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Regularization parameter estimation for non-negative
hyperspectral image deconvolution:
supplementary material

Yingying Song, David Brie, El-Hadi Djermoune, Simon Henrot

This document is a supplementary material aiming at evaluating the performances of the proposed MDC and MCC for different
types of hyperspectral images. Also, it gives an application of these approaches on real data.

I. SIMULATION EXAMPLES

These simulations aim at investigating the behavior of the MDC and MCC for different types of hyperspectral images. In
particular, we address the following questions:

- What are the performances of the 2 criteria?

- Does the estimated regularization parameters reflect the very nature (peaky or smooth) of the hyperspectral images to
recover?

- Does the number of zeros in the hyperspectral images influence the performance of the criterion?

A. Simulated hyperspectral images
The simulation examples are generated according to the instantaneous mixture model

X:ZAkOSk (1)
k

Here Aj represents the k-th abundance (spatial source) which is a function of the spatial variables, s; represents the k-th
endmember (spectral source) and o is the outer (tensor) product.
Five different types of data are simulated.

TABLE I: Simulation examples

Data Ay Sk
Example 1 Peaky with many zeros Smooth and positive
Example 2 Smooth with many zeros Peaky with many zeros
Example 3 Smooth with less zeros Peaky and positive
Example 4 Very Smooth and positive Peaky with many zeros
Example 5 Very smooth and positive Smooth and positive

The PSF (convolution filter) H; is a low-pass gaussian filter of size (11 x 11) and its full width at half maximum is 5 points in
both dimensions. The PSF is invariant with respect to [. The blurring is implemented in the Fourier domain (circular convolution).

B. Performance evaluation and result presentation

We used the fast implementation of MCC and MDC. For each example, the performance evaluation is conducted by estimating
the mean square error (MSE) as a function of the signal-to-noise ratio (SNR). Each MSE value is obtained by averaging three
trials corresponding to 3 random noise realizations. We also show the standard deviation of the estimated MSE. The images
resulting from the deconvolution at SNR=20 dB are also presented.

C. Results
Example 1 is the one presented in the paper (see sections 5.B and 5.C). The results are not reported here.
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Example 2

(b) Blurred noisy
20 dB)

(c) Deconvolution with parameters found by the MCC (d) Deconvolution with parameters found by the MDC
(pns = 9.9370, py = 0.0166) (ns = 193.5059, iy = 0.0166)

Fig. 2: Results of the non-negative deconvolution problem using MCC and MDC
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Fig. 3: Performances of the hyperspectral image deconvolution with optimal parameters (s, i) selected by MCC and MDC



Example 3
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Fig. 4: Abundance maps and endmembers of example 3.
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(b) Blurred noisy
20 dB)

(c) Deconvolution with parameters found by the MCC (d) Deconvolution with parameters found by the MDC
(pus = 0.0131, py = 854.8111 (us = 18.5917, py = 0.1170)

Fig. 5: Results of the non-negative deconvolution problem using MCC and MDC
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Fig. 6: Performances of the hyperspectral image deconvolution with optimal parameters (us, ) selected by MCC and MDC



Example 4

Fig. 7: Abundance maps and endmembers of example 4.

Siice 2 Siice 11 Stice 12 Siice 1 ic Siice 11 Stice 12

HERI B

Siico 22

Siico 31

Siice 32

[

(a) Unblurred hyperspectral image (b) Blurred noisy hyperspectral image y (SNR=
20 dB)

(c) Deconvolution with parameters found by the MCC (d) Deconvolution with parameters found by the MDC
(pus = 0.0113, py = 735.9349) (s = 731.8141, py = 1.3294)

Fig. 8: Results of the non-negative deconvolution problem using MCC and MDC
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Fig. 9: Performances of the hyperspectral image deconvolution with optimal parameters (s, i) selected by MCC and MDC



Example 5

Fig. 12: Performances of the hyperspectral image deconvolution with optimal parameters (i, 1)) selected by MCC and MDC
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Fig. 10: Abundance maps and endmembers of example 5.
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(c) Deconvolution with parameters found by the MCC (d) Deconvolution with parameters found by the MDC
(us = 0.5575, py = 0.8785)

(pns = 0.1498, py = 3.2279)

Fig. 11: Results of the non-negative deconvolution problem using MCC and MDC
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D. Discussion

The analysis of the results shows that MDC always performs better than MCC. Also, the corresponding MSEs are more stable
(smooth) than those of MCC. This is due to the multiple maximum problem of MCC which renders the MSE behavior a bit
erratic.

The non-negativity constraint really matters when the image includes many zeros. Increasing the number of points on which
the positivity constraint is active, will also increase the folding of the response surface resulting in an accurate regularization
parameter estimation. When the number of zeros is low, the non-negativity constraint is no longer relevant and the corresponding
MDC and MCC are not very efficient. It may even happen that, for high SNR, the unconstrained deconvolution (associated MDC
and MCC) yields better solutions. See in the supplementary material, example 5 (which is a kind of worst-case scenario) for
SNR > 30 dB.

Finally, the estimated regularization parameters with MDC (associated to non-negative deconvolution) is linked to the nature
of the image to recover. Spatially (resp. spectrally) smooth images yield large values of p (resp. p)). Conversely, spatially (resp.
spectrally) peaky images yield low values of s (resp. py). It corresponds to what intuition suggests. This is another evidence
of the interest of MDC.

II. REAL-WORLD EXAMPLE
A. Data acquisition

The example provided here corresponds to an image of bacterial biosensors using hyperspectral fluorescence microscopy. A
bacterial biosensor is a genetically modified bacteria which reacts to a stressing element (here iron, Fe) by producing a fluorescent
protein (GFP). The hyperspectral fluorescence images will give indications of the Fe spatial concentration. This hyperspectral
image is size is (512 x 512 x 16) and the pixel size is 0.117 um along each dimention. The 16 wavelengths are ranging from
455nm to 605nm. It was obtained by Carl Zeiss Bio-Rad confocal microscope. The PSF of the microscope is evaluated according
to [1] as a function of the imaging parameters (excitation wavelength, emission wavelength, numerical aperture and pixel size).
This results in a 7 x 7 Gaussian approximation of the PSF.

B. Results

Figure 13 shows the raw data (upper row), the restored data with the regularization parameters estimated by MCC (middle row)
and the restored data with the regularization parameters estimated by MDC (lower row). Figure 14 and 15 are two parts selected
from figure 13. It should be noted that this data cube includes both peaky and smooth parts along the spectral dimension; this
makes the choice of a global spectral regularization parameter not obvious. A large regularization parameter will over-smooth
the peaky part while a low regularization parameter will under-regularize the smooth part.

Both results show an improved resolution. However looking carefully at the results of MCC, reveals that the spectral
regularization parameter is over estimated. This results in a spectral over-smoothing which makes some high intensity patterns
of bacteria remaining on adjacent spectral bands (see for example Fig. 14(b)). This is less visible for MDC.
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Fig. 13: Results of the non-negative deconvolution problem using MCC and MDC
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(¢) MDC (us = 0.2505, py = 0.6115)

Fig. 14: Results of the non-negative deconvolution problem using MCC and MDC
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Fig. 15: Results of the non-negative deconvolution problem using MCC and MDC



