
HAL Id: hal-01358630
https://hal.science/hal-01358630v2

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A rapid numerical method for solving
Serre-Green-Naghdi equations describing long free

surface gravity waves
N Favrie, S Gavrilyuk

To cite this version:
N Favrie, S Gavrilyuk. A rapid numerical method for solving Serre-Green-Naghdi equations describing
long free surface gravity waves. Nonlinearity, 2017. �hal-01358630v2�

https://hal.science/hal-01358630v2
https://hal.archives-ouvertes.fr
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equations describing long free surface gravity waves
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May 22, 2017

Abstract

A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing
dispersive waves on shallow water is proposed. From the mathematical point of view, the
SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a
differential constraint which is the mass conservation law. One major numerical challenge in
solving the SGN equations is the resolution of an elliptic problem at each time instant. This
is the most time-consuming part of the numerical method. The idea is to replace the ‘master’
lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater
number of variables, for which the corresponding Euler - Lagrange equations are hyperbolic.
In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in
some limit (for example, when the corresponding parameter is large). The choice of such a
family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic
system is numerically solved by a Godunov type method. Numerical solutions are compared
with exact solutions to the SGN equations. It appears that the computational time in solving
the hyperbolic system is much lower than in the case where the elliptic operator is inverted.
The new method is applied, in particular, to the study of ‘Favre waves’ representing non-
stationary undular bores produced after reflection of the fluid flow with a free surface at an
immobile wall.

Keywords: dispersive equations, hyperbolicity, Godunov type methods

1 Introduction

Dispersive systems of equations appearing in physics often admit a variational formulation. Nu-
merous physical examples can be found in the literature : water waves, quantum mechanics,
solid mechanics, capillary fluids, bubbly fluids, etc. (cf. [32], [1], [30], [8], [2], [15]). Even if the
physics is better captured by the dispersive models, the mathematical and numerical study of
such models represents a difficult problem. One example is the Serre-Green-Naghdi equations
(SGN equations) describing dispersive water waves [27], [17], [18], [29]. In particular, the inver-
sion of an elliptic operator is needed at each time step when the model is numerically solved [20],
[22]. As a consequence, this drastically increases the calculation time. An analogous approach
was also applied in [25] for a linearised version of the SGN equations (Boussinesq equations).

∗Aix-Marseille Université, UMR CNRS 7343, IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13, France,
nicolas.favrie@univ-amu.fr
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Another important numerical problem is how to impose artificial non-reflecting (transparent)
conditions at the boundary of the calculation region for dispersive equations. The transparent
boundary conditions are important when one looks for waves passing through a bounded numeri-
cal domain. This is always an open problem for general dispersive equations. Some progress was
recently done for scalar dispersive equations (Korteweg-de Vries and Benjamin-Bona-Mahony
equations) [3], [4]. However, in the theory of hyperbolic equations the last question is solved, at
least for homogeneous systems of equations (see [19], for example). Indeed, to avoid the wave
reflection, it is necessary just to ‘kill’ the Riemann invariants corresponding to the characteristics
which enter the domain of calculation. A natural idea is thus to replace dispersive equations by
approximate hyperbolic equations. The idea is not new and comes from the pioneering work by
Cattaneo [5] who replaced, in particular, the heat equation by a hyperbolic system of equations
with relaxation. A recent important development of such an approach to dissipative continuum
mechanics models can be found in [26] and [7]. However, such an approach can not be satisfac-
tory when the governing system are the Euler-Lagrange equations for some lagrangian (below
called ‘master’ lagrangian). Indeed, the energy should be conserved, while it decreases when
the classical dissipation-type relaxation is added. An idea consists to consider an approximative
lagrangian (below called ‘augmented’ lagrangian) where some gradients or temporal derivatives
of unknowns are replaced by new variables that become true gradients or temporal derivatives
only in some limit. Such a limit is not a viscous Cattaneo type limit, because the energy of the
system is conserved, but a ‘non-viscous’ limit allowing us to ‘spread’ the energy of the ‘master’
system into additional degrees of freedom. To understand the idea of such a construction let us
first give a simple example coming from the ODE. Consider a master Lagrangian describing free
oscillations x(t) of a mass point :

L =

(
dx

dt

)2

− x2

2
(1)

An augmented Lagrangian where a new time dependent variable y is added, is taken in the form:

L̂ =

(
dy

dt

)2

− x2

2
− λ (y − x)2

2
. (2)

Here λ is a large parameter. The Euler-Lagrange equations for (2) are :

d2y

dt2
+ λ(y − x) = 0, −x+ λ(y − x) = 0.

The solution y(t, λ) of the Cauchy problem y(0, λ) = A, ẏ(0, λ) = B is :

y(t, λ) =

√
A2 +

B2

ω2
sin (ωt+ ϕλ) , ϕλ = arcsin

(
A/

√
A2 +

B2

ω2

)
, ω2 =

λ

1 + λ
,

while the solution x(t) corresponding to the master Lagrangian (1) with the same initial data is
:

x(t) =
√
A2 +B2 sin (t+ ϕ) , ϕ = arcsin

(
A/
√
A2 +B2

)
.

The approximate solution y(t, λ) and exact solution x(t) remain close to each other as λ→∞ in
the sense that their amplitudes and periods coincide in this limit. However, the time dependent
phase shift is always present. One can say that this approximated solution y(t, λ) is close to the
exact solution x(t) in the sense of orbital stability.

We propose to extend this approach to PDE systems. One should be mentioned that this
approach is reminiscent of the modeling of micromorphic materials ([9], [21], [11], [12]) when it

2



is restricted to reversible processes. The formulation of the augmented lagrangian as a function
of usual macroscopic and new dual variables is a rather intuitive procedure because the choice
of the lagrangian is not unique. Also, some obvious constraints should be satisfied when such a
lagrangian is constructed. Indeed,

• At least a one-parameter family of ‘augmented’ lagrangians should be properly choosen,
giving in some limit (for example, when the parameter goes to infinity) the ‘master’ la-
grangian.

• The Euler-Lagrange equations for the ‘augmented’ lagrangian should be unconditionally
hyperbolic. It means that the corresponding Cauchy problem is well posed. If the equations
are only conditionally hyperbolic, additional numerical problems can appear.

• In the linear approximation, the Whitham type condition [32] should be satisfied : the
phase velocities of waves corresponding to the ‘master ’ lagrangian should be interplaced
between the phase velocities corresponding to the ‘augmented’ lagrangian for any wave
numbers. This condition is well known in hyperbolic equations where it is often called
‘subcharacteristic’ condition. In particular, it implies the linear stability of equilibrium
solutions. Such a condition should also be satisfied for dispersive equations. In particular,
it allows us to split the propagation wave modes and understand which one is responsible
for the dispersive properties of the limit system.

In Section 2, the SGN equations as well as the corresponding ‘master’ lagrangian are pre-
sented. An ‘augmented’ lagrangian and the corresponding Euler-Lagrange equations are formu-
lated in Section 3. A numerical method and numerical results are given in Sections 4 and 5.
Technical details as well as a 2D extention of the model are presented in Appendices A, B and
C.

2 The SGN equations

Consider the one-dimensional SGN equations describing dispersive non-linear long water waves in
a one layer flow over a flat bottom. The dissipative effects are neglected. Under these assumptions
the equations read :

∂h

∂t
+
∂hu

∂x
= 0,

∂hu

∂t
+
∂hu2 + p

∂x
= 0, with p =

gh2

2
+

1

3
h2ḧ.

(3)

Here h > 0 is the water depth, and u is the average horizontal velocity. The ‘dot’ means the
material derivatives:

ḣ =
∂h

∂t
+ u

∂h

∂x
, ḧ =

(
∂

∂t
+ u

∂

∂x

)
ḣ. (4)

The system (3) admits a variational formulation with the master lagrangian (see [30], [13], [14],
[15]) :

L =

∫ ∞
−∞

(
hu2

2
−W (h, ḣ)

)
dx, (5)

where the potential W (h, ḣ) is :

W (h, ḣ) =
gh2

2
− hḣ2

6
. (6)
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To simplify the derivation of the governing equations, we will use the mass Lagrangian coordinate
q instead of the Eulerian coordinate x :

q =

∫ X

0

h0(s)ds,

where X is the classical Lagrangian coordinate, and h0(X) is the initial data for the fluid depth.

Let τ =
1

h
. The lagrangian reads then:

L =

∫ ∞
−∞

L dq, L =
u2

2
− W̃ (τ, τt), (7)

with

u = xt, τ = xq, W̃ (τ, τt) =
g

2τ
− 1

6

(
∂1/τ

∂t

)2

.

The governing equations in (t, q) variables can be written as :

τt − uq = 0, ut + pq = 0, (8)

with

p = −δW̃
δτ

= −

(
∂W̃

∂τ
− ∂

∂t

(
∂W̃

∂τt

))
=

g

2τ2
+

2

3

τ2t
τ5
− 1

3

τtt
τ4
. (9)

They admit the energy conservation law :(
u2

2
+ e

)
t

+ (pu)q = 0,

with

e =
g

2τ
+

1

6

τ2t
τ4
.

3 The method of an ‘augmented’ lagrangian for the SGN
equations

Let τ = xq, and u = xt. We take the augmented lagrangian under the following form :

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− α(τ, η)

(η − 1
τ )2

6
. (10)

We introduced here a non-equilibrium variable η having the propriety that in equilibrium, one
has η = 1

τ . To guarantee the convergence (weak) of the solutions of the Euler-Lagrange equations
for the lagrangian (10), to the solutions of the SGN equations (8)-(9), the function α(τ, η) should
be quite large. Below, we will precise this function. Let us consider the following three one-
parameter families of lagrangians corresponding to different choices of α(τ, η) :

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ

(η − 1
τ )2

6
, α = λ = const > 0. (11)

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ (ητ − 1)2

6
, α = λτ2, λ = const > 0. (12)
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L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ (ητ − 1)4

6
, α = λτ2(ητ − 1)2, λ = const > 0. (13)

In every case (11) - (13), the parameter λ > 0 is large. It plays the role of penalty coefficient :
when it tends to infinity, ητ−1 vanishes, and all lagrangians converge to the master lagrangian (7).
The multiplier 1/6 is introduced for convenience. In the following, we will highlight the properties
of each lagrangian. In particular, we will show that only lagrangian (12) is mathematically
satisfactory, the other lagrangians have some defaults. The properties of the lagrangian (12) are
detailed in Section 3.2.

3.1 First lagrangian

We consider first the extended lagrangian (11). The corresponding Euler-Lagrange equations
read : 

− ∂

∂t

(
∂L̂

∂xt

)
− ∂

∂q

(
∂L̂

∂xq

)
= 0,

∂L̂

∂η
− ∂

∂t

(
∂L̂

∂ηt

)
= 0.

Complemented with the mass conservation law which is just the compatibility condition τt−uq =
0 with τ = xq and u = xt, they can be rewritten as :

τt − uq = 0,

ut −
(
g

τ3
+

λ

τ3

(
1

τ
− 2

3
η

))
τq −

λ

3

ηq
τ2

= 0,

ηtt = λ

(
1

τ
− η
)
.

This system can be rewritten in conservative form :

τt − uq = 0,

ut +

(
g

2τ2
+

λ

3τ2

(
1

τ
− η
))

q

= 0,

ηt = w,

wt = λ

(
1

τ
− η
)
.

(14)

The characteristic slopes are :

ξ1,2 = 0, ξ3,4 = ±

√
g

τ3
+

λ

τ3

(
1

τ
− 2

3
η

)
.

This model is hyperbolic if η <
3

2

(
g

λ
+

1

τ

)
. This system is similar to the one proposed by

Liapidevskii and Gavrilova (2008) [23] where a different approach based on the averaging of
instantaneous variables was used. Due to the Noether theorem, system (14) admits the energy
conservation law :(

u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)2

6τ2

)
t

+ (pu)q = 0, p =
g

2τ2
+

λ

3τ2

(
1

τ
− η
)
.

The system (14) is only conditionally hyperbolic, so it does not satisfy all the constraints men-
tioned in the Introduction.
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3.2 Second lagrangian

Consider now the extended lagrangian (12). The Euler-Lagrange equations are : ut −
(
g

τ3
+
λ

3
η2
)
τq −

λ

3
(2τη − 1)ηq = 0,

ηtt = −λ (ητ − 1) τ.
(15)

This system can be rewritten in conservative form :
τt − uq = 0,

ut +

(
g

2τ2
− λ

3
(τη − 1)η

)
q

= 0,

ηt = w,
wt = −λ (ητ − 1) τ.

(16)

This system is unconditionally hyperbolic, the characteristic slopes are :

ξ1,2 = 0, ξ3,4 = ±
√

g

τ3
+
λ

3
η2 (17)

The eigenfields corresponding to ξ1,2 (ξ3,4) are linearly degenerate (genuinely nonlinear in the
sense of Lax). The proof is given in Appendix B. System (16) admits the energy conservation
law : (

u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)2

6

)
t

+ (pu)q = 0, p =
g

2τ2
− λ

3
(τη − 1) η.

For the original Green-Naghdi model (8) - (9) linearised at u = 0, τ = τ0 the phase velocity
cp = ω/k is :

c2p =
g

τ30 + k2

3τ0

(18)

For the new model, the phase velocity reads (see Appendix A for details):

(
c±p
)2

=

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2 ±
√(

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2

)2
− 4 gλ

τ0k2

2
. (19)

The phase velocity corresponding to the sign ‘minus’ (‘plus’) is called slow (rapid) phase velocity.
The phase velocity cp corresponding to the master lagrangian is interplaced between the phase
velocities corresponding to augmented lagrangian for any wave number k (see Figures 1 and 2),
so the Whitham type condition is also satisfied :

−c+p (λ) < −cp < −c−p (λ) < 0 < c−p (λ) < cp < c+p (λ).

It follows from (18) that

(
c−p
)2

=
g

τ30 + k2

3τ0

+
g

λ

g2k4

(k2 + 3τ40 )3
+O

(
1

λ2

)
,
(
c+p
)2

= O (λ) ,

so c−p (λ)→ cp as λ→∞ (see also Figure 1).
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Figure 1: The slow phase velocity c−p defined by (19) is shown as a function of the wave number
k for λ = 1 m2/s2 (thin line) and λ = 160 m2/s2 (thick line). The value of τ0 is 1 m−1. When
the parameter λ is sufficiently large, the phase velocity is close to that of the SGN model defined
by (18) (dashed line).

Figure 2: The rapid phase velocity c+p is shown as a function of the wave number k for the new
model with λ = 1 m2/s2 (thin line) and λ = 160 m2/s2 (thick line). The value of τ0 is 1 m−1.
The velocity c+p is always higher then that of the SGN model (dashed line). It describes the
evolution of ‘parasitic’ high-frequency waves related to the modification of the lagrangian.
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3.3 Third lagrangian

Let us consider now the extended lagrangian (13). The Euler-Lagrange equations are : ut −
( g
τ3

+ 2λ(ητ − 1)2η2
)
τq −

2λ

3
(τη − 1)2(4τη − 1)ηq = 0,

ηtt = −2λ (ητ − 1)
3
τ.

Again, this system can be rewritten in conservative form :
τt − uq = 0,

ut +

(
g

2τ2
− 2λ

3
(τη − 1)3η

)
q

= 0,

ηt = w,

wt = −2λ (ητ − 1)
3
τ.

(20)

This system is unconditionally hyperbolic, with the following characteristic slopes :

ξ1,2 = 0, ξ3,4 = ±
√

g

τ3
+ 2λ(ητ − 1)2η2.

System (20) admits the energy conservation law :(
u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)4

6

)
t

+ (pu)q = 0, p =
g

2τ2
− 2λ

3
(τη − 1)

3
η.

The phase velocity of linear waves does not depend on the wave number :

c2p =
g

τ3
.

Since the dispersion effects are not captured in the linear approximation, the model is not able
to deal with accurate description of the SGN equations.

In the following, we will concentrate on the numerics of the Euler-Lagrange equations (16)
obtained from the second lagrangian (12).

4 Numerical resolution

The lagrangian form of system (16) is :

∂Ũ

∂t
+
∂F̃

∂q
= S̃,

with Ũ = (τ, u, η, w)
T

, F̃ =
(
−u, g

2τ2 − λ
3 (τη − 1)η, 0, 0

)T
and S̃ = (0, 0, w,−λτ(ητ − 1))

T
. The

Eulerian form of system (16) is :
∂U

∂t
+
∂F

∂x
= S, (21)

with U = (h, hu, hη, hw)
T

, F =
(
hu, hu2 + gh2

2 −
λ
3 ( ηh − 1)η, hηu, hwu

)T
and S =

(
0, 0, hw,−λ( ηh − 1)

)T
.

In the following, we will use the Eulerian form (21) to have a possibility to compare the numer-
ical results with other numerical approaches. The structure of the eigenfields is analysed in the
Appendix B. For completeness, we also present in Appendix C the multi-dimensional version of
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(21). Since, the system is hyperbolic and conservative, a classical Godunov - type method can
be used followed by the Strang splitting strategy. Equations (21) are split into a hyperbolic part
:

∂U

∂t
+
∂F

∂x
= 0, (22)

and an ODE part (the treatment of the right-hand side S):

∂U

∂t
= S. (23)

The operators associated with the discretization of (22) and (23) are denoted Hh and Hr,
respectively. The second-order Strang splitting procedure is used, solving successively (22) and
(23) with adequate time increments:

U
(1)
i = Hr

(
∆t

2

)
Un
i ,

U
(2)
i = Hh (∆t)U

(1)
i ,

Un+1
i = Hr

(
∆t

2

)
U

(2)
i .

(24)

Since Hh and Hr are of second order accuracy operators, the procedure (24) gives us a second-
order accuracy approximation of (21) [24].

4.1 Hyperbolic step

The equation (22) is solved by a conservative scheme for hyperbolic systems [24]

Un+1
i = Un

i −
∆t

∆x

(
F∗i+1/2 − F∗i−1/2

)
(25)

The numerical flux function F∗i+1/2 is computed here by using the Rusanov method [28]:

F∗i+1/2 =
1

2

(
F(Un

i+1) + F(Un
i )− κni+1/2(Un

i+1 −Un
i )
)
. (26)

The parameter κni+1/2 is obtained by using the Davis approximation [6] :

κni+1/2 = max
j

(|cj(Un
i )|, |cj(Un

i+1)|), (27)

where cj are the eigenvalues of (21). The usual Courant-Friedrichs-Lewy (CFL) condition is
satisfied :

∆t = CFL
∆x

|cmax|
, with CFL < 1, (28)

where cmax is the maximal value of the characteristic velocities over the mesh. Any other
reasonable Riemann solver can also be used at this step.

4.2 ODE step

The source terms treatment is reduced to a second order ordinary differential equation with
constant coefficients which can be solved exactly. Indeed, for system (16), the relaxation system
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(23) is :
∂u

∂t
= 0,

∂τ

∂t
= 0,

∂η

∂t
= w,

∂w

∂t
= λ (1− ητ) τ.

(29)

It comes :

u(t+ ∆t) = u(t), τ(t+ ∆t) = τ(t),

η(t+ ∆t) =

(
η(t)− 1

τ(t)

)
cos
(
τ(t)
√
λ∆t

)
+

w(t)

τ(t)
√
λ

sin
(
τ(t)
√
λ∆t

)
+

1

τ(t)
,

w(t+ ∆t) =

(
−τ(t)

√
λ

(
η(t)− 1

τ(t)

)
sin
(
τ(t)
√
λ∆t

)
+ w(t) cos

(
τ(t)
√
λ∆t

))
.

(30)

5 Numerical results

5.1 Solitary wave solutions

Solitary wave solutions to the SGN system depending on ξ = x − Dt, D is a constant wave
velocity, are :

h(ξ) = h1 + (h2 − h1)sech2
(
ξ
2

√
3(h2−h1)
h2h2

1

)
,

u(ξ) = D
(

1− h1

h(ξ)

)
, D2 = gh2.

(31)

In the following example, we take h1 = 1 m, h2 = 1.8 m and g = 10 m/s2. We initialise the
density and the velocity with the exact solution and we impose η = h and w = 0. The maximum
of the solitary wave, moving to the right, was initially situated at x = 200 m. One can notice
that the initial data is not an exact solution to the extended system (21). Indeed, the pressure
in the SGN system given by p = 1

2gh
2 + 1

3h
2ḧ is not initially hydrostatic, while it is the case in

the augmented system. Then, the solution to the augmented system evolves. We represent the
results for different mesh sizes at different time instants on Figure 3 (for λ = 300 m2/s2) and
Figure 4 (for λ = 1200 m2/s2). On these Figures, one can observe small amplitude perturbations
due to the error in the initial conditions. On Figure 5, we represent at time instant t = 160 s the
exact solution (31) of the SGN equations (dashed line), solution of (21) for λ = 300 m2/s2 (thin
line) and λ = 1200 m2/s2 (thick line). The shape and amplitude of solitary waves are good for
both cases. As it was discussed in the introduction, the phase shift depending on λ can not be
controlled.

On Figure 6, we represent the evolution of the error in determining the amplitude of solitary
wave as a function of the mesh size for different values of λ. The numerical results converge. One
can note that for a coarser mesh, one should use a smaller value of λ. When the mesh cell size
decreases, a larger value of λ will give more precise results. In practice, we choose first the value
of λ approaching the dispersion relation with a given accuracy, and then we refine the mesh.

5.2 Favre waves

We consider the experiment where a fluid layer with a free surface is impacting a wall (‘water
hammer problem with a free surface’) [10], [31]. Due to dispersion, the reflected wave is rather
a wave train of waves of different lengths and amplitudes (called also ‘Favre waves’, see Figure
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Figure 3: Evolution of the solitary wave initially situated at x = 200 m and moving to the right,
is shown at time instants t = 40 s, t = 80 s, t = 120 s and t = 160 s with λ = 300 m2/s2

for different mesh sizes : ∆x = 0.1 m (dash-triple-dotted lines), ∆x = 5 cm (dashed lines),
∆x = 2.5 cm (dash-dotted lines) and δx = 1.25 cm (continuous lines). The second order
extension with Minmod limiter with CFL = 0.5 is used here.
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Figure 4: Evolution of the solitary wave initially situated at x = 200 m and moving to the right,
is shown at time instants t = 40 s, t = 80 s, t = 120 s and t = 160 s with λ = 1200 m2/s2

for different mesh sizes : ∆x = 0.1 m (dash-triple-dotted lines), ∆x = 5 cm (dashed lines),
∆x = 2.5 cm (dash-dotted lines) and δx = 1.25 cm (continuous lines). The second order
extension with Minmod limiter with CFL = 0.5 is used here.
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Figure 5: Comparison of the solution at time t = 160 s for 80000 mesh cells at 1000 m (∆x =
1.25 cm). The exact solution is represented with dashed line. The solution with λ = 300 m2/s2

(λ = 1200 m2/s2) is represented with thin (thick) lines. The agreement on the shape is very
good. There is a small shift in the position of the solitary wave.
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Figure 6: Relative error on the amplitude of the solitary wave. The results with λ = 300 m2/s2

(respectively λ = 1200 m2/s2) are represented with squares (respectively with crosses). One can
observe that on a coarse mesh, the numerical dissipation is the main source of error, because the
numerical viscosity is proportional to the characteristic velocity. For a thinner mesh, the results
obtained with larger values of λ are better.

7). The SGN equations can be used to model this problem until some critical impact velocity
determined in terms of the relative (with respect to the velocity of the reflected wave) Froude
number F . Above this critical value, the model is not valid because of the wave breaking (see
[16] for details). To avoid the difficulties related to the wall boundary conditions, we consider a
symmetric impact test problem. The impact velocity u0 is related to the relative Froude number
F by the formula [16] :

u0 =
√
gh0

(
F − 1 +

√
1 + 8F 2

4F

)
In Figure 8, we compare the numerical results at time t = 54 s with the results obtained by
the method [20]. The continuous blue line corresponds to the numerical solution of the SGN
equations obtained by the method [20] on a 32000 cell mesh. Our results (second order extension
with Van Leer Limiter) were obtained on different meshes (2000, 4000 and 8000 cells) (see Figure
8). One can observe that the results for 4000 and 8000 cells are almost superposed. Thus, a good
estimation of the first wave amplitude can be obtained with a coarser mesh. In Table 9, we show
the computational time for the different mesh sizes. In Figure 10, we represent the evolution
of the computational time with the mesh size (normalized with the computational time of the
coarser grid). One can see that the computational time increases much slower with the mesh
refinement for the new hyperbolic approach. Moreover, the new approach is well adapted for the
parallelisation technique based on the domain decomposition methods. Indeed, the equations
being hyperbolic, the ‘interaction’ between domains is always local. In Figure 11, the numerical
results are compared with the experiments of [31]. The results are in perfect agreement with
experiments until the wave breaking occurs corresponding to the Froude number about 1.25.
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Figure 8: Comparison at time t = 54 s for the Froude number Fr = 1.16 in the Favre experiment.
It corresponds to h0 = 1 m and the impact velocity u0 = 0.2

√
gh0 m/s, g = 10 m/s. The result

obtained by the method developed in [20] on a 32000 cell mesh is shown with a thin continuous
blue line. The results obtained with the second order extension of the new model with λ = 300
are shown for different mesh sizes : 2000 (red thick continuous line), 4000 (blue dashed line),
8000 (green dash-dotted line). The agreement is good and the convergence is guaranteed.
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Mesh size Hyperbolic model Approach [20]
2000 1.12 12.44
4000 4.65 191.84
8000 19.32 1844
16000 75.52 21200

Figure 9: Computational time (in seconds) for the hyperbolic model and for the approach [20].
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Figure 10: Computational time versus mesh size normalized by N0 = 2000. The crosses corre-
spond to the method [20], the dots correspond to the new hyperbolic method. The dashed line
has the slope 3.6 while the continuous line has a slope 2. The computational time increases much
faster for the approach [20].

6 Conclusion

A new numerical approach based on the notion of ‘augmented’ lagrangian is proposed to solve
dispersive equations. The corresponding Euler-Lagrange equations are hyperbolic and approxi-
mate the Serre-Green-Naghdi equations with a good accuracy. The computational time with the
new approach is much lower compared to the traditional methods. Thus, it is now possible to
think about multi-dimensional resolution with a reasonable computational time. Higher order
extension based on WENO, ADER or other methods can also be easily developed. The same
approach can also be applied to modelling fluids containing gas bubbles, because the governing
equations have the same mathematical structure [13], [14].
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A Dispersion relation

We consider the Euler-Lagrange equations for (12) :
τt − uq = 0,

ut −
(
g

τ3
+
λ

3
η2
)
τq −

λ

3
(2τη − 1)ηq = 0,

ηtt = −λ (ητ − 1) τ.

(32)

Consider the perturbation of a constant state u = 0, τ = τ0, η = η0, τ0η0 = 1 : u = εũ,
τ = τ0 + ετ̃ , η = η0 + εη̃. At first order the system reads :

τ̃t − ũq = 0,

ũt −
(
g

τ30
+
λ

3
η20

)
τ̃q −

λ

3
(2τ0η0 − 1)η̃q = 0,

η̃tt = −λ
(
η̃τ20 + τ̃

)
.

We consider monochromatic perturbations : ũ = u1e
i(kx−ωt), τ̃ = τ1e

i(kx−ωt) and η̃ = η1e
i(kx−ωt).

We get : 
ωτ1 + ku1 = 0,

ωu1 +

(
g

τ30
+

λ

3τ20

)
kτ1 +

λ

3
kη1 = 0,

ω2η1 − λ
(
η1τ

2
0 + τ1

)
= 0.

It can be also written as :
Ax = 0, xT = (τ1, u1, η1),
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with

A =

 ω k 0

k
(
g
τ2
0

+ λ
3τ2

0

)
ω λk

3

−λ 0 ω2 − λτ20

 .

The corresponding homogeneous linear system has non-trivial solution if and only if the deter-
minant of A is zero :

c4p − c2p
(
g

τ30
+

λ

3τ20
+
λτ20
k2

)
+

gλ

τ0k2
= 0.

The equation has two real positive roots
(
c±p
)2

:

(
c±p
)2

=

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2 ±
√(

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2

)2
− 4 gλ

τ0k2

2
. (33)

B Structure of the eigenfields

Let us consider the hyperbolic part of the system (21) :

∂U

∂t
+
∂F

∂x
= 0,

with U = (h, hu, hη, hw)
T

, F =
(
hu, hu2 + gh2

2 −
λ
3 ( ηh − 1)η, hηu, hwu

)T
. This system can be

rewritten under the following form :

∂W

∂t
+ A(W)

∂W

∂x
= 0

with W = (h, u, η, w)T and

A =


u h 0 0

g + λη2

3h3 u − 1
3λ
(
2η
h − 1

)
0

0 0 u 0
0 0 0 u


The eigenvalues of A are :

c1,2 = u, c3 = u−
√
gh+

λ

3

η2

h2
, c4 = u+

√
gh+

λ

3

η2

h2
.

The associate right eigenvectors are :

v1 = (0, 0, 0, 1)T ,

v2 =

(
λ

3

(
2
η

h
− 1
)
, 0, g +

λ

3

η2

h3
, 0

)T
,

v3 =

(
−h,

√
gh+

λ

3

η2

h2
, 0, 0

)T
,

v4 =

(
h,

√
gh+

λ

3

η2

h2
, 0, 0

)T
.
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The field associated to the eigenvalues c1,2 are linearly degenerate : ∇c1,2 · v1,2 = 0. The field
associated to the eigenvalues c3,4 are genuinely non-linear in the sense of Lax :

∇c3,4 · v3,4 =
3

2

gh√
gh+ λ

3
η2

h2

> 0.

C Multi-dimensional augmented lagrangian

The multi-dimensional generalisation of the lagrangian (12) in Eulerian coordinates is :

L̂ =
h|u|2

2
+
hη̇2

6
− gh2

2
− λh

6

(η
h
− 1
)2
.

The corresponding governing equations generalising (21) can easily be obtained following [15] :

ht + div (hu) = 0,

(hu)t + div (hu⊗ u + pI) = 0, p =
gh2

2
− λη

3

(η
h
− 1
)
,

η̇ = w, ẇ = −λ
h

(η
h
− 1
)
, ˙ =

∂

∂t
+ u · ∇,

where I is the identity tensor, ⊗ means the tensor product.
The equations admit the energy conservation law :(

h

(
|u|2

2
+
η̇2

6
+
gh

2
+
λ

6

(η
h
− 1
)2))

t

+div

(
hu

(
|u|2

2
+
η̇2

6
+
gh

2
+
λ

6

(η
h
− 1
)2)

+ pu

)
= 0.
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canaux. La Houille blanche, 8, 830872, 1953.

[28] Toro, E. F. (2013) Riemann solvers and numerical methods for fluid dynamics: a practical
introduction. Springer Science and Business Media.

[29] Su, C. H. & Gardner, C. S. (1969) Korteweg - de Vries Equation and Generalisations. III.
Derivation of the Korteweg - de Vries Equation and Burgers Equation, J. Math. Physics,
10, 536–539.

[30] Salmon, R. (1998) Lectures on Geophysical Fluid Mechanics, Oxford University Press, 1998.

[31] Treske, A. (1994) Undular bores (favre-waves) in open channels-experimental studies. Jour-
nal of Hydraulic Research, 32(3), 355-370.

[32] Whitham, G. B. (1974) Linear and Nonlinear Waves, John Wiley & Sons.

20


