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ABSTRACT

In this paper, we propose an aggregation scheme of local descrip-
tors that preserves local spatial information. Our method is based
on the binary product of similarities of nearby matching pairs of de-
scriptors. The similarities are linearized using a tensor framework.
We show our approach can be used with any local descriptors, hand-
crafted like SIFT, or learned like the outputs of convolutional layers
in deep neural networks. We perform experiments on the Holidays
dataset that show the soundness of the approach.

Index Terms— Image retrieval, Image databases, Image repre-
sentation

1. INTRODUCTION

Content based image similarity has been the foundation of many in-
novative applications in the last decade, from copy detection to au-
tomatic labeling and object detection. Since these applications cover
a wide variety of topics, methods have mostly been tailored to solve
specific problems. We can order these problems and the methods
that attempt to solve them along a precision/generalization axis. At
the one end of this axis, problems like copy detection attempt to
match an image with geometrical or colorimetric transforms of itself
(like rotation, scale, crop, etc). The methods developed to solve this
set of problems rely on very precise features that ought to be invari-
ant to these transforms. On the other end of the axis are problems
like object detection, where a bounding box has to be drawn around
instances of a specific class, e.g., cat. Due to the large variability in-
side the targeted class, these methods rely on features (often learned)
that can generalize to most samples in the class. The common point
in these methods is that they all define a visual similarity between
images.

In this paper, we are interested in the encoding of local spa-
tial information in such visual similarities. Local spatial informa-
tion considers the layout of salient features in a small neighborhood
of a specific region, contrarily to global spatial information which
considers the layout of the entire image. While global spatial infor-
mation is mainly taken into account in the existing methods, local
spatial information is often missing. To add the spatial relationship
between local features, we draw from the keypoint matching meth-
ods and use a tensor framework to allow the embedding of a spatially
sensitive matching scheme into an image signature.

Our contributions are the following: We show that spatially sen-
sitive pairwise matching of local features can be rewritten as the dot
product of their tensors. Using this tensor framework, we propose a
aggregating scheme of local features that embed pairwise matching.
We use this new aggregation scheme with both handcrafted features
(SIFT [1]) and learned features obtained from deep convolutional
neural networks (CNN [2]).

The paper is organized as follows: In the next section, we recall
popular image signatures and how they incorporate spatial informa-
tion. In Section 3, we detail our framework and discuss its proper-
ties. In section 4 we show experiments on the Holidays dataset that
validate our approach, before we conclude in Section 5.

2. RELATED WORK

In copy detection or in near duplicate search, the best performing
methods are based on the matching of highly discriminative local
features such has SIFT [1]. The matches are then refined using a
geometric consistency check that keeps only the matches forming a
consensus with respect to the geometric transform between the two
images [3]. The assumption behind this check is that the spatial
structure of the object of interest does not change by the transform.
In that sense, matching methods using geometric consistency filter-
ing embed local spatial information. However, these methods are
computationally costly since the matching cost increases quadrati-
cally with the number of local features, and the geometric filtering
is often also very dependent on the number of matches. Even with
compression techniques and approximate searches [4], these meth-
ods needs to store all the compressed features and thus scale badly.

To overcome these problems, aggregation methods have been
proposed, following the Bag of Word model [5]. The idea is to ag-
gregate all local features into a single vector, called signature, such
that a similarity measure on the signatures approximates the match-
ing schemes. These methods rely on a clustering of the descriptors
space called Visual Codebook and usually obtained by k-means or
GMM. Considering that descriptors should be matched only if they
fall inside the same cluster, the framework proposed in [6] allows to
describe the process using Taylor expansion of the Gaussian match-
ing kernel. Let xi and xj be 2 local descriptors and δij = 1 if both
descriptors are assigned to the same codebook entry, and 0 other-
wise. The following Gaussian matching kernel can then be approxi-
mate using its n-th order Taylor expansion:

k(xi,xj) = δije
−γ‖xi−xj‖ ≈ δij

n∑
k

αk‖xi − xj‖k (1)

When descriptors are normalized, the expansion can bee linearized:

k(xi,xj) = δij

n∑
k

βk〈xi,xj〉k = δij

n∑
k

βk〈x⊗ki ,x⊗kj 〉 (2)

With x⊗k being the n-th order tensor of x. Using the linearity prop-
erty, the sum of all possible matching similarities can then be sim-
plified by performing the aggregation of encoded features as a pre-
processing. Setting different values for n allows to consider differ-
ent aggregation schemes, namely BoW for n = 0 [5], VLAD for



n = 1 [7] and VLAT for n = 2 [6]. Although they don’t fit the
framework, it is worth mentioning that popular Fisher Vectors [8]
are closely related to VLAT since they also consider the second or-
der moments of the descriptors distribution. Moreover, they seem to
perform identically [9].

One of the drawbacks of such methods is that all spatial infor-
mation is lost, since the descriptors are considered as orderless bags
of vectors. To bring back some spatial information, several meth-
ods have been proposed. The most popular is the Spatial Pyramid
Matching [10] (SPM) in which descriptors are aggregated in several
fixed regions of the image following a recursive grid partitioning.
In [11], the authors consider to take into account the location of the
descriptors when computing the codebook and encoding the descrip-
tors. Both methods encode the layout information of the image (i.e.,
which pattern is located at which absolute place), and not the relative
spatial information (i.e., which pattern is near which other pattern).

In contrast to aggregation schemes, deep convolutional neural
networks have been successfully used to perform image classifica-
tion [2]. A convolutional layer consists in computing the activation
of neurons on a sliding window, producing a activation map akin to
the convolution of the image with a (non-linear) filter bank. Another
interpretation is to consider that the map corresponds to the local-
ized detection scores of the pattern encoded in the neuron weights.
The activation function of the neurons induces a non-linearity that
helps reducing the noise in the activation by zeroing low responses.
A typical non-linear activation is the rectified linear unit (ReLU),
which is basically a simple soft-thresholding strategy [12]. In deep
networks, several of such convolutional layers are stacked (from 5
in [2] to over 150 in [13]). Then, fully connected layers are added to
aggregate the local responses in a global description. The last layer
of the fully connected stack is composed of as many neurons as there
are classification classes and produces the class prediction outputs.

The weight of deep neural networks are usually learn by per-
forming the back-propagation of the classification error, but unsu-
pervised criteria based on the reconstruction error provide a good
initialization [14]. Wavelet based weights have also been explored
with success [15].

It should be noted that in CNN, the convolutional layers encode
local spatial information, whereas the fully connected layers encode
global layout information. Indeed, if the neurons at convolutional
layer n correspond to specific patterns, then the neurons at convolu-
tional layer n+ 1 are the combination of said patterns with specific
relative position within a small window. On the contrary, entries of
the first FC layer are combination of these patterns located at specific
locations in the whole image. With respect to spatial information,
FC layers can thus be compared to the popular SPM of aggregation
scheme.

Finally, deformable part models [16] encode the relative location
of specific pattern with respect to one another. While these meth-
ods achieve high performances in object detection, they need to be
trained for each object class. As such, they cannot be used to com-
pute the similarity between images for which no prior knowledge on
the contained objects is available.

3. PROPOSED METHOD

Since local spatial information is often missing in existing methods,
we propose to focus on it. The main idea of our method is as fol-
lows: We consider the matching of a descriptor of the query image
with its corresponding descriptor in the target image. Under fair low-
deformation assumption on the content, and if a second descriptor in
the vicinity of the first one has a correspondence in the target image,

then it should also be in the vicinity of the match in the target image.
As such, a way to encode this local spatial information is to con-
sider a binary product (AND operator) between the first descriptor
matching function and its neighbor matching function. We show that
this binary product of pairwise matching can be efficiently linearized
using tensors.

Given Bi = {xri} the set of local descriptors extracted from
image i, let Ω(xri) ⊂ Bi be be the set of descriptors of Bi in the
vicinity of xri defined by a spatial support Ω. If k(·, ·) is a function
that measures the similarity between any 2 descriptors, then counting
the binary product of pairwise matching in Ω of 2 descriptors xri ∈
Bi and xsj ∈ Bj is simply:

kΩ(xri,xsj) =
∑

xu∈Ω(xri)
xv∈Ω(xsj)

k(xri,xsj)k(xu,xv) (3)

In the following, we will consider that k is simply the dot product,
but any non-linear similarity function that can be approximate by a
Taylor expansion as in [17] will work in our framework. Considering
the dot product, k can be simplified to:

kΩ(xri,xsj) =
∑

xu∈Ω(xri)
xv∈Ω(xsj)

〈xri,xsj〉〈xu,xv〉 (4)

=
∑

xu∈Ω(xri)
xv∈Ω(xsj)

〈xri ⊗ xu,xsj ⊗ xv〉 (5)

=

〈 ∑
xu∈Ω(xri)

xri ⊗ xu,
∑

xv∈Ω(xsj)

xsj ⊗ xv

〉
(6)

The similarity between image i and j is then simply the sum of
such matching over all descriptors of both images:

K(Bi, Bj) =
∑

xri∈Bi
xsj∈Bj

kΩ(xri,xsj) (7)

=

〈 ∑
xri∈Bi

xu∈Ω(xri)

xri ⊗ xu,
∑

xsj∈Bj

xv∈Ω(xsj)

xsj ⊗ xv

〉
(8)

The tensor products of descriptors in Ω can be computed ahead of
time and provide an encoding of the descriptors that produce a sin-
gle signature comparable to other aggregation scheme, only that it
contains local spatial information.

However, in such scheme, many false matches are considered.
In particular, when using the dot product, small non-zero similarities
are added for all descriptors in Ω. Since the number of such matches
increases quadratically with the size of the support, a huge amount of
noise is added. To circumvent this issue, we propose to use the same
codebook based strategy as in VLAD. We thus propose to match
only descriptors that correspond to the same entry of the codebook
(i.e., that have the same nearest neighbor among the entries of the
codebook). Let D be a codebook of m entries and h(xri) a vector
with 1 on the component corresponding to the entry of D associ-
ated with xri and 0 on all other components, the restricted matching
similarity between 2 descriptors is then:

kr(xri,xsj) = 〈h(xri), h(xsj)〉k(xri,xsj) (9)



Fig. 1. Images from Holidays dataset.

Applying this to kΩ leads to the following similarity:

krΩ(xri,xsj) =
∑

xu∈Ω(xri)
xv∈Ω(xsj)

(
〈h(xri), h(xsj)〉k(xri,xsj)

×〈h(xu), h(xv)〉k(xu,xv)

)
(10)

When using the dot product, this can easily be linearized using ten-
sors:

krΩ(xri,xsj) =
∑

xu∈Ω(xri)
xv∈Ω(xsj)

(
〈h(xri), h(xsj)〉〈xri,xsj〉

× 〈h(xu), h(xv)〉〈xu,xv〉
)

=

〈 ∑
xu∈Ω(xri)

h(xri)⊗ h(xu)⊗ xri ⊗ xu,

∑
xv∈Ω(xsj)

h(xsj)⊗ h(xv)⊗ xsj ⊗ xv

〉
(11)

Which is the dot product between 4th order tensors. The first 2
blocks of dimensions correspond to the entries of the codebook,
while the last 2 blocks of dimension correspond to the second order
raw moments between descriptors belonging to the corresponding
entries.

The similarity between 2 images is then simply the sum of sim-
ilarities over all descriptors of both the query and the target:

Kr(Bi, Bj) =
∑

xri∈Bi
xsj∈Bj

〈 ∑
xu∈Ω(xri)

h(xri)⊗ h(xu)⊗ xri ⊗ xu,

∑
xv∈Ω(xsj)

h(xsj)⊗ h(xv)⊗ xsj ⊗ xv

〉
(12)

Using the linearity, Kr can be obtained by computing the following
4th order tensor:

T (Bi) =
∑

xri∈Bi
xu∈Ω(xri)

h(xri)⊗ h(xu)⊗ xri ⊗ xu (13)

We name this tensor the Spatial Tensor Aggregation (STA). This ten-
sor is then flattened into a vector and the similarity between images
is computed using the dot product:

Kr(Bi, Bj) = 〈vec(T (Bi)), vec(T (Bj))〉 (14)

An efficient way of computing T (Bi)) is to loop over all pairwise
combination (c, d) of entries in D, and then compute the second
order raw moment matrix of descriptors associated with c and their
neighbors associated with d. This leads to m×m second order raw
moment matrices that are flattened and concatenated.

Three remarks are worth mentioning here. First, STA can be
computed using any local descriptor. In the experiments section, we
show we obtained good performances both using well known SIFT
descriptors and the output of the convolutional layers of a deep CNN.
Second, many normalization tricks that are widely used with other
aggregation schemes can be applied here. In fact, we obtained the
best results using centering and intra-normalization on the descrip-
tors and power normalization on the tensors as in [18]. Third the
geometry of the spatial support Ω allows to take into account spa-
tial transform invariance. For instance, using a line for Ω allows to
consider scale invariance, since a pair of descriptors of the query can
be matched with a pair of descriptors in the target with a closer or
larger distance but in the same direction. Similarly, using a circle for
Ω leads to rotational invariance since the distance between matching
pairs is preserved but not the angle.

4. EXPERIMENTS

In this section, we present experiments on the Holidays dataset [3],
which consists of 1491 images divided into 500 groups of the same
scene. Images from the dataset are shown in Figure 1. We mainly
compare our method to VLAT [17] since it is the most closely related
method in the state of the art. We use 2 types of local descriptors,
namely dense SIFT extracted using the vlfeat softare [19], and the
output of the convolutional layers of the AlexNet deep CNN [2] ob-
tained using the matconvnet software. To have a fair comparison be-
tween SIFT and CNN based local features, we rescaled the image to
have a fixed height of 256 pixels and took the union of descriptor sets
extracted on several regularly spaced crops of 227x227 pixels. This
setup is based on the constraints of the CNN, and we acknowledge
that better results could have been obtained for SIFT using larger
images.

All descriptors are first projected to a fixed 56 dimensions space
using PCA and then normalized. In all our tests, 56 dimensions is
enough to retain more than 90% of the variance for both the SIFTs



SIFT cnn-1 cnn-2 cnn-3 cnn-4 cnn-5
VLAT 67.4 56.8 64.6 70.1 70.5 64.7
STA 69.6 58.6 67.6 72.0 72.3 66.8
Ω 8 1 1 2 3 2

Table 1. Comparison in mean Average Performance (mAP) on Hol-
idays between VLAT and Spatial Tensor Aggregation using various
descriptors and the same codebook. Ω denotes the size of the spatial
window leading to these results.
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Fig. 2. mAP against the length of the support Ω. 0 ist equivalent to
VLAT.

and the convolutional layers of the CNN. After reduction, all descrip-
tors are normalized to unit `2-norm. We then used a random subset
of 150k descriptors to train the codebook using k-means. The num-
ber of entries in the codebook was fixed to 8. In all of our tests, Ω is
a descending vertical line starting from xri with a length measured
in number of adjacent descriptors.

In Table 1, we show the comparison of the VLAT methods com-
pared to our best results using spatial tensor aggregation both on
SIFT and using various convolution layers. As we can see, incorpo-
rating spatial information allows to gain between 1% and 3%, which
is significant on this dataset. We also show the support size that
led to the results. It should be remarked that this size is relative to
the spatial coverage of the descriptors. As such, even though the
best support size remains fairly constant for all layers of CNN, the
corresponding spatial coverage increases since deeper layers encode
larger equivalent filters.

We show in Figure 2 the variation in mAP against the size of
the spatial support. A support of 0 is equivalent to VLAT, and only
the diagonal components of the tensor corresponding to the same
entries in the codebook are non-zero. As we can see, increasing
the size of the spatial support steadily increases the mAP up to an
optimal size after which the spatial aggregation begins to add noise.
For reasonable relative support sizes, the performances are improved
without much variation, which shows the robustness of the method
to the parameters.

Finally, we show in Table 2 a comparison with other existing
methods. We first report result using the fully connected layers of
AlexNet using matconvnet. As already shown in many studies, fully
connected layers provide a strong baseline in many image retrieval
applications. It should be remarked that FC layers contains spatial

Method params mAP
AlexNet FC dim -
layer-6 conv 4k 66.3%
layer-6 relu 4k 61.0%
layer-7 conv 4k 60.0%
layer-7 relu 4k 61.8%
VLAD [21] rootsift, m=256 65.3%
Fisher Vectors [7] sift, m=256 62.5%
VLAT
[22] sift, m=64 70.0%
(this paper) sift, m=8 67.4%
(this paper) cnn-4, m=8 70.5%
FAemb [20] rootsift, m=8 72.7%
STA desc -

sift, m=8, Ω = 8 69.6%
rootsift, m=8, Ω = 8 72.1%
cnn-4, m=8, Ω = 3 72.3%

Table 2. Comparison with existing methods. Cited results are re-
ported from their corresponding paper, while others are computed
using the same code base as in our method.

information comparable to that of SPM that is outperformed by our
local spatial aggregation with a massive gain of 6%. One should also
note that the best performances are obtained by the first FC layer
without the rectification. Indeed, the rectification decreases the per-
formances by a colossal 5%, which hints that the FC layers are too
much tailored toward the classification objectives of the full network.

We report the same results as in [20] which is to our knowl-
edge the latest aggregation method proposed in the literature. The
improvements obtained by our approach over VLAD, VLAT and
Fisher Vectors is consequent, especially when compared to the re-
sults obtained by our implementation of these methods. The relative
gain over VLAT is comparable to that obtained by FAemb [20], al-
though FAemb performs better then STA with comparable descrip-
tors. However, it should be noted that the computational cost of
FAemb greatly exceeds that of STA since an optimization problem
has to be solved for each descriptor in the aggregation. In our case,
although the number of aggregations is much higher (depending on
the support size), it still requires only a constant number of vector
operations for each descriptor. Moreover, since FAemb proposes an
encoding scheme that linearizes a matching kernel, it can be included
in our framework in replacement of the dot product.

5. CONCLUSION

In this paper, we considered the local spatial information in image
similarity. We start from the binary product of similarities in nearby
matching pairs of local descriptors, and show it can be linearized
using tensors. The obtained aggregation scheme can be used with
any local descriptors. Depending on the spatial support where the
aggregation is performed, invariance to geometric transforms can
be obtained. We perform experiments on the Holidays dataset us-
ing SIFT descriptors and the outputs of the convolutional layers of
AlexNet deep CNN. We show our method is able to obtain compa-
rable results with the state of the art, while being much simpler to
implement and requiring less fine tuning of the parameters.

Further work include using non linear matching kernels such as
the ones provides by FAemb encoding, and evaluating the impact on
the results of the invariance obtained by different support geometry.



6. REFERENCES

[1] D. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 2, no.
60, pp. 91–110, 2004.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[3] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
in European Conference on Computer Vision. Springer, 2008,
pp. 304–317.
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