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Abstract

The dynamic content of physical scenes is largely compositional, that is, the move-
ments of the objects and of their parts are hierarchically organised and relate through
composition along this hierarchy. This structure also prevails in the apparent 2D mo-
tion that a video captures. Accessing this visual motion hierarchy is important to get a
better understanding of dynamic scenes and is useful for video manipulation. We pro-
pose to capture it through learned, tree-structured sparse coding of point trajectories. We
leverage this new representation within an unsupervised clustering scheme to partition
hierarchically the trajectories into meaningful groups. We show through experiments on
motion capture data that our model is able to extract moving segments along with their
organisation. We also present competitive results on the task of segmenting objects in
video sequences from trajectories.

1 Introduction
Early works in biological vision found that visual systems decompose objects into parts
through the analysis of motion nesting [20]. Johansson showed in particular that remov-
ing the motion of the main body from the image reveals the distinctive motion of its parts.
Along the same lines, Gershman et al. [15] have recently proposed a computational model
that can decompose dynamic sensory data into a hierarchy of components. The hierarchical
decomposition of visual motion information is thus clearly identified as a key step in com-
plex biological vision systems. In this paper, we propose to investigate these ideas in the
context of video analysis, where important tasks like motion understanding and video object
segmentation could benefit from them.

The compositional organisation of visual motion stems first from the physics of observed
objects: an object moves relative to its environment, its parts may be in motion relative to
it, some of them may form articulated kinematic chains and dynamic deformations, if any,
add another layer to the final 3D movement of object fragments. Projected in the image
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Figure 1: Hierarchical organisation of visual motions in a natural scene.

plane of the camera, this organisation persists. In addition, the movement of the camera
itself introduces another component that affects the apparent motion of all the visible parts
of the scene. As a consequence, visual motion in the scene is roughly organised along a
tree, with the dominant motion (typically induced by camera motion) at the root, and motion
components adding up along the branches (Fig. 1). Discovering this structure would provide
insight into the scene and, as a by-product, a hierarchical motion-based segmentation of it.

Object segmentation in videos is a generic problem with far-reaching applications. As
such, it has received lots of attention in the computer vision literature where both fully au-
tomatic and user-assisted pipelines are proposed. Automatic segmentation tools provide key
building blocks for solving problems like action localisation for instance, e.g., [17]. On the
other hand, interactive tools for video object segmentation are at the heart of complex video
editing tasks such as cutout and rotoscoping, e.g., [1, 3] and can be used to ease the arduous
tasks of video annotation, e.g., [31].

For tasks like tracking, segmenting, editing and analysing objects in videos, point trajec-
tories appear as very powerful primitives: they can be harvested in large quantity and with
good quality by modern techniques, e.g. [5], and they capture short-to-long term scene in-
formation at the fragment level. Grouping semi-dense point tracks through spatio-temporal
clustering or labelling has in particular been explored in the context of object segmentation,
e.g., [5, 12, 13, 22, 24, 25, 29, 35]. Recent works, i.e. [22], report promising results on video
segmentation benchmarks like the FMBS-59 dataset [25]. A number of problems remain
nonetheless open, such as the definition of suitable similarities within pairs or groups of
trajectories with different lifespans and the high computational complexity incurred by clus-
tering dense tracks over long videos. More importantly for present work, existing methods
lack a natural notion of compositional hierarchy.

We propose to introduce such a notion in the analysis and the clustering of point trajecto-
ries. Indeed, as observed in [15, 20], point trajectories likewise instantaneous motions result
from the staked contributions of sets of dynamic parts. We found that dictionary learning
and sparse coding provide appealing tools to disentangle this latent hierarchical structure.
To this end, we introduce a new tree-structured dictionary learning method that allows de-
scribing each track with a few basis functions, all but one being inherited from its parent in
the structure. The sparse codes thus associated to the tracks capture the desired structure and
lend themselves naturally to hierarchical clustering of the collection.

The rest of the paper is organised as follows. In Section 2, we discuss relevant literature.
We then introduce in Section 3 the proposed dictionary learning technique to model point
trajectories with a compositional hierarchy. Section 4 is devoted to the presentation of dif-
ferent experiments where collections of point tracks are analysed and clustered. Finally, we
give concluding remarks in Section 5.
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2 Related work

In this section, we discuss the relevant literature on three key aspects of our work: the com-
positional hierarchical modelling of visual motion, the problem of representing and cluster-
ing point tracks found in a video sequence and, finally, the learning of dictionaries under
hierarchical structure constraints.

Hierarchical motion estimation The idea of analysing visual motion through composi-
tional hierarchies has a long history. As soon as early works on the estimation of optical flow,
this concept appeared in the form of incremental coarse-to-fine estimation, either to speed-up
computations in the spirit of multigrid methods [10] or to facilitate non-convex minimisation
in presence of large motions [4, 26]. Combining additively dense optic flow and piece-wise
parametric motions as in [21] also amounts to using a hierarchy, though a shallow one. In
these works, the final goal remains however the estimation of a single motion field, whether
dense or parametric, at the pixel level. Closer to our goal, several motion-based image seg-
mentation techniques exploit nested parametric models [8, 27, 28]. In contrast to [27], and
[8], where the structure is shallow and provides only a flat motion-based segmentation that
captures independent moving regions in front of a background with dominant motion, [28]
proposes to use deeper structures that explain locally nested motions through a hierarchical
conditional random field. In any case, the above mentioned works concern the motion be-
tween two successive video frames, as opposed to the shot-level analysis that we conduct
using point trajectories.

Representing and clustering point trajectories A number of recent approaches to tra-
jectory grouping make us of a spectral embedding [5, 14, 24, 25]. Based on a suitable
similarity measure between trajectories, a pairwise affinity matrix is built and used to pro-
duce a low-dimensional embedding for each trajectory (based on the bottom eigen-vectors of
the associated graph Laplacian). Clustering is then conducted in this embedded space, e.g.,
through K-means clustering in the case of spectral clustering. For this segmentation step,
Brox and Malik [5] minimise instead a clustering cost that also enforces cluster separability
and penalises model complexity, Ochs and Brox [24] consider higher order relationships be-
tween trajectories, and Ochs et al. [25] extends [5] using an MRF-based spatial prior. Our
approach also proceeds through encoding of trajectories followed by clustering. However,
the encoding is obtained with a special form of dictionary learning and the clustering relies
on hierarchical K-means. As opposed to the methods discussed above, we obtain a hierar-
chical partition of the track set. Also, we outperform [25] on their FMBS-59 benchmark.

As an alternative to spectral embedding, which requires pairwise similarities, the pre-
liminary low-dimensional encoding of the point tracks can be obtained through low-rank
factorisation of the data matrix [7, 9, 29, 34, 35]. Non-negative matrix factorisation (NMF)
and semi-non-negative matrix factorisation (SNMF) are for instance used in [7] and [23]
respectively. Dictionary learning is also a form of data matrix factorisation, but under spar-
sity rather than rank constraints. To our knowledge, it has not been used so far to encoding
point trajectories. Exploiting the expression power offered by a large dictionary, we propose
a simple way to enforce the desired tree-based structure into the learning and the encoding
steps. It is not clear whether low-rank factorisation methods are amenable to this structur-
ing. While the SNMF-based approach of [23] for instance does capture low-level motion
segments, it does not have an explicit mechanism to extract higher-level motion segments.
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Once encoded through data factorisation, the trajectories can be clustered with off-the-
shelf or specially designed techniques. As with spectral clustering, K-means clustering is a
simple option but more sophisticated alternatives, such as multiple subspace learning, have
also been investigated [9, 29]. As already said, we adopt top-down hierarchical K-means for
it fits ideally our aim of unveiling the hierarchical nature of visual motion.

Structured dictionary learning and sparse coding Representing data as sparse codes
over learned dictionaries is a very powerful paradigm to process or analyse collections of
signals, including images and image patches within an image. Among the numerous tools
that have been developed in this domain, several forms of structured sparsity have been
explored in conjunction with dictionary learning, e.g.,[16, 18, 36]. The tree-based structured
sparsity introduced by Jenatton et al. [18] is particularly interesting for our approach. The
atoms of the dictionary being attached to the nodes of a rooted tree, this approach imposes
that an input signal is encoded only with atoms that form a (small) rooted sub-tree. As we
shall see in Section 3.1, our requirement is more drastic: only atoms forming a branch to the
root can be jointly used to encode a given trajectory.

3 Proposed method
We start by introducing sparse coding of point trajectories. We then explain in Section 3.1
how such a learned representation can be hierarchically structured in order to capture the
compositional nature of apparent motion. We extend this hierarchical sparse coding frame-
work in Section 3.2, so that it facilitates unsupervised hierarchical clustering of the input
data. Finally, we explain in Section 3.3 how trajectory clusters thus obtained over short time
intervals can be regrouped at the video shot level.

In this work, we exploit point trajectories extracted with the method of Sundaram et al.
[32], which relies on forward/backward optical flows from [6]. Although the results might
be improved by using more recent optical flow methods, like the ones in [30] or [11], we
stick to [6] for optical flow computation in order to perform a fair comparison with other
methods, that is, only on the basis of the proposed representation and associated algorithms.

Given an input video sequence of M +1 frames and N input point trajectories extracted
from it 1 (xn

0:M) ∈ R2×(M+1), n = 1 · · ·N, we define the data matrix X ∈ R2M×N as:

X =


∆x1

1 ∆x2
1 · · · ∆xN

1

∆x1
2 ∆x2

2 · · · ∆xN
2

...
... · · ·

...
∆x1

M ∆x2
M · · · ∆xN

M

 , (1)

where ∆xn
m = xn

m− xn
m−1. In this matrix, each column stems for the sequence of displace-

ments along one trajectory. A powerful way to discover multiple structures in such data is
through sparse coding with a learned dictionary. Formally, one seeks an approximate decom-
position X ≈ DA into a dictionary matrix D = [d1 · · ·dK ] ∈ R2M×K , possibly with K larger
than 2M (overcomplete dictionary), and a sparse representation A = [α1 · · ·αN ] ∈ RK×N of

1We assume for simplicity that all trajectories are defined over the full temporal extent of the video sequence.
Taking into account trajectories with different lifespans is readily done by introducing an appropriate masking
matrix P ∈ {0,1}2M×N in following derivations.
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the input data. The columns of the matrix D are K unit-norm basis elements termed atoms,
and those of A are the sparse codes associated to the N input trajectories. Such a sparse
decomposition can be achieved by solving the optimization problem:

argmin
D,A

‖X−DA‖2
2 sb.t. ‖αn‖0 ≤ s, ∀n and ‖dk‖2 = 1, ∀k (2)

using, for example, the K-SVD algorithm [2]. The positive parameter s controls the sparsity
constraint and ‖X−DA‖2 is the reconstruction error of the trajectory displacements. At each
iteration of the K-SVD algorithm, a coding step is performed (i.e., solving for A in Eq. 2,
dictionary D being fixed) with the orthogonal matching pursuit (OMP)[33], followed by
an SVD-based update of the dictionary’s atoms. The previous formulation, however, does
not enforce any structure among the atoms of the dictionary and on the associated codes.
Next, we re-formulate the problem so that the dictionary and the encoding are constrained in
certain way by a tree structure.

3.1 Tree-structured dictionary learning
As pointed out in [15], the natural organization of the moving objects and their parts in a
video is that of a tree, as illustrated in Fig. 1. In this simple example, the motion of one
leg of the bear constitutes one node of the tree with the motion of the animal’s body being
at its parent node, the latter being in turn related to the root node that captures the visual
motion induced in the whole scene by the movement of the camera. In fact, this hierarchical
organization of visual motion is not restricted to articulated objects, but to other natural
scenes as well. We aim at leveraging such a structure.

A second key feature of our approach is to represent point tracks as linear combinations
of few learned atoms. We thus resort to dictionary learning and sparse coding techniques,
with the goal of organizing the dictionary in a hierarchical structure that can capture, to some
extent, the compositional organization of the dynamic scene. Each trajectory pattern in the
dictionary is associated to a node of a tree and should ideally capture the motion of one
scene element, relative to its ancestors in the tree. In other words, we want the movement of
a given scene element to be represented only with dictionary atoms stemming from a same
branch of the tree. This form of hierarchical tree-structured sparsity is related to the one of
Jenatton et al. [18], but is more drastic. Jenatton et al. indeed stipulate that only a sub-tree
from the root can be used to represent an input signal.

For a given rooted tree T of K nodes numbered in level-order,2 we want to learn a dic-
tionary D = [d1:K ] ∈R2M×K of K trajectory atoms organized according to this tree structure,
together with the corresponding matrix A = [α1:N ] ∈ RK×N of sparse codes. To this end, we
consider the following constrained minimization problem:

argmin
D,A

‖X−DA‖2
2, sb.t. αn ∈A(T), ∀n and ‖dk‖2 = 1, ∀k, (3)

where A(T)⊂ RK is the set of tree-structured codes defined as:

A(T) = {α ∈ RK : supp(α) = anc(k(α))}, (4)

where anc(k) denotes the ancestor set of node k in T (the nodes, including itself, that form
the unique path from k to root node 1), supp(α) is the support of α , that is the index set

2In practice, a simple regular structure is chosen, defined by its depth L, and by the common number n`, ` =
1 · · ·L−1, of children for all nodes at a given depth level `. In that case, K = 1+∑

L−1
`=1 ∏

`
`′=1 n`′ .
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of its non-zero entries, and k(α) = max(supp(α)) stands for the last atom in the code. In
other words, only a single branch of the tree, from the root to a certain node which is not
necessarily a leaf, can be used to encode a given point track. This constraint also enforces
the sparsity of the codes since ‖α‖0 cannot exceed the depth of the tree.

Algorithm 1 Tree-structured orthogonal matching pursuit
1: procedure TREE-OMP( dictionary D,signal x,target error ε,tree T)
2: S←{1}
3: αS← d>1 x
4: r← x−d1αS

5: while ‖r‖2 > ε and size(S)< depth(T) do
6: k← argmaxk∈child(maxS) |d>k r|
7: S← S∪{k}
8: αS← D+

Sx
9: r← x−DSαS

10: return (α)

We use the K-SVD algorithm to solve the dictionary learning problem (3), but we modify
the orthogonal matching pursuit (OMP) encoding part in order to respect the constraint in
(4), as it can be observed in Algorithm 1. We force the use of the root node for every input
datum, so in line 2, the code support S is initialized with {1}. In subsequent steps, the greedy
search for a new atom to include, in line 6, is restricted to the children of the last selected
atom in the tree. In line 8, DS = [dk]k∈S is the sub-dictionary indexed by S and αS is the
corresponding code for x, obtained through least-squares minimization, with (.)+ standing
for matrix pseudo-inverse. The algorithm stops when the reconstruction is accurate enough
or the maximum tree depth is reached.

3.2 Hierarchical coding and clustering
Having all trajectories encoded in A according to the learned tree-structured dictionary D al-
ready provides a flat partitioning of the trajectories through indices k(αn) and a hierarchical
one by gathering, for each node k in the tree, all trajectories such that k ∈ anc(k(α)). Unfor-
tunately, such partitions are noisy since the above dictionary learning and sparse coding are
not explicitly geared toward a clustering task: nothing prevent unrelated trajectories to share
atoms and, conversely, related trajectories to exhibit disjoint supports.

In the same spirit as spectral clustering that conducts final K-means clustering on spec-
trally encoded data vectors instead of simply binarising them, we can cluster the trajectories
based on their codes αns, with hierarchical K-means in our case. This already provides
cleaner partitions. Drawing inspiration from Jiang et al. [19] who combine dictionary learn-
ing with supervised learning of linear classifiers over codes, we can go one step further: given
a current hierarchical clustering of trajectories’ codes, we can update our tree-structured dic-
tionary and iterate. As will appear in the experiments, this procedure further improves the
quality of track clusters. At each iteration, the dictionary learning problem to solve becomes

argmin
D,Y,A

‖X−DA‖2
2 +λ‖Q−YA‖2

2, sb.t. αn ∈A(T), ∀n (5)

where Q ∈ {0,1}K×N is the binary matrix associated to the current hierarchical clustering of
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Figure 2: Hierarchical motion segmentation of the bear sequence from FMBS dataset [25].
In this sequence, the camera is following a walking bear. The moving parts discovered at
each level of the tree are showed in first and last frames, along with associated colour-coded
tree. The segments associated to the greyed nodes are not visualized for sake of readability
(those from the second level of the tree are assigned to background points).

tracks (each of its columns belongs to A(T)) and λ is a positive parameter that controls the
balance between reconstruction and clustering terms. We set λ by trial and error, and fix its
value to 1 for all the experiments. This new objective function can be rewritten as

‖X−DA‖2
2 +λ‖Q−YA‖2

2 =
∥∥∥[ X√

λQ

]
︸ ︷︷ ︸

X̄

−
[

D√
λY

]
︸ ︷︷ ︸

D̄

A
∥∥∥2

2
, (6)

and optimized w.r.t. D̄ and A with K-SVD, after trading normalization constraints on D and
Y for normalization constraints on D̄.

3.3 Extension to longer videos

With the proposed approach, we are able to extract meaningful part-based clusters of tracks
from short video sequences, i.e., 20 frames at most. Even over such short time intervals,
some of the trajectories are incomplete. We handle them by computing the reconstruction
error for a trajectory only in frames it is defined, i.e., replacing ‖X −DA‖2 by ‖P�X −P�
DA‖2, where P is the binary masking matrix that sets to zero undefined entries of X and �
is the Hadamard product. An example of hierarchical track clustering obtained over a short
sequence is shown in Figure 2.

To process longer video shots of, say, hundreds of frames, we apply our method indepen-
dently to half-overlapping chunks of 10 frames each and we follow the spectral clustering
method in [23] to group short-term clusters at the shot level. Given all finest-level segments
(groups of tracks associated to tree leaves) extracted from all temporal windows through tree-
structured spare coding, we build a pairwise affinity matrix based on the number of tracks
that are shared by each pair of segments. This affinity matrix is used to conduct spectral
clustering. As a result, two groups of trajectories that have been formed with our approach
in two distinct time windows are likely to be merged in the final segmentation if they share
a lot of tracks. This might happen even if they are quite distant in time, provided long-term
trajectories exist in the initial data and some of them belong to both groups.
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Original 3D Sequence: person walking (Subsampled)

Motion tree representing the scene

3D points projected onto the image plane

Clusters for the 2nd layer of the motion tree Clusters for the 3rd layer of the motion tree

Reconstructed motion (DA) Reconstructed motion after canceling effect of root node

Original 3D Sequence: person jumping (Subsampled) 3D points projected onto the image plane

Clusters for the 2nd layer of the motion tree Clusters for the 3rd layer of the motion tree

Reconstructed motion (DA) Reconstructed motion after canceling effect of root node

Motion tree representing the scene

Figure 3: Hierarchical motion analysis of walking and jumping sequences from CMU Mo-
Cap dataset. For each sequence: (Top) Original 3D sequence and its 2D projection in the
virtual camera 2D; (Middle) Clustering results on the 2nd and 3rd levels of the tree and
corresponding colour-coded tree. (Bottom) Motion reconstructed from complete codes and
after removing the contribution of root track atom k = 1.
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Table 1: Object segmentation results on the FMBS-59 test set.
Average precision Average recall Average F-measure

Spectral Clustering [25] 76.15% 61.11% 67.81%
Multicuts [22] 81.04% 68.67% 74.34%
DL (baseline) 67.84% 58.81% 60.25%
TreeDL (ours) 76.84% 64.20% 69.46%

TreeDL+ (ours) 78.41% 65.52% 72.33%

4 Experiments
Using the CMU MoCap dataset,3 we analyse first the ability of our approach to discover
motion hierarchies. From these real 3D human motion data, we can derive a structured set of
2D point trajectories: around 1500 points are sampled from the moving limbs and projected
into an arbitrary virtual camera, where they produce 2D tracks. We aim at discovering a
plausible hierarchical decomposition of this data, i.e., one that complies to some extent with
the kinematic chain of the articulated human body. For these experiments, we use a simple
tree structure T composed of 1 root node with five children, each one with two children
(L = 3, n1 = 5, n2 = 2, K = 16). Note that some nodes might be unused in the end, no
trajectories being assigned to them. It is the case in the walking sequence in Fig. 3, for
two siblings of the last level of the tree. The quality of the obtained sparse approximation
X ≈ AD can be assessed through visualization of the corresponding track reconstructions
(Fig. 3, third row left). Also, in order to get insight into what a specific track atom k captures,
we can simply set to zero the corresponding k-th row in the code matrix A and recompute
the reconstructed trajectories accordingly. We show in particular the effect of removing the
influence of the root node in walking and jumping sequences (Fig. 3, third row right). In both
cases, the root atom has captured the global trajectory of the actor. The reconstructed motion
depicts the actor performing approximately the same actions, but in place. Note that each
trajectory is reconstructed from at most three atoms (number of levels in the tree), which
can lead to some reconstruction errors. However, despite the simplicity of the underlying
tree, our approach is able to discover automatically meaningful structures among the input
trajectories. In the jumping case, the left and right parts of the body are moving in the same
way, this explains why trajectories from limb pairs, e.g. the two feet, are grouped together.

In a second series of experiments, we evaluate the clustering performance of our motion
analysis framework on the FMBS-59 dataset [25].We present in Table 1 the results of our
tree-structured dictionary learning approach with iterative refinement (“TreeDL+”) as de-
scribed in Section 3.2 and compare them against state-of-the-art methods for trajectory clus-
tering, namely the spectral clustering based method in [25] and the multicuts-based approach
in [22]. For our approach, the tree structure is defined by L = 4, n1 = 4, n2 = 3, n3 = 2 and
K = 41. We also include results for two baselines related to our approach: using unstructured
dictionary learning (“DL”) as introduced in Section 3 and a hierarchical learned representa-
tion with no further refinement (“TreeDL”), as explained in Section 3.1. For these two base-
lines and our complete system, we use the temporal sliding-window procedure described in
Section 3.3 and use top-down hierarchical K-means on final codes to produce track clusters
in each video chunk. We first note in Table 1 the gain brought by the tree-based structur-
ing and by the clustering-driven extension of dictionary learning. We also note that both
“TreeDL” and “TreeDL+” outperform [25]. While the performance of proposed system is

3http://mocap.cs.cmu.edu/
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slightly below the one of [22], our system gives access to precious information about the
structure of the motion and the way the moving regions relate to each other.

5 Conclusions
We propose a method for representing and clustering point tracks, which captures the natural
organization of moving regions in a dynamic scene. Our approach relies on an original
dictionary learning technique that enforces a tree-based structure of dictionary and codes,
and takes explicitly into account the subsequent task of clustering final codes. We showed
experimentally that our method not only performs well on the difficult task of trajectory-
based video segmentation, but also discovers automatically part of the hierarchical structure
of dynamic scenes, both in motion capture data and in monocular video data.
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