D. Angluin and P. Laird, Learning from noisy examples, Machine Learning, pp.343-370, 1988.
DOI : 10.1007/BF00116829

S. Ben-david, D. Loker, N. Srebro, and K. Sridharan, Minimizing the misclassification error rate using a surrogate convex loss, Proceedings of the 29th International Conference on Machine Learning, ICML. icml.cc / Omnipress, 2012.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152, 1992.
DOI : 10.1145/130385.130401

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

L. Bruzzone, M. Chi, and M. Marconcini, A novel transductive svm for semisupervised classification of remote-sensing images. Geoscience and Remote Sensing, IEEE Transactions on, issue.11, pp.443363-3373, 2006.

M. Collins, R. E. Schapire, and Y. Singer, Logistic regression, adaboost and bregman distances, Machine Learning, pp.253-285, 2002.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

T. G. Dietterich, R. H. Lathrop, and T. Lozano-pérez, Solving the multiple instance problem with axis-parallel rectangles, Artificial Intelligence, vol.89, issue.1-2, pp.31-71, 1997.
DOI : 10.1016/S0004-3702(96)00034-3

A. Domahidi, E. Chu, and S. Boyd, Ecos: An socp solver for embedded systems, Control Conference (ECC), 2013 European, pp.3071-3076, 2013.

Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, ICML, pp.148-156, 1996.

T. Hastie, R. Tibshirani, and J. Friedman, Unsupervised learning, 2009.

A. Joulin and F. Bach, A convex relaxation for weakly supervised classifiers. arXiv preprint arXiv:1206, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717450

M. Kearns and Y. Mansour, On the boosting ability of top-down decision tree learning algorithms, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp.459-468, 1996.

Y. Li, I. W. Tsang, J. T. Kwok, and Z. Zhou, Convex and scalable weakly labeled svms, The Journal of Machine Learning Research, vol.14, issue.1, pp.2151-2188, 2013.

M. Lichman, UCI machine learning repository, 2013.

N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, Learning with noisy labels, Advances in neural information processing systems, pp.1196-1204, 2013.

R. Nock and F. Nielsen, Bregman Divergences and Surrogates for Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.11, pp.2048-2059, 2009.
DOI : 10.1109/TPAMI.2008.225

G. Patrini, F. Nielsen, R. Nock, and M. Carioni, Loss factorization, weakly supervised learning and label noise robustness, 2016.

G. Patrini, R. Nock, T. Caetano, and P. Rivera, (almost) no label no cry, Advances in Neural Information Processing Systems, pp.190-198, 2014.

L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, Are Loss Functions All the Same?, Neural Computation, vol.16, issue.5, pp.1063-1076, 2004.
DOI : 10.1006/jcom.2002.0635

V. S. Sheng, F. Provost, and P. G. Ipeirotis, Get another label? improving data quality and data mining using multiple, noisy labelers, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.614-622, 2008.
DOI : 10.1145/1401890.1401965

URL : http://archive.nyu.edu/bitstream/2451/25882/4/kdd2008.pdf

X. Zhu, Semi-supervised learning literature survey, 2005.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.