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Abstract Multi-atlas segmentation has emerged in re-

cent years as a simple yet powerful approach in med-

ical image segmentation. It commonly comprises two

steps: i) a series of pairwise registrations that establish

correspondences between a query image and a num-

ber of atlases, and ii) the fusion of the available seg-

mentation hypotheses towards labeling objects of inter-

est. In this paper, we introduce a novel approach that

solves simultaneously for the underlying segmentation

labels and the multi-atlas registration. The proposed

approach is formulated as a pairwise Markov Random

Field, where registration and segmentation nodes are

coupled towards simultaneously recovering all atlas de-

formations and labeling the query image. The coupling

is achieved by promoting the consistency between se-

lected deformed atlas segmentations and the estimated

S. Alchatzidis
Equipe GALEN, INRIA Saclay, Île-de-France, Orsay, France.
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query segmentation. Additional membership fields are

estimated, determining the participation of each atlas

in labeling each voxel. Inference is performed by us-

ing a sequential relaxation scheme. The proposed ap-

proach is validated on the IBSR dataset and is com-

pared against standard post-registration label fusion

strategies. Promising results demonstrate the potential

of our method.

Keywords multi-atlas segmentation · medical imag-

ing · Markov Random Fields · discrete optimization

1 Introduction

Segmentation, or the process of assigning voxels to dis-

tinct anatomical regions or tissue types, is a fundamen-
tal task in medical image analysis. The accurate de-

lineation of anatomical structures is the cornerstone of

quantitative analysis that aims, among other, to under-

stand normal and diseased anatomical variability. The

increasing availability and size of high resolution imag-

ing data along with the widespread adoption of imaging

across clinical and research practice further underline

the importance of reliable, efficient and accurate image

segmentation. While manual segmentation is the gold

standard, the complexity of the task, as well as the high

time requirement and the associated cost, make it pro-

hibitive on a large scale. In such a setting, automatic

image segmentation provides a valuable alternative.

As a consequence, important research efforts have

been focused on developing automatic segmentation al-

gorithms. Among the wealth of the developed tech-

niques, segmentation via registration [26] stands as a

unique example in medical image processing. Registra-

tion is used to map the grayscale image of an atlas

to the query image, while the estimated deformation
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is subsequently used to propagate the available labels

and provide an estimate of the segmentation. However,

a single atlas is limited with respect to its ability to

capture the variability of the population.

Extending registration-based segmentation by in-

corporating multiple atlases has thus emerged as a nat-

ural extension towards tackling the aforementioned lim-

itation [15]. Multi-atlas segmentation, fueled by the ma-

turity of the available registration techniques and ad-

vancements in computer hardware that partly allevi-

ate its high computational cost, has gained significant

popularity and found numerous applications in medical

image analysis. For example, one may cite full brain seg-

mentation [1,3,5,12,28], skull-stripping [10], hippocam-

pal [9,34], prostate [11,18] and heart [16,24] delineation.

Multi-atlas segmentation methods produce state of

the art results in various settings by essentially apply-

ing a common pipeline. The pipeline comprises two ba-

sic steps. First, rigid or non-rigid registration is per-

formed in order to align the atlas images to the query

one and propagate their labels forming a set of candi-

date segmentations. Subsequently, the derived multiple

segmentation hypotheses are fused to produce the final

labeling of the query image.

One of the most popular fusion strategies is the ma-

jority voting one [26]. Since early approaches in multi-

atlas segmentation, majority voting has been estab-

lished as an intuitive, simple and robust baseline method.

Many efforts have concentrated on developing more so-

phisticated fusion algorithms by incorporating additional

information in terms of either local appearance [3], neigh-

borhood information [13,6], or by exploiting the statis-

tical correlation of inter-atlas errors to calculate opti-
mal weights [34].

Alternative fusion techniques adopt probabilistic mod-

els to derive per voxel weights. Modeling the segmenta-

tion candidates as noisy observations of the true seg-

mentation and using Expectation-Maximization esti-

mation of the per atlas confusion matrix has been pro-

posed in [36,27]. This method has been extended in

many ways, for example including a smoothness prior

[35], using appearance-based ranking [17], incorporat-

ing non-local intensity proposals [6] and performing it-

erative atlas selection [21]. In another related approach,

a generative probabilistic model of label fusion was pro-

posed in [30].

A common principle behind most multi-atlas seg-

mentation approaches is that registering the atlas im-

ages to produce candidate solutions and segmenting the

query image are treated separately, in two independent

steps. However, registration could benefit from taking

into account the underlying segmentation towards es-

tablishing more accurate correspondences. Thus, ap-

proaches that treat registration and segmentation through

fusion as an inter-weaved process have recently appeared.

In [7] the authors segmented white and gray matter

areas of the spinal cord by iteratively, affinely register-

ing atlas masks to an estimated target segmentation,

and fusing the registered masks and images to get a

new estimate of the target segmentation. In a similar

context, a probabilistic generative model based on the

Demons registration framework was proposed by [12].

The model coupled registration by discouraging atlas

to target transformations that disagree with atlas to

precomputed mean template to target transformations.

The model also imposed a distance transform based

prior on the target mask, a membership field that cor-

responds voxels to atlases and a mixture of gaussians

appearance model linking anatomical regions to target

intensity probabilities. An approximate variational EM

scheme was used to find the most probable model pa-

rameters. A similar work was presented in [33], where

the Large Deformation Diffeomorphic Metric Mapping

registration framework was employed.

Apart from the multi-atlas process our method can

be seen in the same perspective as classical joint seg-

mentation/registration methods. A first joint approach

for voxel-based registration and segmentation is pro-

posed in [37]. The joint class histogram is used to drive

the Mutual Information metric for the registration step

and a Gaussian mixture model is inferred to drive the

segmentation step. Validation is carried out over rigid

segmentations and 2D images. Application in medical

images as well as a generative model to link the two pro-

cesses can be found in [4] where intensity uniformity as

well as spatial priors are introduced in the segmentation

model. Use of MRFs can be seen again in the works of

Xiaohua et al. first on MRI data [39] and then in a for-

mulation for contrast enhanced breast MRI scans [38].

Recent works include lung [40] and prostate segmenta-

tion [22], as well as brain lesions identification in MRI

data [32,23].

We complemented previous approaches for integrated

registration and label fusion segmentation in [2] by in-

troducing a discrete formulation based on Markov Ran-

dom Field theory. Latent variables include the displace-

ments of the grid nodes of a B-Spline transformation

model as well as voxel segmentation variables. Segmen-

tation additionally takes into account class likelihoods

produced by a discriminatively trained classifier. Con-

straints were imposed by taking into account how con-

gruent the proposed segmentations are with respect to

the proposals of the rest of the atlases as well as the clas-

sifier produced likelihoods. Registration and segmenta-

tion variables are coupled by using an appearance-based

weighting similar to the one used in local fusion strate-
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gies. As a consequence, as votes are weighted, atlases

that do not match well locally will have a minor con-

tribution to the inferred segmentation mask, resulting

in a local ”soft” atlas selection scheme.

In this work, we build upon the work presented in

[2] by extending the formulation, providing a more de-

tailed description of the method and reporting a more

extensive validation setting. In this work, we estimate

membership fields by introducing a local atlas selection

scheme. This scheme, explicitly models variables for se-

lecting parts of each atlas labeling by comparing them

directly to the estimated underlying segmentation. As a

consequence, membership field images are directly pro-

duced by optimizing the model. The fact that the atlas

selection is achieved by comparing segmentations, fa-

cilitates the use of images of different modalities to be

part of the dataset.

The remainder of this paper is organized as follows.

In Section 2 we formulate the problem in the continuous

domain, while in Section 3 we present the decomposi-

tion of the objective function toward a mapping into

a discrete graph structure. Experimental validation is

discussed in Section 4, while Section 5 concludes the

paper.

2 Problem Formulation

We consider a dataset of N annotated images A =

{A0, . . . , AN−1}. Each image comes with a correspond-

ing segmentation mask where the anatomical regions

of interest have been annotated, forming the set S =

{S0, . . . , SN−1}. Each voxel in the segmentation image

is assigned to a segmentation label corresponding to

one of M anatomical classes, Si(x) ∈ {0, . . . ,M − 1}.
In this paper, we refer to an atlas as the aggregation of

an intensity image Ai and its corresponding segmenta-

tion mask Si.

Moreover, we consider that an image I is given as

input to be segmented into anatomical regions. Hence-

forth, we are going to interchangeably refer to this im-

age as either target or query image. The output of the

proposed algorithms comprises: i) a set of membership

field images F = {F0, . . . , FN−1}, Fi(x) ∈ {0, 1} de-

noting if an atlas influences a point x in the query

image; ii) the segmentation mask SI corresponding to

the target image; and iii) a set of deformation fields D

= {D0, . . . , DN−1}, where Di denotes the deformation

field mapping of Ai to I.

2.1 Method Outline

The goal of the proposed method is to simultaneously

solve for the parameters of the final segmentation SI
of the query image and the set of deformation fields

D. Hence, the agreement of the deformed segmentation

masks with the underlying estimated segmentation may

be taken into account during the estimation of the de-

formation fields, leading to more accurate correspon-

dences and consequently, improved segmentation. Our

basic premise is that by allowing the two problems to

interact, the quality of the respective solutions will rise

due to the additional available information.

Furthermore, we aim to improve the final segmen-

tation SI by taking into account class specific appear-

ance priors. The motivation behind incorporating prior

segmentation probabilities lies in that fact that image

registration is often trapped in local minima when try-

ing to match areas of high anatomical variability (e.g.,

brain cortex). In such a setting, appearance informa-

tion constitutes an alternative, more reliable cue that

can robustly guide segmentation [31].

2.2 Continuous Energy Formulation

We formulate the problem as an energy minimization

one. The proposed energy consists of three components:

i) a registration component comprising a matching term

(M), that quantifies the level of alignment between

each atlas and the query image, and a regularization

term (Rd) that enforces the smoothness of the defor-

mation field; ii) a segmentation component comprising

an appearance prior term (SP ), that measures the log-

likelihood of the segmentation with respect to the prob-

abilities (π) learned during a training phase. iii) a cou-

pling term (C) that takes into account the labeling that

is proposed by the atlases, over the domain indicated by

F, and encourages their agreement with the estimated

segmentation SI . Finally, a regularization term (Rf ) is

imposed on the membership fields allowing the atlases

to influence the derived segmentation in a smooth spa-

tially varying fashion.

The energy has the following form:

E(D,A,S, SI) = M(D,A, I) +Rd(D)︸ ︷︷ ︸
Registration

+ SP (SI , π)︸ ︷︷ ︸
Segmentation

+ C(D,F, I,S, SI) +Rf (F)︸ ︷︷ ︸
Coupling

(1)

The first two energy terms correspond to the standard

energy that is commonly minimized in multi-atlas seg-

mentation frameworks, while the third term is common
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in segmentation frameworks. The fourth term intro-

duces the main novelty of this work, i.e. the coupling

between the segmentation and the multi-atlas registra-

tion. Let us now detail each term of the previous energy.

2.2.1 Registration

The registration component aims to align all atlases

to the query image. As such, it is a generalization of

standard pairwise image registration.

Matching criterion Given any dissimilarity intensity-

based criterion ρ, the matching term takes the following

form:

M(D,A, I) =

N−1∑
i=0

∫
Ω

ρ(I, Ai ◦Di(x))dx. (2)

This term is the summation of the independently eval-

uated dissimilarity criteria between all atlases and the

query image I.

Deformation smoothness Image registration is an ill-

posed problem according to Hadamard’s definition. In

order to account for this fact, regularization is neces-

sary. Typical regularization settings penalize the non-

smoothness of deformation fields. Thus, given a smooth-

ness inducing function ψ, the regularization term takes

the following form:

Rd(D) =

N−1∑
i=0

∫
Ω

ψ(Di(x))dx. (3)

In other words, this term evaluates the smoothness of

all deformation fields mapping from an atlas to the tar-

get image and sums the independent evaluations.

Transformation model In this work, the popular Free

Form Deformations (FFDs) transformation model [29,

20] is used. Free Form Deformations parametrize the

transformation Dj(x) by a linear combination of K con-

trol points:

Dj(x) = x+

K−1∑
i=0

ωi(x)φi, (4)

where φi is the displacement of control point i and ωi(x)

is an interpolation or weighting function that deter-

mines the influence of the control point i to the image

point x. In the current approach, we use N uniformly

distributed grids of control points superimposed over

the image domain (one corresponding to each atlas)

and cubic B-splines as the weighting functions.

2.2.2 Segmentation

Segmentation Prior The quality of the segmentation

hypotheses that are provided by warping the given at-

lases is conditioned upon the quality of the registra-

tion. Image registration is often overwhelmed when try-

ing to establish correspondences between highly vari-

able anatomical regions leading to inaccurate results.

In such cases, one can exploit additional cues to en-

hance segmentation estimation. Local appearance pro-

vides complementary information that can be incorpo-

rated into segmentation. Assuming a probability func-

tion on the candidate labeling of the form πx(l) where

l ∈ {0, . . . ,M − 1}, we aim to penalize all segmenta-

tions that go against prior information:

SP (SI , π) =

∫
Ω

−log(πx(SI(x)))dx. (5)

Such probabilities can be learned using any modern

classification method.

2.2.3 Coupling

In this work, we close the circuit between multi-atlas

registration and label fusion. We allow segmentation

to influence registration by imposing agreement con-

straints between the estimation of the underlying seg-

mentation and the atlas hypotheses. As a consequence,

improved segmentation accuracy may be achieved through

the refinement of the registration result.

The above is modeled by means of introducing a

third term in the energy. This term penalizes in a con-

trolled manner deformations that lead to disagreement

between the hypotheses and the estimated segmenta-

tion. Specifically the penalties are not defined in ad-

vance but are updated based on the segmentation con-

sistency and smoothness of membership fields at each

iteration.

C(D,F, I,S, SI) =

N−1∑
i=0

∫
Ω

Fi(x)κ(Si ◦Di(x), SI(x))dx,

(6)

where κ(a, b) is a penalizing disagreement function, for

which we assume κ(a, a) = 0.

2.2.4 Membership field smoothness

We assume that only a spatially varying subset of the

dataset is pertinent to deducing the correct segmenta-

tion mask at any point. Dealing with images, an impor-

tant natural prior is spatial smoothness:

Rf (F) =

N−1∑
i=0

∫
Ω

ψ(Fi(x))dx, (7)
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where ψ is again a smoothness inducing function.

3 Markov Random Field Formulation

We use Markov Random Field (MRF) theory to formu-

late the above minimization problem in a discrete con-

text. The problem is represented by a graph G = (V, E),

where V denotes the set of nodes that encode the la-

tent variables, and E the set of edges that encode the

interactions between the variables.

The graph is associated with an energy of the form:

EMRF (l) =
∑
p∈V

gp(lp) +
∑

(p,q)∈E

fpq(lp, lq), (8)

where random variables p take values from a discrete

set of solutions L, gp(lp) measures the cost of assigning

a value lp to the variable p and fpq(lp, lq) is a pairwise

function that determines the cost of assigning different

values lp and lq to the variables p and q.

3.1 Graph Structure

The constructed graph should encode the multi-atlas

registration, the segmentation and the constraints that

integrate the two problems. Let us now detail how the

graph is constructed to achieve this.

Multi-Atlas Registration Let us recall that the defor-

mation model is parametrized by N deformation grids.

This is encoded in the MRF graph G by a set of N iso-

morphic grid graphs GD = {GD0
, . . . ,GDN−1

}. For every

control point in the deformation grid that is superim-

posed onto image Ai, there is a node pi ∈ VDi that

represents its displacement. Since grids are isomorphic,

p indexes a common control point position, while i in-

dexes the grid. The edge system of each grid EDi is

created by assuming a regular 6-connectivity scheme.

The label set LD for this set of variables is a quantized

version of the displacement space. A label assignment

ldpi ∈ LD (with pi ∈ VDi) is equivalent to displacing the

control point pi by displacement dpi
.

Segmentation An additional graph GS = (VS) is em-

ployed to model segmentation. A node ps ∈ VS encodes

a random variable and corresponds to a voxel in the tar-

get image whose position is indexed by the subscript s.

We should also emphasize the fact that the nodes that

form the segmentation graph are not connected to one

another. The set of possible solutions LS represents the

set of anatomical regions augmented by the background

label. We refer to a potential anatomical label in LS by

ls.

Coupling Integrating segmentation and multi-atlas reg-

istration is achieved by coupling segmentation and de-

formation graphs. The set of edges EC connects nodes

of VS with nodes of VD. In order to create the coupling

edge system, we connect every node p ∈ VD with nodes

of VS that correspond to voxels that are influenced by

a displacement of p.

Local Atlas Selection We parametrize membership fields

by taking into account the spatial support of the de-

formation nodes. Voxels within the support of a con-

trol point share the same membership state ([0, 1]). To

model this, we augment the label set of the deformation

nodes by considering the Cartesian product between the

deformation label set LD and a binary selection label

set LE = {0, 1}. Thus, for a node p a label ld indexes a

pair (dp, e
d
p), where edp ∈ LE . A node p is selected when

edp = 1, otherwise it is deselected. If p is deselected, it

will not penalize inconsistent candidate segmentations

and it will not be influenced by them. In the follow-

ing section, only the relevant part of the pair (dp, e
d
p)

appears in the right hand side of the equations.

3.2 MRF Energy

The continuous energy in Eq. 1 is mapped to a discrete

MRF energy of the form in Eq. 8. In short, we map

i) the matching term M (Eq. 2) to the unary poten-

tials of the deformation variables (Eq. 9), ii) the de-

formation smoothness penalty term Rd (Eq. 3) to pair-

wise potentials between deformation variables (Eq. 10),

and iii) the coupling penalty C (Eq. 6) to one pairwise

potential between registration and segmentation vari-
ables and one unary potential over deformation vari-

ables (first and second part of the right hand side of

Eq. 12, correspondingly), as well as iv) the member-

ship field smoothness penalty term Rf to an additional

pairwise potential between deformation nodes (Eq. 13).

3.2.1 Multi-Atlas Registration

Multi-atlas registration is performed by registering in

a pairwise fashion all atlases to the target image. For-

mulating pairwise registration in a discrete setting has

been shown in [14]. For completeness reasons, we briefly

discuss here how the matching term M and the regu-

larization term R of Eq. 1 are mapped to unary and

pairwise potentials.

As far as the matching term is concerned, we are

interested in quantifying how well the assignment of a

displacement label ldpi ∈ LD to a node pi ∈ VDi aligns

atlas Ai to the target image. This is measured by the

following unary potential:
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gMpi (ldpi) =

∫
Ω

ω̂pi(x)ρ(Ai ◦Dpi , I(x))dx. (9)

Dpi is the transformation induced by the movement

of the control point p in the i-th deformation grid by

the displacement ldpi . The weighting function ω̂pi de-

termines the contribution of the point x to the unary

potential of the control point p. This function is similar

to the ω weighting functions used in the FFD deforma-

tion model (Eq. 4).

Regarding the regularization term, [14] shows that it

can be efficiently modeled by pairwise potentials. A dis-

crete approximation of the gradient of the spatial trans-

formation can be computed by taking the vector differ-

ence between the displacements of neighboring nodes

that belong to the same deformation grid:

fRpiqi(l
d
pi , l

d
qi) = ‖dpi − dqi‖, (10)

where dpi is the displacement applied to node p in the

i-th deformation grid, indexed by ldpi.

3.2.2 Segmentation

In order to assign a class label to every voxel of the

target image, we take into account learned appearance

model for every class. The appearance model is encoded

in the form of a probability distribution π(l) and can

be naturally incorporated in the MRF model by setting

the unary potentials of the segmentation grid for every

label to the negative log-probability of the respective

class:

gSPqS (lsqS ) = −log(π(lsqS )).

3.2.3 Integrated Segmentation and Multi-Atlas

Registration

We want to encourage the agreement between the esti-

mated segmentation and the warped segmentation masks.

Thus, we penalize control point displacements of grid

GDi that result in warping the segmentation mask of the

corresponding atlas i in a fashion that does not agree

with our final segmentation:

fCpiqS (ldpi , l
s
qS ) = ω̂pi(s) · Ind(Si ◦Dpi(s), l

s
qS ), (11)

where pi belongs to the grid GDi , qS belongs to GS and

Ind(x, y) =

{
0 when x = y

1 when x 6= y.

Algorithm 1 Agreement percentages estimation algo-

rithm.

1: Define api =
∫
Ω
ω̂pi (x)(1−Ind(Ŝ(x),Si(x))dx)∫

Ω
ω̂pi (x)dx

2: for each control point index p do
3: Define AGp = ∪i(api)
4: Sort and break AGp into two sets: M̂i containing best

half and M̂o containing the worst half.

5: Define m =
∑
M̂i

2∗|M̂i|
+

∑
M̂o

2∗|M̂o|
6: for N times do
7: Initialize the inlier centroid ĉi ∼ U(m, 1) and the

outlier centroid ĉo ∼ U(m, 0) where U(a, b) is the
uniform distribution in [a, b]

8: Run 2-means. Get M̃i, M̃o, s̃ as the clusters and
score of the clustering.

9: Keep the clusters with the minimum score in
Mi,Mo.

10: end for
11: if |var(AGp)− (var(Mi) + var(Mo))| > ε then

12: Set ap = min(Mi)+max(Mo)

2
13: else
14: Set ap = 0
15: end if
16: end for

Local Atlas Selection Due to the sparse way we model

selection variables, any candidate deformation dp corre-

sponds to a segmentation mask that agrees at a certain

percentage to the segmentation variables within the

support of p. In order to model local atlas selection, we

need to determine a set of such percentages below which

a candidate segmentation is unacceptably incongruent

with the consensus segmentation, and thus should lead

to a node being deselected. We call these percentages

agreement percentages and index them with ap. Note

that the agreement percentage does not depend on the

grid index i but only on the inter-grid control point

index p. Given an agreement percentage ap, atlas se-

lection may be enforced by introducing an additional

unary cost for deformation nodes. Thus the total cou-

pling cost becomes

fASpiqS (ldpi , l
s
qS ) = edpi · f

C
piqS (ldpi , l

s
qS ) + (1− edpi) · (1− ap),

(12)

where edpi is equal to 1 when pi is enabled, and 0 other-

wise. As a consequence, nodes for which the (pairwise)

segmentation cost fC is very high when warping an

atlas i, are disabled for this atlas. When a node pi is

disabled the cost to be paid is 1 − ap regardless of the

level of disagreement of the deformation with its corre-

sponding segmentation nodes. Thus, a disabled defor-

mation node will not affect segmentation variables and

conversely will not be affected by them.

Agreement estimation Agreement percentages are esti-

mated by locally comparing each segmentation mask
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with an estimate of the consensus segmentation, fol-

lowed by a clustering scheme to arrive at robust per

control point estimates. This process is summarized in

Algorithm 1. First, agreement percentages per control

point are computed (step 1). Then a 2-means clustering

algorithm is used to separate them into inliers and out-

liers (steps 3-10). Finally, a variance reduction criterion

is used to determine the validity of the clustering into

two sets and ap is defined accordingly (steps 11-15).

Local Atlas Selection Smoothness Membership fields are

encoded over deformation nodes. We want to enforce

smoothness over the fields to achieve concise regions of

influence for every atlas:

fSpi,qi(l
d
pi , l

d
qi) = Ind(edpi , e

d
qi). (13)

3.2.4 MRF energy parameterization

To conclude the outline of the discrete energy, we sum-

marize the terms along with the parameters controlling

each term’s weight:

EMRF (l) = gMpi (ldpi) + λfRpiqi(l
d
pi , l

d
qi) + σgSPqS (lsqS )

+αfASpiqS (ldpi , l
s
qS ) + βfSpi,qi(l

d
pi , l

d
qi),

(14)

λ controls the deformation field smoothness, σ encodes

the prior likelihood weight, α specifies how much regis-

tration influences segmentation and reversely how much

segmentation affects registration, and β regulates the

smoothness of membership fields.

3.3 MRF Optimization through Dual Decomposition

DD-MRF [19] has been introduced as a framework for

MRF optimization, offering global optimality guaran-

tees. Its flexibility in terms of possible energy types, its

ability to report the quality of the final solution as well

as its optimality guarantees are the merits we consid-

ered in opting for its use. DD-MRF works by receiving

as input a decomposition of the initial graph (primal

problem) into subgraphs (dual problems). It initializes

the costs of the dual problems using the costs of the

primal problem. It then proceeds by iteratively finding

a global optimum for each subproblem, compare the

subproblem solutions and update their costs.

In short, at each iteration: i) dual subproblems are

solved in an optimal fashion (usually by dynamic pro-

gramming); ii) the dual energy, defined as the sum of

the energies of the optimal dual solutions, is computed;

iii) a solution to the primal is inferred by the multitude

of, possibly conflicting, dual solutions; iv) the differ-

ence between the energy of the primal and the sum

of the duals is computed (referred to as primal-dual

gap); v) the primal dual gap is used to update sub-

problem costs. This way agreement is induced between

the next subproblem solutions leading iteratively to a

coherent, globally optimal solution. The way dual costs

are updated guarantees that the euclidean distance of

the current solution to the set of the globally optimum

solutions will decrease monotonically.

Subproblem decomposition In order to optimize a graph

G, DD-MRF requires an input set of subproblems SD =

{SDi, · · ·SDn}, such that
⋃
i SDi = G. Thus, we de-

compose the problem into a series of subproblems that

can be exactly optimized through dynamic program-

ming. Deformation grid subgraphs GDi are decomposed

into sets CDi where every element of CDi corresponds

to a chain subproblem.

The coupling term is divided into tree subproblems.

There is one such subproblem per deformation node

consisting of the deformation node p, the segmenta-

tion nodes within its support to which it is connected,

as well as the edges connecting them. We call such

a tree subproblem Tp and TDi = {Tp|p ∈ GDi} de-

notes the tree subproblems that include all the nodes

of a grid subgraph GDi . Thus, the subproblem decom-

position for the problem at hand is given by the set

SD = {TD0
, . . . , TDN , CD0

, . . . , CDN }.

Local atlas selection model optimization However, a di-

rect one-shot optimization of the above decomposition

is not viable for a problem of this size and type. The in-

clusion of the switching potential that is encoded in the

coupling cost makes optimization very hard. This has

a crippling effect on both the time required for con-

vergence and the quality of the resulting solution. In

order to facilitate the solution of the problem, we fur-

ther decompose the problem by breaking SD into N

parts which we will optimize sequentially using DD-

MRF, while updating the remaining parts with the so-

lutions of the parts that have been already solved.

This iterative procedure estimates the deformation

and selection fields for each atlas sequentially. For a

given atlas i we project the coupling potentials of every

other atlas by considering them stationary (zero vec-

tor displacement label for every deformation node). We

then proceed by solving the single atlas decomposition

over the updated segmentation potentials.

The algorithm consists of the steps shown in Alg.

2. The process starts by computing the potential func-

tions for all candidate solutions. It then iterates over the

atlases, projecting the updated constraints to the seg-

mentation grid (step 3), optimizing the corresponding

part of the decomposition to infer deformation variables
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Fig. 1 Left: Closeness ranking of atlases to target IDs for leave-one-out cross-validation. Lighter boxes signify closeness of an
atlas to a target. Right: Percentage of deselected nodes per atlas with respect to target ID as returned by our method when
using all 17 atlases. The reported percentages are much more significant than what they appear, considering that 30%-40% of
control points have a support that is essentially background. See Fig.5 for a visual representation. Elements in the diagonals
should be ignored as naturally no atlas was used to segment itself.

and the best current segmentation labeling (step 4), up-

dating deformation fields and selection images (step 5)

and the corresponding constraints (step 6). The final

segmentation is the one produced by the last iteration.

Algorithm 2 Sequential model optimization.
1: Define the potentials as described in previous sections.
2: for each atlas k do
3: Define gProjqS (lsqS ) =

∑
i∈N\k f

C
piqS

(0, lsqS ) over GS
4: Optimize using DD-MRF the subproblem set

{TDk
, CDk

}
5: Update the deformation field Dk and membership field

image Fk from optimal labeling of GDk
.

6: Recalculate fCpkqS (0, lsqS )
7: end for

4 Validation

We have validated our method using leave-one-out cross-

correlation over publicly data available on the Internet

Brain Segmentation Repository (IBSR). We specifically

use the skull stripped version of the dataset provided

in [25]. The dataset consists of 18 T1-weighted MR Im-

ages with 1.5mm slice thickness. Images and masks have

been linearly registered and cropped to 145×158×123

from their initial resolution of 256× 256× 128. We re-

port mean results over labels that were annotated in

more than half of the images of the dataset. Results

are reported over 14 symmetric (left, right hemisphere)

annotations (Thalamus, Caudate, Putamen, Pallidum,

Hippocampus, Amygdala, Accumbens, Lateral Ventri-

cle, Inferior Lateral Ventricle, Cerebral White Matter,

Cerebral Cortex, Cerebellum White Matter, Cerebel-

lum Cortex, vessel) and 3 non-symmetric (3rd Ventri-

cle, 4th Ventricle, Brain Stem).

Given a target image, all other images have been

registered using affine registration and compared using

Normalized Cross Correlation (NCC) to create a close-

ness ranking (see Fig. 1 (left) ). Experiments using less

than the full dataset ( N < 17 atlases), refer to this

ranking to select the N closest atlases to the target

image. This ranking is also used by the sequential opti-

mization detailed in Sec. 3.3 to determine the sequence

of the atlases, from the closest to the furthest.

Registration parameters The same iterative procedure

as [14] has been used in order to best cope with the com-

putational efficiency vs accuracy trade-off. Dense defor-

mation fields are produced by control point displace-

ments using Cubic B-Spline functions. For all registra-

tions we use two levels of deformation control points

with spacing 7mm and 3.5mm. We use the deformation

fields produced by the coarse level to initialize the finer

one. For deformation nodes, candidate displacements

are uniformly sampled over each axis, 12 per axis for

a total of 37. For each control point level we iterate

5 times, reducing with each iteration the area of can-

didate displacements by a factor of 0.66. Normalized

Cross Correlation (NCC) is the dissimilarity function

(ρ) used for the matching criterion in all experiments.
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Fig. 2 Top: Symmetric mean surface distance with respect to the ID of the target image. Bottom: Dice coefficient with respect
to the ID of the target image. All 17 available atlases have been used to segment a target image. Majority refers to majority
voting after pairwise registration, Local refers to the appearance-based locally weighted voting, Soft Selection refers to [2],
while Hard Selection corresponds to the proposed method.

Segmentation Likelihoods Training has been conducted

by removing the target image from the training set. The

following configuration has been used to learn prior per

voxel likelihoods. For each training set image, we sam-

pled up to 150 samples belonging to each label and

then sampled in a spatially uniform manner another

15000 samples avoiding duplicates. Three types of fea-

tures were used: i) median, entropy, standard deviation,

kurtosis and skewness sample statistics on a 3D patch

with sides of 5, 7 and 9 voxels; ii) Gabor features using 6

per axis orientations and 3 scales; iii) HOG3D features

on a 11 × 11 × 11 patch broken up to 8 (2 per dimen-

sion) subpatches using 4 orientations; and iv) normal-

ized voxel positions and distance from the center voxel.

The total size of the feature vector was 258. We used

the Random Forest framework [8] to discriminatively

learn local per voxel probabilities for our target image.

We used 200 trees of maximum depth 20 and opted to

stop splitting at 20 samples per node.

Optimization convergence Concerning DD-MRF con-

vergence, we stop iteration when the mean change rate

of the primal dual gap computed over the last 10 iter-

ations reaches the 10% of the mean change rate of the

primal dual gap computed over all iterations. This cri-

terion leads to a uniform optimization quality over all

possible target images, number of atlases and models.

Methods We compare our method against: i) pairwise

registration fused using majority voting referred in the

figures as Majority, ii) pairwise registration fused us-

ing appearance-based locally weighted fusion. We use

an exponential weighting function over a local patch:

e−ρNCCs(x) where ρ is a slope parameter, NCCs(x) the

NCC comparison of an atlas and a target patch around
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Method Dice SMSD (mm)
Hard S. 0.789 (0.018) 1.019 (0.114)
Soft S. 0.786 (0.019) 1.059 (0.105)
Major. 0.775 (0.018) 1.072 (0.138)
Local 0.779 (0.017) 1.052 (0.122)

Table 1 Mean Dice and SMSD using 17 atlases for all four
methods.

point x and s the diameter of the patch. We refer to

this method in the figures as Local, iii) [2], which is

dubbed as Soft Selection because it couples registration

and segmentation through the use of appearance-based

local soft selection. The proposed method is termed as

Hard Selection in the figures.

Parameter estimation Parameters were estimated by

maximizing the Dice coefficient when segmenting 4 hand-

picked target images by using 4 different datasets that

consist of 7 atlases. First, the parameter λ was found for

the pairwise registrations (λ = 0.01). For the appearance-

based locally weighted fusion the slope parameter was

found (ρ = 3) and the patch size was set (s = 9). Keep-

ing λ the same, the parameters σ and α were set for

[2] (σ = 1.5, α = 0.3). Finally σ and α and β were set

for the proposed method (σ = 2.5, α = 0.1, β = 0.025).

The ε parameter introduced in Alg. 1 was set to 3
N2

where N the number of atlases in the dataset.

4.1 Results

In this section, we validate the proposed method through

qualitative and quantitative comparisons with compet-
ing methods. Moreover, we opt to shed light upon the

mechanics of our method and in particular, how lo-

cal atlas selection affects the segmentation framework.

When we refer to a specific atlas id x out of the dataset

we will use the notation Ax. In terms of quantitative

results the complementarity of overlap and surface dis-

tance measures has been recently made evident in [25].

Overlap is measured by the Dice coefficient that is de-

fined as Dice(A,B) = 2∗|A∩B|
|A|+|B| over annotations A and

B. Surface distance is measured by the Symmetric Mean

Surface Distance (SMSD) defined as follows: If Â is the

set of surface voxels of volume A and

d(A,B) =

∑
i∈A

min
j∈B

e(i, j)

|A|

with e(i, j) being the euclidean distance, then

SMSD(A,B) =
d(Â, B̂) + d(B̂, Â)

2
.

In Fig. 2 we present comparison results of segmen-

tations produced using all 17 available atlases. The pro-

posed method is consistently better than competing

methods although [2] seems to perform in some cases

(e.g A2 ) particularly well. As far as Dice coefficient is

concerned, the results are statistically significant. The

proposed method outperforms both majority voting (paired

t-test, P < 10−5) and local appearance-based voting

(paired t-test, P < 10−5). Moreover, it performs bet-

ter than [2] (paired t-test, P < 10−2) despite not ex-

ploiting appearance similarity information to weigh the

coupling term. Regarding the SMSD metric, the pro-

posed method outperforms majority voting (paired t-

test, P < 10−3), local appearance-based voting (paired

t-test, P < 10−2) and [2] (paired t-test, P < 10−2). In

Table 1 mean Dice overlap, SMSD are presented for the

methods considered.

To qualitatively appraise the quality of the obtained

results, we show in Fig. 4 sagittal views of the ground

truth segmentation as well as the results obtained with

all examined methods. We note that the proposed method

has retrieved more details in the highlighted areas. In

Fig. 5, we show the ground truth segmentation and

the corresponding views of segmentation proposals by

the most and least deselected atlases along with their

respective membership fields. The two atlases appear

to propose very different candidate segmentations. The

segmentation that is proposed by the most deselected

atlas, differs in many locations when compared to the

ground truth. The proposed method correctly estimates

most areas where erroneous proposals have been made

and correctly disables the membership field. Moreover,

correctly estimating the membership field assures that

atlases with bad matching will not act as noise in the
coupled registration/segmentation scheme.

A close look at Fig. 1 (right) adds additional insight

into the atlas selection mechanism. The figure shows us

how the algorithm prunes atlases in a concise manner.

For example, we see how A9 is treated in average as an

outlier, while A0 is consistently part of the set of atlases

that drives the method. Additionally, we can see a clear

clustering pattern. A0 - A4 and A12 - A17 form a group

in which atlases seem to segment one another, while the

rest of the dataset seems to have a much more uniform

node selection pattern.

Lastly, in Fig. 3 we address the issue of scaling with

respect to the number of employed atlases. As far as the

Dice coefficient is concerned (Fig. 3 (left)), [2] outper-

forms the proposed method when few atlases are used.

This is due to the fact that the definition of the thresh-

olds in Alg.1 is a noisy procedure.

As the number of used atlases increases, the mean

quality of the dataset decreases. As consequence, our
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Fig. 3 Left: Mean Dice coefficient with respect to the number of atlases used. Right: SMSD with respect to the number
of atlases used.Majority refers to majority voting after pairwise registration, Local corresponds to appearance-based locally
weighted voting, Soft Selection refers to [2], while Hard Selection corresponds to the proposed method.

Fig. 4 Sagittal views of the ground truth segmentation and the result produced by the proposed method, majority voting,
local appearance-based voting and [2]. For the segmentation shown all 17 atlases have been used. Ellipses highlight areas where
the proposed method has recovered more details than the competing ones.

Fig. 5 Ground truth segmentation and pairs of warped atlas segmentation mask and membership field for the atlas with the
least (6% of the total number of control points) and most (11% of the total number of control points) deselected control points.
For the segmentation shown all 17 atlases have been used. Note that the areas where segmentation errors occur (highlighted
by red ellipses) have been correctly deselected.

method starts to outperform [2] because of its ability

to extract good quality matchings from the newly added

atlases, without allowing them to affect already estab-

lished matchings. An analogous pattern can be seen in

Fig. 3 (right) for the case of SMSD.

5 Discussion

In this paper, we presented a method that integrates

registration and segmentation fusion in a pairwise MRF

framework. The proposed approach allows registration

parameters to be updated based on the segmentation

estimation while membership fields estimation assures

that bad matchings will not deteriorate segmentation

quality. The experimental results demonstrate the po-

tential of the proposed approach.
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