0, T; H^{2+\alpha/2}(\mathbb{T}^2)), q \in L^\infty(0, T; H^2(\mathbb{T}^2)).$$

Furthermore, the solution verifies

$$\|u(t)\|_{H^1}^2 + \|\nabla \cdot q(t)\|_{L^2}^2 \leq \|u_0\|_{H^1}^2 + \|\nabla \cdot q_0\|_{L^2}^2.$$
Remark 2. In the case where the domain is the one-dimensional torus, T, local existence of solution for (1)-(2) was proved in [4] for a more general class of kinetic function $f(u)$. The local existence of solution for (1)-(2) the domain is the two-dimensional torus T^d with $d = 2$ follows from the local existence result in [4] with minor modifications. Consequently, we will focus on obtaining global-in-time a priori estimates.

2.4. Discussion. Due to the hyperbolic character of the equation for q, prior available global existence results of classical solution for equation (1) impose several assumptions. Namely,

- either $d = 1$ and $\alpha = 2$ [26, 17],
- or $d = 2, 3, \alpha = 2$ and the initial data verifies some smallness condition on strong Sobolev spaces $H^s, s \geq 2$ [24, 27].

Our results removed some of the previous conditions. On the one hand, we prove global existence for arbitrary data in the cases $d = 1$ and $\alpha \geq 1$ and $d = 2$ and $\alpha = 2$. On the other hand, in the cases where we have to impose size restrictions on the initial data, the Sobolev spaces are bigger than H^2 (thus, the norm is weaker). Finally, let us emphasize that our results can be adapted to the case where the spatial domain is \mathbb{R}^d.

A question that remains open is the trend to equilibrium. From (5) is clear that the solution $(u(t), q(t))$ tends to the homogeneous state, namely $(\langle u_0 \rangle, 0)$. However, the rate of this convergence is not clear.

3. Proof of Theorem 1

Step 1; H^1 estimate: Testing the first equation in (1) against $\Lambda^2 u$, integrating by parts and using the equation for q, we obtain

\[
\frac{1}{2} \frac{d}{dt} \|u\|^2_{H^1} + \|\partial_x u\|^2_{H^{\alpha/2}} = - \int_T \partial_x (uq) \partial_x^2 u dx \\
= \frac{1}{2} \int_T \partial_x q(\partial_x u)^2 dx - \int_T \partial_x u \partial_x^2 u dx \\
= \frac{1}{2} \int_T \partial_x q(\partial_x u)^2 dx - \int_T \partial_x q(\partial_t \partial_x q - (\partial_x u)^2) dx,
\]

so

\[
\frac{1}{2} \frac{d}{dt} \left(\|u\|^2_{H^1} + \|q\|^2_{H^1} \right) + \|u\|^2_{H^{1+\alpha/2}} = \frac{3}{2} \int_T \partial_x q(\partial_x u)^2 dx.
\]

Denoting

\[
I = \frac{3}{2} \int_T \partial_x q(\partial_x u)^2 dx,
\]

and using Sobolev embedding and interpolation, we have that

\[
I \leq \frac{3}{2} \|q\|_{H^1} \|\partial_x u\|_{L^4}^2 \leq \frac{3}{2} C_S \|q\|_{H^1} \|\partial_x u\|_{H^{1+\alpha/2}}^2
\]

where C_S is the constant appearing in the embedding

\[
\|g\|_{L^4} \leq C_S \|g\|_{H^{\alpha/2}}.
\]

(7)

Using the interpolation

\[
H^{1+\alpha/2} \subset H^{1.25} \subset H^{0/2},
\]
and Poincaré inequality (if $\alpha > 1.5$) we conclude
\[I \leq c \|q\|_{H^1} \|\Lambda^{\alpha/2} u\|_{L^2} \|u\|_{H^{1+\alpha/2}}. \]

Using (4), we have that
\[\frac{d}{dt} E_1 + D_1 \leq c \|u\|^2_{H^{\alpha/2}} E_1. \]

Using Gronwall’s inequality and the estimate (5), we have that
\[\sup_{0 \leq t < \infty} E_1(t) \leq C(\|u_0\|_{H^1}, \|q_0\|_{H^1}), \]
\[\int_0^T D_1(s) ds \leq C(\|u_0\|_{H^1}, \|q_0\|_{H^1}, T), \forall 0 < T < \infty. \]

Step 2; H^2 estimate: Now we prove that the solutions satisfying the previous bounds for E_1 and D_1 also satisfy the corresponding estimate in H^2. We test the equation for u against $\Lambda^4 u$. We have that
\[\frac{1}{2} \frac{d}{dt} \|u\|^2_{H^2} + \|\Lambda u\|^2_{H^{2+\alpha/2}} = -\int_T^T \partial_x^2 (uq) \partial_x^3 u dx \]
\[= \int_T \partial_x q \left(\frac{5}{2} \partial_x^2 u \right)^2 dx - \int_T \partial_x^3 q (\partial_x \partial_x^2 q - 5 \partial_x u \partial_x^2 u) dx, \]
so
\[\frac{1}{2} \frac{d}{dt} \left(\|u\|^2_{H^2} + \|q\|^2_{H^2} \right) + \|\Lambda u\|^2_{H^{2+\alpha/2}} = \frac{5}{2} \int_T \partial_x q (\partial_x^2 u)^2 dx + 5 \int_T \partial_x^3 q \partial_x^2 u \partial_x u dx. \]

We define
\[J_1 = \frac{5}{2} \int_T \partial_x q (\partial_x^2 u)^2 dx, \quad J_2 = 5 \int_T \partial_x^3 q \partial_x^2 u \partial_x u dx. \]

Then, we have that
\[J_1 \leq c \|\partial_x q\|_{L^\infty} \left\| \partial_x^2 u \right\|^2_{L^2} \leq c \left\| \partial_x^2 q \right\|^2_{L^2} \left\| u \right\|^2_{H^{1+\alpha/2}} \left\| u \right\|^2_{H^{1+\alpha/2}}, \]
so, using Young’s inequality,
\[J_1 \leq c \left\| \partial_x^2 q \right\|^2_{L^2} \left\| u \right\|^2_{H^{1+\alpha/2}} + \frac{1}{4} \left\| u \right\|^2_{H^{2+\alpha/2}}. \]

Similarly, using Poincaré inequality and $\alpha \geq 0.5$,
\[J_2 \leq c \|\partial_x^2 u\|_{L^4} \left\| \partial_x^2 q \right\|_{L^4} \left\| \partial_x^2 q \right\|_{L^2} \leq c \left\| u \right\|_{H^{1+\alpha/2}} \left\| u \right\|_{H^{1+\alpha/2}} \left\| \partial_x^2 q \right\|_{L^2}, \]
and
\[J_2 \leq c \left\| u \right\|^2_{H^{1+\alpha/2}} \left\| \partial_x^2 q \right\|^2_{L^2} + \frac{1}{4} \left\| u \right\|^2_{H^{2+\alpha/2}}. \]

Finally,
\[\frac{d}{dt} E_2(t) + D_2(t) \leq c \left\| u \right\|^2_{H^{1+\alpha/2}} (E_2(t) + 1) \]
and we conclude using Gronwall’s inequality.
4. Proof of Theorem 2

Step 1; \(H^{\alpha/2} \) estimate: Testing the first equation in (1) against \(\Lambda^\alpha u \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \|u\|_{H^{\alpha/2}}^2 + \|u\|_{H^\alpha}^2 = \int_T \partial_x (uq) \Lambda^\alpha u \, dx \\
= - \int_T \Lambda^\alpha (uq) \partial_x u \, dx \\
= - \int_T (\Lambda^\alpha(uq) - u\Lambda^\alpha q) \partial_x u \, dx - \int_T \Lambda^\alpha qu \partial_x u \, dx,
\]

so

\[
\frac{1}{2} \frac{d}{dt} \left(\|u\|_{H^{\alpha/2}}^2 + \|q\|_{H^{\alpha/2}}^2 \right) + \|u\|_{H^\alpha}^2 \leq - \int_T [\Lambda^\alpha, u] q \partial_x u \, dx.
\]

We define

\[
K = - \int_T [\Lambda^\alpha, u] q \partial_x u \, dx.
\]

Using the classical Kenig-Ponce-Vega commutator estimate [10] and Sobolev embedding, we have that

\[
\|[\Lambda^\alpha, u] q\|_{L^2} \leq c \left(\|\partial_x u\|_{L^{2+}} \|\Lambda^{\alpha-1} q\|_{L^{\frac{2\alpha}{\alpha-1}}} + \|\Lambda^\alpha u\|_{L^2} \|q\|_{L^\infty} \right)
\]

(8)

Thus, taking \(\epsilon \) such that

\[
1 + \frac{\epsilon}{4 + 2\epsilon} = \alpha, \quad \text{i.e.} \quad \epsilon = \frac{4\alpha - 4}{3 - 2\alpha}
\]

Equation (8) reads

(9) \[\|[\Lambda^\alpha, u] q\|_{L^2} \leq c \left(\|u\|_{H^{1+\frac{1}{2}}} \|\Lambda^{\alpha-1} q\|_{H^{\frac{1}{2}}} + \|u\|_{H^\alpha} \|q\|_{H^{\alpha/2}} \right) \]

Using (9) and Poincaré inequality, we have that

\[
K \leq c \|u\|_{H^{1+\frac{1}{2}}}^2 \|q\|_{H^{\alpha/2}}^2
\]

Then, we have that

\[
\frac{d}{dt} E_2 + D_2 \leq c \sqrt{E_2} D_2.
\]

Thus, due to the smallness restriction on the initial data, we obtain

\[
E_2(t) + \delta \int_0^t D_2(s) \, ds \leq E_2(0)
\]

for \(0 < \delta \) small enough.

Step 2; \(H^1 \) estimate: Our starting point is (6). Then we use the interpolation

\[
\|g\|_{H^{0.25}}^2 \leq c \|g\|_{L^2} \|g\|_{H^{0.5}},
\]

to obtain

\[
I \leq c \|q\|_{H^1} \|u\|_{H^1} \|u\|_{H^{1.5}} \leq c E_1 D_2 + \frac{D_1}{2}.
\]

Collecting all the estimates, we have that

\[
\frac{d}{dt} E_1 + D_1 \leq c E_1 D_2,
\]
and we conclude using Gronwall’s inequality. The H^2 estimates follows as in the proof of Theorem 1.

5. Proof of Corollary 1

Using $\alpha \geq 0.5$ and the estimate (6), we have that

$$I \leq \frac{3}{2} C_S \|q\|_{H^1} \|u\|_{H^{1+\alpha/2}}^2 \leq \frac{3}{2} C_S \sqrt{E_1 D_1}.$$

Thus,

$$\frac{1}{2} \frac{d}{dt} E_1 + D_1 \leq \frac{3}{2} C_S \sqrt{E_1 D_1}.$$

Thus, due to the smallness restriction on the initial data, we obtain

$$E_1(t) + \delta \int_0^t D_1(s) ds \leq E_1(0)$$

for $0 < \delta$ small enough. Equipped with this estimates, we can repeat the argument as in Step 2 in Theorem 1.

6. Proof of Theorem 3

Recall that the condition

$$\text{curl } q_0 = 0$$

propagates in time, i.e.

$$\text{curl } q(t) = \text{curl } q_0 + \frac{1}{2} \int_0^t \text{curl} \nabla u^2 ds = 0.$$

Using Plancherel Theorem, we have that

$$\|\nabla q\|_{L^2}^2 = C \sum_{\xi \in \mathbb{Z}^2} |\xi|^2 |\hat{q}(\xi)|^2 = C \sum_{\xi \in \mathbb{Z}^2} (\xi_1^2 + \xi_2^2) (\hat{q}_1^2 + \hat{q}_2^2).$$

Due to the irrotationality

$$\xi \cdot \hat{q} = 0.$$

Then, we compute

$$\|\nabla \cdot q\|_{L^2}^2 = C \sum_{\xi \in \mathbb{Z}^2} |\xi \cdot \hat{q}(\xi)|^2$$

$$= C \sum_{\xi \in \mathbb{Z}^2} (\xi_1 \hat{q}_1(\xi) + \xi_2 \hat{q}_2(\xi))^2$$

$$= C \sum_{\xi \in \mathbb{Z}^2} (\xi_1 \hat{q}_1(\xi))^2 + (\xi_2 \hat{q}_2(\xi))^2 + 2\xi_1 \hat{q}_1(\xi) \xi_2 \hat{q}_2(\xi)$$

$$= C \sum_{\xi \in \mathbb{Z}^2} (\xi_1 \hat{q}_1(\xi))^2 + (\xi_2 \hat{q}_2(\xi))^2 + (\xi_2 \hat{q}_1(\xi))^2 + (\xi_1 \hat{q}_2(\xi))^2.$$

So, the vector field q satisfies

$$\|\nabla q\|_{L^2} \leq \|\nabla \cdot q\|_{L^2}.$$

As a consequence of $\langle \partial_t q_i \rangle = 0$ and $\langle q_0 \rangle = 0$, every coordinate of q satisfy

$$\langle q_i(t) \rangle = 0,$$
and the Poincaré-type inequality

\[\|q\|_{L^2} \leq c \| \nabla \cdot q \|_{L^2}. \tag{10} \]

Notice that in two dimensions we also have the energy balance (5). We test equation (1) against \(\Lambda^2 u \) and use the equation for \(q \). We obtain

\[\frac{1}{2} \frac{d}{dt} \left(\|u\|_{H^1}^2 + \|\nabla \cdot q\|_{L^2}^2 \right) = -\|u\|_{H^1}^2 - \int_{T^2} \nabla u \cdot q \Delta u dx + \int_{T^2} |\nabla u|^2 \nabla \cdot q dx. \]

Using Hölder inequality, Sobolev embedding and interpolation, we have that

\[\int_{T^2} \Delta u \cdot \nabla \cdot q dx + \int_{T^2} |\nabla u|^2 \nabla \cdot q dx. \]

Due to the irrotationality of \(q \), we have

\[\int_{T^2} \Delta u \cdot \nabla \cdot q dx \leq \int_{T^2} |\nabla u|^2 \nabla \cdot q dx. \]

Using the Hölder decomposition estimate together with the irrotationality of \(q \) and (10), we have that

\[\|q\|_{H^1} \leq c \left(\|q\|_{L^2} + \|\nabla \cdot q\|_{L^2} \right) \leq c \|\nabla \cdot q\|_{L^2}. \tag{11} \]

Due to (5), we obtain that

\[\|q\|_{L^\infty(0,\infty;L^2)} + \|q\|_{L^2(0,\infty;H^1)} \leq C(\|u_0\|_{L^2}, \|q_0\|_{L^2}) \]

so,

\[\frac{d}{dt} \left(\|u\|_{H^1}^2 + \|\nabla \cdot q\|_{L^2}^2 \right) + \|u\|_{H^2}^2 \leq c \|u\|_{H^1}^2 \|\nabla \cdot q\|_{L^2}^2. \]

Using Gronwall’s inequality and the integrability of \(\|u\|_{H^1}^2 \) (see (5)), we obtain

\[E_1 \leq C(\|u_0\|_{H^1}, \|q_0\|_{H^1}), \]

\[\int_0^T D_1(s) ds \leq C(\|u_0\|_{H^1}, \|q_0\|_{H^1}, T), \forall 0 < T < \infty. \]

To obtain the \(H^2 \) estimates, we test against \(\Lambda^4 u \). Then, using the previous \(H^1 \) uniform bound and

\[\|q\|_{L^\infty} \leq c \|q\|_{L^2} \|q\|_{H^2} \leq c \|q\|_{L^2} \|\Delta q\|_{L^2}, \]

we have that

\[\frac{1}{2} \frac{d}{dt} \|\Delta u\|_{L^2}^2 + \|u\|_{H^3}^2 = -\int_{T^4} \nabla \Delta u \nabla (\nabla u \cdot q) dx \]

\[-\int_{T^4} u \nabla \Delta u \cdot \nabla (\nabla \cdot q) dx - \int_{T^4} \nabla u \cdot \nabla \Delta u \nabla \cdot q dx. \]

Due to the irrotationality of \(q \) and the identity

\[\nabla \nabla \cdot q - \Delta q = \text{curl} \text{ curl} q, \]

we have

\[\partial_t \Delta q = \partial_t \nabla (\nabla \cdot q) = \nabla |\nabla u|^2 + u \nabla \Delta u + \nabla u \Delta u. \]

Applying Sobolev embedding and interpolation, we obtain that (12) can be estimated as

\[\frac{d}{dt} \left(\|\Delta u\|_{L^2}^2 + \|\Delta q\|_{L^2}^2 \right) + \|u\|_{H^3}^2 \leq c \|\Delta q\|_{L^2}^2, \]
so,
\[
\frac{d}{dt} E_2 + D_2 \leq c E_2,
\]
and we conclude using Gronwall’s inequality.

7. Proof of Corollary 2

We test the equation \((1)\) against \(\Lambda^2 u\). We obtain that
\[
\frac{1}{2} \frac{d}{dt} \left(\|u\|_{H^1}^2 + \|\nabla \cdot q\|_{L^2}^2 \right) = -\|u\|_{H^{1.5}}^2 + \int_\Omega (\nabla u \cdot q) \nabla u \, dx + \int_\Omega |\nabla u|^2 \nabla \cdot q \, dx.
\]
After a short computation, using Hölder estimates, Sobolev embedding and interpolation, we obtain that
\[
\frac{1}{2} \frac{d}{dt} \left(\|u\|_{H^1}^2 + \|\nabla \cdot q\|_{L^2}^2 \right) + \|u\|_{H^{1.5}}^2 \leq c \|u\|_{H^1} \|q\|_{H^1}.
\]
Using \((11)\) and \(\alpha \geq 0\), we obtain
\[
\frac{1}{2} \frac{d}{dt} \left(\|u\|_{H^1}^2 + \|\nabla \cdot q\|_{L^2}^2 \right) + D_1 \leq c D_1 \|\nabla \cdot q\|_{L^2}^2.
\]
We conclude the result with the previous ideas.

Acknowledgment
The author is funded by the Labex MILYON and the Grant MTM2014-59488-P from the Ministerio de Economía y Competitividad (MINECO, Spain).

References
11

E-mail address: granero@math.univ-lyon1.fr

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France.